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Abstract—Global supply chains have become increasingly 

vulnerable to multi-modal disruptions, ranging from natural 

disasters and pandemics to geopolitical conflicts and cyber-attacks. 

Traditional approaches to resilience modeling often fail to capture 

the complex interdependencies that exist within modern supply 

networks. This paper introduces a novel Graph Neural Network 

(GNN) based framework for predictive modeling of supply chain 

resilience that leverages the inherent network structure of supply 

systems. Specifically, we employ Graph Attention Networks 

(GATs) with multi-head attention mechanisms to identify critical 

vulnerabilities and predict node-level resilience against various 

disruption scenarios. Our approach achieves 93.33% accuracy 

and 0.9630 F1 score in resilience classification tasks, outperform- 

ing traditional machine learning methods. Through attention 

mechanism analysis, we identify key structural dependencies 

and vulnerability patterns that can inform targeted resilience 

strategies. Our framework provides supply chain practitioners 

with an interpretable, data-driven approach to disruption risk 

management, enabling proactive rather than reactive resilience 

planning in complex global supply networks. 

Index Terms—graph neural networks, supply chain resilience, 

attention mechanisms, disruption modeling, risk prediction, graph 

attention networks, multi-modal disruptions 

I. INTRODUCTION

A. Background and Motivation

Global supply chains represent intricate networks of inter- 

dependent entities engaged in the procurement, production, 

and distribution of goods and services. The complex nature 

of these networks, spanning geographical, organizational, and 

functional boundaries, makes them particularly susceptible to 

disruptions. Recent events such as the COVID-19 pandemic, 

geopolitical conflicts, and climate disasters have highlighted 

the critical vulnerability of global supply networks to cascading 

failures [1]. According to the World Economic Forum, supply 

chain disruptions caused by the pandemic alone resulted in 

over $4 trillion in losses to the global economy [2]. 

The resilience of a supply chain—its ability to anticipate, 

absorb, and recover from disruptions—has emerged as a crucial 

determinant of organizational performance and sustainability. 

Mathematically, supply chain resilience (R) can be conceptu- 

alized as a function of the network’s structure, the attributes of 

its constituent entities, and the nature of potential disruptions: 

 

R = f (G, θ, δ) (1) 

where G = (V, E) represents the supply chain graph with nodes 

V and edges E, θ denotes the attributes of entities (nodes) and 

their relationships (edges), and δ represents the characteristics 

of potential disruptions. 

Traditional approaches to modeling supply chain resilience 

have predominantly relied on statistical methods, simulation 

techniques, or conventional machine learning models. While 

these approaches provide valuable insights, they often fail to 

adequately capture the complex, non-linear interdependencies 

inherent in supply networks. This limitation is particularly 

evident in their inability to model how disruptions propagate 

through the network, a phenomenon mathematically expressed 

as: 

P(vj|δi) = g(P(vi|δi), Aij, θi, θj) (2) 

where P(vj|δi) represents the probability of node vj being 

affected given a disruption δi at node vi, Aij denotes the 

adjacency relationship between nodes, and θi, θj are the node 

attributes. 

 

B. Research Gap and Objectives

Despite the inherent graph structure of supply chains, the 

application of Graph Neural Networks (GNNs) to resilience 

modeling remains relatively unexplored. GNNs, with their 

ability to learn representations that capture both node features 

and network topology, offer a promising approach to modeling 

complex dependencies in supply networks. The message- 

passing paradigm in GNNs can be formulated as: 
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h(l+1) = σ W(l) · AGGREGATE(l) {h(l) : u ∈ N(v)}

4) Empirical evidence demonstrating the superior perfor-

mance of GAT-based models in predicting node-level

where h(l) denotes the representation of node v at layer l, N(v) 

represents the neighborhood of node v, W(l) is a learnable 

weight matrix, and σ is a non-linear activation function. 

This inherent capability to model how information (or disrup- 

tions) propagate through a network makes GNNs particularly 

well-suited for supply chain resilience modeling. However, 

standard GNN architectures lack the ability to distinguish the 

relative importance of different neighboring nodes, which is 

crucial in supply chain contexts where certain connections may 

be more critical than others. 

In this paper, we address this limitation by employing Graph 

Attention Networks (GATs), which extend the message-passing 

framework with an attention mechanism: 

αij = (4) 

h′ = σ 

, 

αijWhj (5) 

j∈N (i) 

where αij represents the attention coefficient between nodes 

i and j, a is a learnable attention vector, and  denotes 

concatenation. 

The specific objectives of this research are: 

1) To develop a graph-based representation of supply chains

that captures both entity attributes and network topology;

2) To design and implement a GAT-based model for pre-

dicting node-level resilience against various disruption

scenarios;

3) To analyze the attention patterns learned by the model to

identify critical dependencies and vulnerabilities;

4) To evaluate the model’s performance in terms of prediction

accuracy and interpretability compared to traditional

approaches.

C. Contributions

The primary contributions of this paper are: 

1) A novel framework for representing supply chains as

attributed graphs and modeling resilience using Graph

Attention Networks;

2) A multi-head attention mechanism that captures complex

dependencies between supply chain entities and enhances

model interpretability;

3) A comprehensive methodology for simulating and analyz-

ing the impact of various disruption scenarios on supply

This work bridges the gap between graph theory, deep 

learning, and supply chain management, offering both the- 

oretical insights and practical tools for enhancing supply 

chain resilience in an increasingly volatile global business 

environment. 

D. Paper Organization

The remainder of this paper is organized as follows: Section 

II reviews the relevant literature on supply chain resilience 

modeling and Graph Neural Networks. Section III presents 

our methodology for graph-based supply chain representa- 

tion and GAT-based resilience modeling. Section IV details 

the experimental setup, including dataset description, model 

implementation, and evaluation metrics. Section V presents 

the results and analysis, focusing on prediction performance, 

attention patterns, and disruption impact. Section VI discusses 

the implications of our findings for supply chain management 

practice and theory. Finally, Section VII concludes the paper 

and outlines directions for future research. 

II. LITERATURE REVIEW

This section provides a comprehensive review of the theoret- 

ical foundations and existing research relevant to our work. We 

begin by examining key concepts and frameworks in supply 

chain resilience, followed by traditional approaches to risk 

assessment. We then review machine learning applications in 

supply chain management, with a particular focus on graph- 

based modeling approaches. Finally, we explore Graph Neural 

Networks and identify the research gap that our work addresses. 

A. Supply Chain Resilience: Concepts and Frameworks

Supply chain resilience has emerged as a critical capability 

in modern business operations, particularly as global networks 

become increasingly complex and vulnerable to disruptions. 

Ponomarov and Holcomb [3] define supply chain resilience 

as ”the adaptive capability of the supply chain to prepare for 

unexpected events, respond to disruptions, and recover from 

them by maintaining continuity of operations at the desired 

level of connectedness and control over structure and function.” 

From a mathematical perspective, resilience can be concep- 

tualized through several complementary frameworks. The most 

prevalent is the capacity-based framework, where resilience 

(R) is expressed as a function of absorption capacity (Ca),

adaptation capacity (Cd), and recovery capacity (Cr) [4]:

∫ T 

  
 

resilience compared to traditional approaches.

chain resilience; R = ϕ(Ca, Cd, Cr) = ψ(t, Ca, Cd, Cr)dt (6) 
0 

(3) 
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Σ 

where ψ(t, Ca, Cd, Cr) represents the performance of the 

supply chain at time t after a disruption, and T is the time 

horizon of interest. 

Another significant framework is the network-based perspec- 

tive, which characterizes resilience in terms of topological 

properties of the supply chain network. The resilience of a 

network can be quantified using metrics such as algebraic 

connectivity (λ2), which is the second smallest eigenvalue of 

the Laplacian matrix (L) of the network [5]: 

L = D − A (7) 

where Xi are random variables representing uncertain factors, 

and f is the system response function [8]. While simulation 

approaches can handle complex dynamics, they typically 

require explicit specification of system behavior and may not 

scale well to large-scale networks. 

3) Mathematical Programming: Optimization approaches

formulate supply chain resilience as a mathematical program- 

ming problem. For instance, a robust optimization model for 

supply chain design can be expressed as: 

min max f (x, ξ) (11) 
x  ξ∈U 

λ2 = min 
x⊥1,  x  =1 

xT Lx (8) 
s.t.  gi(x, ξ) ≤ 0, ∀i ∈ {1, . . . , m}, ∀ξ ∈ U (12) 

where D is the degree matrix, A is the adjacency matrix, and 

1 is the vector of all ones. Higher values of λ2 indicate greater 

network connectivity and, consequently, increased resilience 

against targeted disruptions. 

Research by Christopher and Peck [6] identifies four key prin- 

ciples for building resilience: (1) supply chain (re)engineering, 

(2) collaboration, (3) agility, and (4) risk management culture.

These principles form the foundation for practical approaches to

enhancing resilience, but their implementation requires accurate

models of supply chain behavior under disruption conditions.

B. Traditional Approaches to Supply Chain Risk Assessment

where x represents decision variables, ξ represents uncertain 

parameters, U is the uncertainty set, and f and gi are the 

objective and constraint functions, respectively [9]. These 

approaches are powerful for decision-making but often make 

simplifying assumptions about network structure and disruption 

propagation. 

4) Network Analysis Methods: Traditional network analysis

techniques apply graph theory to assess supply chain vulnera- 

bility. Metrics such as node centrality and network connectivity 

are used to identify critical nodes and links. For instance, 

betweenness centrality (CB) of a node v is defined as: 

Traditional approaches to supply chain risk assessment 

have predominantly relied on qualitative methods, simulation 

techniques, and optimization models. These can be categorized 

CB(v) = 
s̸=v̸=t 

σst(v) 

σst 
(13) 

into four main paradigms: 

1) Qualitative Risk Assessment: Qualitative methods typi-

cally employ frameworks such as Failure Mode and Effects 

Analysis (FMEA) and risk mapping. In FMEA, risk priority 

number (RPN) is calculated as: 

RPN = S × O × D (9) 

where S is the severity of the risk, O is the occurrence 

likelihood, and D is the detection difficulty [7]. While intuitive, 

these approaches often lack the capacity to capture complex 

interdependencies and cascading effects in supply chains. 

2) Simulation-Based Approaches: Simulation methods, par-

ticularly Monte Carlo simulation and System Dynamics, have 

been widely used to model supply chain behavior under 

uncertainty. In Monte Carlo simulation, the performance metric 

Y is evaluated as: 

Y = f (X1, X2, . . . , Xn) (10) 

where σst is the total number of shortest paths from node s 

to node t, and σst(v) is the number of those paths that pass 

through node v [10]. However, these approaches typically do 

not account for node and edge attributes that are crucial in 

supply chain contexts. 

C. Machine Learning Applications in Supply Chain Manage-

ment

Recent years have witnessed a growing application of 

machine learning techniques to various aspects of supply 

chain management, including demand forecasting, inventory 

optimization, and risk assessment. Traditional machine learning 

approaches in supply chains can be classified as supervised 

learning methods (e.g., SVMs, Random Forests), unsupervised 

learning approaches (e.g., clustering), and reinforcement learn- 

ing. 

Supervised learning algorithms have been applied to predict 

supply chain performance and risk levels, with SVM classifiers 

for supply chain risk formulated as: 
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n 

w 
2

+ C ξi 
i=1 

(14) 

1) Theoretical Foundations: The message-passing frame-

work, which underlies most GNN architectures, updates node 

representations through iterative neighborhood aggregation. In 

each layer l, the representation of node v is updated as: 

s.t.  yi(wT xi + b) ≥ 1 − ξi, ξi ≥ 0, ∀i ∈ {1, . . . , n} 

(15) 
Unsupervised learning techniques, including clustering and 

 
h(l+1) = UPDATE(l) h(l), AGGREGATE(l) {h(l), euv : u ∈ N(v)}

v v 

dimensionality reduction, have been employed to identify 

u 

(17) 

patterns in supply chain data, while reinforcement learning 

has been applied to optimize supply chain decisions under 

uncertainty. 

Despite their success in various applications, traditional 

machine learning approaches face significant limitations when 

applied to supply chain resilience modeling, particularly in 

capturing complex network relationships, node and edge 

attributes, and propagating effects of disruptions—all of which 

are essential for accurate resilience prediction. 

D. Graph-Based Modeling for Complex Systems

Graph theory provides a natural framework for modeling 

complex systems with interdependent components, such as 

supply chains. In a graph-based representation, entities are 

modeled as nodes, and their relationships as edges. 

A supply chain network can be represented as a directed, 

weighted, and attributed graph G = (V, E, X, E), where V is 

the set of nodes, E is the set of edges, X is a matrix of node 

features, and E is a matrix of edge features. 

The robustness of a supply chain network to random failures 

 

where h(l) is the representation of node v at layer l, N(v) is

the neighborhood of v, euv is the feature vector of edge (u, v), 

and UPDATE and AGGREGATE are differentiable functions 

[16]. 

The expressive power of GNNs is related to the Weisfeiler- 

Lehman (WL) graph isomorphism test. It has been shown that 

message-passing GNNs are at most as powerful as the 1-WL 

test in terms of distinguishing non-isomorphic graphs [17]. 

However, this limitation can be partially addressed through 

higher-order GNNs or by incorporating edge features and global 

graph information. 

2) Variants of Graph Neural Networks: Several GNN

architectures have been proposed in the literature, each with 

distinct characteristics: 

a) Graph Convolutional Networks (GCNs): GCNs gen-

eralize convolutional operations to graph-structured data. The 

layer-wise propagation rule in a GCN can be expressed as: 

H(l+1) = σ D̃ − 1 Ã D̃ − 1 H(l)W(l) (18) 

⟨k⟩ 
pc = 

⟨k2⟩ − ⟨k⟩ 
(16) 

where ⟨k⟩ and ⟨k2⟩ are the first and second moments of the 

degree distribution, respectively. 

Disruption propagation in supply chains can be modeled 

as a diffusion process on graphs, using models such as 

the susceptible-infected-recovered (SIR) model. Traditional 

graph analytics, while providing valuable insights into network 

where Ã = A + I is the adjacency matrix with self-loops, D̃ 

is the corresponding degree matrix, H(l) is the matrix of node 

representations at layer l, W(l) is a learnable weight matrix, 

and σ is a non-linear activation function [18]. 

b) GraphSAGE: GraphSAGE employs sampling and

aggregation to efficiently learn node representations in large 

graphs. The update rule for GraphSAGE can be written as: 

properties, face limitations when applied to supply chain 

resilience modeling, motivating the use of more advanced 
(l) 
N (v) = AGGREGATE(l) {h(l) : u ∈ N(v)} (19) 

techniques like Graph Neural Networks. h(l+1) = σ 
 
W(l) · CONCAT

 
h(l), h(l) 

 
(20) 

v 

E. Graph Neural Networks: Theory and Applications

v N (v) 

Graph Neural Networks (GNNs) extend deep learning 

techniques to graph-structured data, enabling the learning of 

representations that capture both topological structure and 

node/edge attributes. The fundamental idea behind GNNs is to 

update node representations through message passing between 

neighboring nodes. 

where AGGREGATE can be a mean, max, or LSTM aggregator, 

and the final representation is normalized to unit length [19]. 

c) Graph Attention Networks (GATs): GATs introduce

attention mechanisms to weight the importance of neighboring 

nodes during aggregation. The attention coefficient between 

nodes i and j in layer l is computed as: 

can be quantified based on the percolation threshold pc: 

h 
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i j 

i k 

α  W  h  (22) 

K 

i 

α W h  

ij j 

(l) exp LeakyReLU a(l)T [W(l)h(l) W(l)h(l)]

2) Attention mechanisms, which are crucial for identifying

critical dependencies, are underutilized in supply chain

risk assessment.
αij = 

k∈N (i)∪{i} exp LeakyReLU a(l)T [W(l) h(l) 
 W (l) h ( l ) ]3 ) Few studies integrate node and edge features with topo-

(21) 

where a(l) is a learnable attention vector, W(l) is a weight 

matrix, and  denotes concatenation. The updated representation 

is then computed as: 

h(l+1) = σ 

,
Σ 

(l) (l) (l) 

 

logical information for holistic supply chain analysis. 

4) Limited work has been done on modeling and predicting

the impact of multi-modal disruptions on supply networks.

5) The interpretability of GNN-based models, which is

essential for practical applications, has not been thoroughly

explored in the supply chain context.

Our work addresses these gaps by developing a comprehen- 

 

Multi-head attention can be employed to stabilize the learn- 

ing process and capture different aspects of the neighborhood: 

For the final layer (l = L), we use: 

(l+1) 

, 

1 Σ Σ
(l,k) (l,k)  (l)

critical dependencies and vulnerabilities in the supply network. 

Furthermore, our approach integrates node and edge features 

with topological information to provide a holistic analysis of 

supply chain resilience against various disruption scenarios. 

The proposed framework extends beyond mere prediction to 

hi = σ 
K k=1 j∈N (i)∪{i} 

αij  W hj (23) provide interpretable insights that can inform strategic decision-

making. By analyzing attention patterns and node embeddings,

For intermediate layers, we concatenate the outputs: supply chain managers can identify vulnerable components
and implement targeted resilience strategies. This bridges the

h(l+1) = σ

,

CONCATK

, 
Σ (l,k) (l,k) (l) gap between advanced graph-based modeling techniques and

i k=1 ij 

j∈N (i)∪{i} 

j 

(24) 

practical supply chain management applications.

III. METHODOLOGY

where K is the number of attention heads, and α(l,k) and 

W(l,k) 
ij 

are the attention coefficient and weight matrix for the 
This section presents our proposed framework for modeling 

and predicting supply chain resilience using Graph Neural 
k-th attention head, respectively [20].

3) Applications of GNNs in Complex Systems: GNNs

have been successfully applied to various complex systems, 

including: 

• Molecular property prediction: GNNs can learn representa-

tions of molecules to predict properties such as solubility

and toxicity [21].

• Traffic forecasting: Spatio-temporal GNNs capture both

spatial dependencies (road network) and temporal dynam-

ics (traffic flow) [22].

• Social network analysis: GNNs can model influence

propagation and community structure in social networks

[23].

• Recommender systems: GNNs can learn user and item

representations from user-item interaction graphs for

personalized recommendations [24].

F. Research Gap: GNNs for Supply Chain Resilience

Despite the promising applications of GNNs in various 

domains, their use in supply chain resilience modeling remains 

limited. The existing literature reveals several gaps: 

1) Most supply chain resilience models do not leverage the

full potential of graph-based representation learning.

Networks. We first describe the process of transforming 

supply chain data into a graph-based representation. We then 

detail the architecture of our Graph Attention Network (GAT) 

model, including the multi-head attention mechanism. Finally, 

we explain our approach to model training, evaluation, and 

disruption impact analysis. 

A. Graph-Based Supply Chain Representation

A supply chain naturally lends itself to a graph-based 

representation, where nodes represent entities (suppliers, man- 

ufacturers, distributors, and retailers) and edges represent the 

relationships between these entities (material flows, information 

exchanges, and financial transactions). 

1) Node and Edge Definition: We model a supply chain as

a directed, attributed graph G = (V, E , X, E), where: 

• V = {v1, v2, . . . , vN } is the set of nodes representing

supply chain entities.

• E ⊆ V × V is the set of directed edges representing

material flows.

• X ∈ RN×dv is the node feature matrix, where each node

vi is associated with a feature vector xi ∈ Rdv .

• E ∈ R|E|×de is the edge feature matrix, where each edge

(vi, vj) ∈ E is associated with a feature vector eij ∈ Rde .

j∈N (i)∪{i} 
sive GAT-based framework for supply chain resilience modeling. 

By leveraging multi-head attention mechanisms, we can identify 

Σ 
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i σc σr 

σlx 
σly σrs 

i i 

The supply chain network in our study consists of four tiers 

of entities: suppliers, manufacturers, distributors, and retailers. 

The connections between tiers follow the natural flow in a 

supply chain: suppliers → manufacturers → distributors → 

retailers. 

2) Feature Engineering: Node features are designed to

capture the intrinsic characteristics of supply chain entities 

that influence their resilience to disruptions. For each node 

vi ∈ V, we define a feature vector xi comprising both numerical 

 

where qij is the quantity of goods flowing from vi to vj, ltij 

is the lead time, cij is the cost of transportation, and drij is 

the disruption risk associated with the connection. 

3) Target Variable Definition: The target variable for our

predictive model is a binary indicator of supply chain resilience 

at the node level. For each node vi, we define a resilience label 

yi ∈ {0, 1} based on historical disruption data: 

(
1  if ρi ≥ τ 

 

xi = [xnum; xcat] (25) where ρi is the historical resilience score of node vi, calculated

as the average performance during past disruptions, and τ is a 

where xnum represents numerical attributes and xcat represents threshold parameter (set to 0.6 in our implementation). Nodes 
i i with yi = 1 are classified as resilient, while nodes with yi = 0 

categorical information encoded as one-hot vectors. 

The numerical attributes include: 

• Capacity (ci): The maximum operational capacity of entity

i. Reliability (r ): A measure of the entity’s reliability based

are classified as vulnerable. 

The historical resilience score ρi is computed based on past 

disruption records as: 

• i 

on historical performance.
1 

ρi = 
|Di| 

Σ 
(1 − sd · 

td ) (30) 
tmax 

• Location coordinates (lx, ly)i: Spatial coordinates repre-

senting the geographical location.

• Risk score (rsi): A pre-calculated risk assessment score

based on various factors.

These numerical features are standardized to have zero mean 

and unit variance: 

xnum = 
h ci − µc , 

ri − µr , 

d∈Di 

where Di is the set of disruptions affecting node vi, sd ∈ 

[0.3, 1.0] is the severity of disruption d, td is the duration of 

disruption d, and tmax is a normalization constant (set to 30 

days in our implementation). 

B. Graph Attention Network Architecture

We propose a Graph Attention Network (GAT) architecture to 

(lx)i − µlx , 
(ly )i − µly

, 
rsi − µrs i

extends traditional Graph Neural Networks by incorporating

where µ· and σ· represent the mean and standard deviation of 

the respective attributes. 

The categorical information encodes the type of supply chain 

entity using a one-hot encoding scheme: 

weights to different neighboring nodes when aggregating

information.

1) Layer Structure: Our GAT model consists of three

attention layers followed by a multi-layer classifier for final 

prediction. The architecture can be represented as: 

[1, 0, 0, 0]  if vi is a supplier   
GAT  Classifier ATT  ATT  ATT 

cat [0, 1, 0, 0]  if vi is a manufacturer (X, A) = ( 3( 2( 1(X, A), A), A)) 

xi  = [0, 0, 1, 0]  if vi is a distributor
(27) 

where is the node feature matrix, 
(31) 

is the adjacency matrix, 
[0, 0, 0, 1] if vi is a retailer X A 

Edge features capture the characteristics of relationships 

between supply chain entities that might affect resilience. For 

each edge (vi, vj) ∈ E, we define a feature vector eij that 

includes: 

eij = [qij, ltij, cij, drij] (28) 

and ATTk represents the k-th attention layer. 

Each attention layer performs the following transformation: 

H(l+1) = σ ATT(l)(H(l), A) (32) 

where H(l) is the matrix of node representations at layer l 

(with H(0) = X), σ is a non-linear activation function (ReLU 

attributes and categorical information: 
0  otherwise 

(26) predict node-level resilience in supply chains. The GAT model 

attention mechanisms, which allow the model to assign different 

yi = (29) 
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i 

i 

i 

i 

Σ 
α 

  

ij i j i 

1 ∈ R
 L ×dL and W 

ik 

ij 

= 

in our implementation), and ATT(l) is the attention mechanism 

at layer l. 

2) Multi-Head Attention Mechanism: The attention mech- 

anism in the GAT model allows for assigning different 

importance to different nodes in a neighborhood. For each 

node pair (i, j) where node j is in the neighborhood of node 

i, we compute an attention coefficient α(l) in layer l as: 

• Dropout with probability 0.3 for regularization

3) Classification Layer: The output of the final attention

layer is fed into a classification layer that produces the final 

resilience prediction. The classification layer consists of a 

multi-layer perceptron (MLP) with one hidden layer: 

z = MLP(h(L)) = Softmax(W σ(W h(L)+b )+b ) (38) 
i i 2 1 i 1 2 

e(l) = LeakyReLU a(l)T 
h

W(l)h(l)  W(l)h(l)
i 

(33) where h
(L) 

is the output of the final attention layer for node

 
 

(l) 
dL 

b1 ∈ R 2 and b2 ∈ R2 are bias vectors, dL is the dimension 
(l) 

ij Σ 
exp(eij ) 

exp(e(l)) 
(34) of h(L) (64 in our implementation), and σ is a ReLU activation

function.

where a(l) is a learnable attention vector, W(l) is a weight 

matrix for linear transformation, h(l) is the feature vector 
distribution over the two resilience classes (vulnerable and 

resilient) for node i: 
of node i at layer l,  denotes concatenation, and Ni is the 

neighborhood of node i. 

To enhance the stability of the learning process and enable 

the model to jointly attend to information from different 

representation subspaces, we employ multi-head attention. In 

an attention layer with K heads, K independent attention 

mechanisms are executed in parallel, and their outputs are 

either concatenated (for intermediate layers) or averaged (for 

the final layer): 

zi = [P (yi = 0), P (yi = 1)] (39) 

The final predicted class is determined as the one with the 

highest probability: 

y î = arg max zi[c] (40) 
c 

4) Model Interpretability via Attention Weights: A key

advantage of the GAT architecture is the interpretability 

where 

h(l+1) = 
(l+1,final) 
i 
(l+1,inter) 
i 

if l = L 

otherwise 
(35) 

provided by the attention weights. For each node i, we compute 

a global attention score ai by aggregating the attention weights 

from the final attention layer: 

(l+1, final) 
, 

1 Σ 
Σ 

(l,k) (l,k) (l) 1 ai = (L) ji (41) 

hi = σ 
K 

αij  W 
k=1 j∈Ni∪{i} 

hj (36) |N | 
j∈Ni 

(l+1,inter) 

, 

K  

, 
Σ 

(l,k) (l,k)  (l) where α(L) is the attention weight assigned to node i by node 
hi = σ CONCATk=1 

j∈Ni∪{i} 

αij  W hj 

(37) 

j in the final attention layer. 

This attention score quantifies the importance of node i in 

the resilience predictions of its neighbors, providing insights 

where L is the index of the final attention layer, α(l,k) is the into which entities are critical to the overall supply chain 

normalized attention coefficient computed by the 
ij 

k-th attention resilience. Higher attention scores indicate nodes that exert 

head in layer l, and W(l,k) is the corresponding weight matrix. 

The specific configuration of our GAT model includes: 

• First attention layer: 4 attention heads, each producing

16-dimensional output features (total 64 dimensions)

• Second attention layer: 4 attention heads, each producing

16-dimensional output features (total 64 dimensions)

• Third attention layer: 1 attention head producing 64-

dimensional output features

• Batch normalization after each attention layer for training
stability

stronger influence on their neighbors’ resilience status. 

C. Training and Evaluation

1) Dataset Preparation: We split the set of nodes V into

training, validation, and testing sets according to the following 

proportions: 

|Vtrain| : |Vval| : |Vtest| = 0.7 : 0.15 : 0.15 (42) 

For each node vi ∈ V, we define binary mask variables 
mtrain, mval, and mtest to indicate the split: 

i i i 

i, W 
d 

2 

(
h 

h 

K 

ji 

d 

2 ∈ R2×  L 
are weight matrices, 

k∈Ni∪{i} 

The output zi ∈ R2 represents the predicted probability 

α 
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Σ 

N 

val 

val 

|Vval| 
i 

m = 

( 

i=1 

train 1  if vi ∈ Vtrain 

i 0  otherwise 
(43) 

4) Evaluation Metrics: We evaluated the model performance

using standard classification metrics: 

• Accuracy:

mval = 

(
1  if vi ∈ Vval (44) 

Accuracy = 
TP + TN 

TP + TN + FP + FN (51) 

i 0  otherwise • Precision:
TP 

mtest = 

(
1  if vi ∈ Vtest (45) 

Precision = (52) 
TP + FP 

i 0  otherwise • Recall:
Recall = 

TP 
(53) 

These masks are used to ensure that the model is trained only 

on the training set, tuned on the validation set, and evaluated 

on the testing set. 

2) Loss Function and Optimization: We train the GAT model

• F1 Score:

TP + FN 

F1 = 
2 × Precision × Recall 

Precision + Recall 
(54) 

using the cross-entropy loss function, which is defined for a where TP , TN , FP , and FN represent true positives, true 

single node vi as: 

1 

Li = − I(yi 
c=0 

= c) log(zi[c]) (46) 

negatives, false positives, and false negatives, respectively, with 

resilient nodes (class 1) considered as the positive class. 

D. Disruption Impact Analysis

A key contribution of our framework is the ability to simulate 

where I is the indicator function, yi is the true label, and zi[c] 

is the predicted probability for class c. 

The overall loss on the training set is: 

N 

various disruption scenarios and analyze their impact on supply 

chain resilience. This analysis helps identify critical vulnera- 

bilities and inform targeted resilience-enhancing strategies. 

1) Disruption Scenario Definition: We define five distinct

disruption scenarios to evaluate the resilience of the supply 

Ltrain = 
1   Σ

mtrainL (47) chain network:

|Vtrain| 

and the validation loss is: 

i i 

i=1 1) Random Supplier Failure: Random failure of multiple

supplier nodes, simulating unexpected disruptions.

Lval = 
1   Σ

mvalL (48) 

1 
disrupted = Random({vi ∈ V : type(vi) = supplier}, k1) 

(55) 

We optimize the model parameters using the Adam optimizer supply sources.

with an initial learning rate of 0.01 and weight decay of 5e-4: 2 
disrupted 

= arg max{ci : vi ∈ V, type(vi) = supplier} 
k2 

θt+1 = Adam(θt, ∇θLtrain, lr = 0.01, weight decay = 5×10−4) 

(49) 

where θt represents the model parameters at iteration t, and 

(56) 

3) High-Risk Manufacturer Failure: Failure of manufac-

turers with the highest risk scores, simulating disruptions

to vulnerable production facilities.

∇θLtrain is the gradient of the training loss with respect to the 

parameters. 

3 
disrupted 

= arg max{rsi : vi ∈ V, type(vi) = manufacturer} 
k3 

(57) 

3) Early Stopping: To prevent overfitting, we employ early

stopping based on the validation loss. Training is terminated if 

the validation loss does not improve for patience consecutive 

4)  Central Distributor Failure: Failure of distributors

with the highest betweenness centrality, representing

disruptions to key distribution hubs.

epochs. The best model parameters are saved and used for 
final evaluation. 

4 
disrupted 

= arg max{CB(vi) : vi ∈ V, type(vi) = distributor} 
k4 

θbest = θ 
arg mint L

(t) (50) 

(58) 

5) Multiple Transportation Delays: Increased lead times

on multiple randomly selected edges, simulating trans-

portation disruptions.

where L(t) is the validation loss at epoch t. Edisrupted = Random(E , k5) (59) 

V 

V 

V 

V 

i 2) High-Capacity Supplier Failure: Failure of suppliers

with the highest capacity, representing disruptions to major 
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i 

i 

i 

R→V = 
Σ 

I(y î = 1 ∧ y  ̂= 0) (66) 

i 

Σ 

ij 

Σ 

where k1, k2, k3, k4 are the number of nodes to disrupt in each 

scenario, and k5 is the number of edges to disrupt in the fifth 

scenario. 

2) Disruption Simulation: For each disruption scenario, we

simulate the impact by modifying the node and edge features 

accordingly: 

1) For node-based disruptions (scenarios 1-4), we modify

the reliability and risk score of the affected nodes:

r′ = βr · ri  ∀vi ∈ Vdisrupted (60) 

rs′ = min(βrs · rsi, 1.0)  ∀vi ∈ Vdisrupted (61) 

where βr < 1 is a reliability reduction factor (set to 0.3 in 

our implementation) and βrs > 1 is a risk increase factor 

(set to 2.0). 

2) For edge-based disruptions (scenario 5), we modify the

lead time of the affected edges:

′ = βlt · ltij ∀(vi, vj) ∈ Edisrupted (62) 

where βlt > 1 is a lead time increase factor (set to 3.0 in 

our implementation). 

These modifications create a modified graph G′ representing 

the supply chain under the disruption scenario. 

3) Impact Quantification: To quantify the impact of each

disruption scenario, we use the trained GAT model to predict 

resilience labels on both the original graph G and the modified 

graph G′: 

yˆi = arg max zi[c] (on original graph G) (63) 
c 

network, enabling targeted interventions to enhance overall 

resilience. 

IV. EXPERIMENTAL SETUP

This section details our experimental implementation of the 

GAT-based framework for supply chain resilience modeling. 

We first describe the dataset used for evaluation, followed by 

the implementation details of our model. We then explain the 

evaluation protocols and baseline methods used for comparison. 

A. Dataset Description

1) Synthetic Supply Chain Network: Due to the scarcity

of publicly available supply chain network data with detailed 

disruption records, we constructed a synthetic dataset that 

captures the essential characteristics of real-world supply chains. 

The synthetic network consists of 200 nodes representing supply 

chain entities, distributed across four tiers: 

• 50 supplier nodes (Tier 1)

• 60 manufacturer nodes (Tier 2)

• 40 distributor nodes (Tier 3)

• 50 retailer nodes (Tier 4)

Each node is characterized by the features described in 

Section III-A2, including capacity, reliability, geographical 

location, and risk scores. The capacity values are generated 

from a truncated normal distribution with parameters specific 

to each tier: 

yˆ′ = arg max z′[c] (on modified graph G′) (64) c ∼ TruncNorm(µt, σt, mint, maxt )  for v ∈ Tier t  (69)
i c i i c c c c i 

We then compute several impact metrics: where µt , σt, mint , and maxt are tier-specific parameters for 
c c c c 

• Total nodes affected:

N 

Nodes Affected = I(yˆi ̸= yˆ′) (65) 

i=1 

• Resilient to vulnerable transitions:

N 
′ 
i 

i=1 

• Vulnerable to resilient transitions:
N 

the mean, standard deviation, minimum, and maximum values, 

respectively. 

The network topology follows a tiered structure with con- 

nections predominantly flowing from upstream to downstream 

tiers. Each manufacturer is connected to multiple suppliers, 

each distributor to multiple manufacturers, and each retailer 

to multiple distributors. The edge density between tiers is 

controlled to ensure a realistic number of connections: 

V→R = 
Σ 

I(y î = 0 ∧ y ′̂ = 1) (67) |Et→t+1 | = ⌊d 
 
t→t+1 · |Vt| · |V 

 
t+1 |⌋ (70) 

i=1 

• Resilience reduction percentage:

RRP = 
R→V  × 100% (68) 

where Et→t+1 represents the set of edges from Tier t to Tier 
t + 1, Vt is the set of nodes in Tier t, and dt→t+1 is the edge 

N 
i=1 I(ŷ i = 1) density parameter (set to 0.15, 0.2, and 0.25 for supplier-to- 

These metrics provide a comprehensive view of how different 

disruption scenarios affect the resilience of the supply chain 

manufacturer, manufacturer-to-distributor, and distributor-to- 

retailer connections, respectively). 

lt 
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i 

2r2 
i ))matrix analysis. Given the class imbalance, we paid particular 

2) Historical Disruption Data: We simulated 50 historical

disruption events affecting various parts of the supply chain 

network. Each disruption is characterized by: 

• Disruption type τd ∈ {natural disaster, supplier failure,

logistics disruption, demand shock, cyber attack}

• Geographical impact region defined by center coordinates

(xd, yd) and radius rd

• Severity sd ∈ [0.3, 1.0] 

• Duration td ∈ [1, 30] days

For each disruption d and node vi, we calculate an impact 

score impd,i based on the geographical proximity and node 

vulnerability: 

batching, early stopping (patience 20 epochs), and dropout rate 

0.3. 

3) Disruption Scenario Implementation: We implemented

five disruption scenarios: Random Supplier Failure (10 random 

suppliers), High-Capacity Supplier Failure (5 highest-capacity 

suppliers), High-Risk Manufacturer Failure (8 high-risk man- 

ufacturers), Central Distributor Failure (4 distributors with 

highest betweenness centrality), and Multiple Transportation 

Delays (25 random edges). For node disruptions, reliability 

was reduced by 70 

 

C. Evaluation Protocol

1) Performance Metrics: We evaluated performance using

imp 
dist((lx, ly)i, (xd, yd))2

 vulnτ 
accuracy, precision, recall, F1 score, AUC-ROC, and confusion 

d (71) 

where dist(·, ·) is the Euclidean distance, (lx, ly)i are the 

coordinates of node vi, ri is the reliability of node vi, and 

vulnτ is the vulnerability of node vi to disruption type τd. 

Based on the historical disruption impacts, we compute the 

resilience score ρi for each node as described in Section III, 

and assign binary resilience labels yi using a threshold of 

τ = 0.6. 

3) Data Split and Preprocessing: The dataset is split into

training (70%), validation (15%), and test (15%) sets using 

stratified sampling to maintain the same proportion of resilient 

and vulnerable nodes in each split. All numerical features 

are standardized to have zero mean and unit variance, and 

categorical features are one-hot encoded. The resulting feature 

dimensions are: 

• Node features: 9-dimensional (5 numerical + 4 categorical)

• Edge features: 4-dimensional (all numerical)

attention to precision, recall, and F1 score. 

2) Cross-Validation: We performed 5-fold cross-validation,

with each fold serving as the test set once while the remaining 

folds were used for training and validation (85 

3) Disruption Impact Analysis: For each disruption scenario,

we computed impact metrics (Nodes Affected, R→V, V→R, 

and RRP) and visualized changes in node resilience status 

using colored network diagrams. 

D. Baseline Methods

To demonstrate the advantages of our GAT-based approach, 

we compared its performance against several baseline methods: 

1) Traditional Machine Learning Methods:

• Logistic Regression (LR): A linear model that uses node

features only, without considering network structure.

1 

B. Implementation Details

P (yi = 1|xi) = 
1 + exp(−(wT x 

(72) 
+ b)) 

1) Software and Hardware: The GAT model and baseline

methods were implemented in Python 3.8 using PyTorch 

1.9.0, PyTorch Geometric 2.0.1, NetworkX 2.6.3, scikit-learn 

0.24.2, pandas 1.3.2 and NumPy 1.21.1. All experiments were 

conducted on a workstation with an Intel Core i9-10900K CPU, 

64GB RAM, and an NVIDIA GeForce RTX 3090 GPU. 

2) GAT Model Configuration: Our GAT model was im-

plemented with the following architecture: input layer with 

9-dimensional node features; three attention layers (first and

second with 4 heads each producing 16-dimensional features,

third with 1 head producing 64-dimensional features); and a

final 2-dimensional softmax output layer.

The model was trained using Adam optimizer (learning 

rate 0.01, weight decay 5e-4), cross-entropy loss, full-graph 

• Random Forest (RF): An ensemble of decision trees that

can capture non-linear relationships in node features.

yˆi = mode{f1(xi), f2(xi), . . . , fT (xi)} (73) 

where ft(xi) is the prediction of the t-th tree, and T = 100 

is the number of trees. 

• Support Vector Machine (SVM): A method that finds

the hyperplane that best separates resilient and vulnerable

nodes.

yˆi = sign(wT ϕ(xi) + b) (74) 

where ϕ(·) is a radial basis function kernel with parameter 

γ = 0.1. 

These methods use only node features and do not leverage 

the graph structure of the supply chain network. 

d,i = sd·exp — ·(1−ri·(1−

i 
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i 

AGGREGATE {h : j ∈ N(i)}

i α  W 

2 

h 

2

i i 

2) Network-Enhanced Machine Learning Methods:

• Feature-Enhanced RF (FERF): A Random Forest model

that incorporates node centrality measures as additional

features.

xenhanced = [xi; CD(vi); CB(vi); CC(vi)] (75) 

where CD, CB, and CC are degree, betweenness, and 

closeness centrality, respectively. 

• Node2Vec + RF: A two-step approach that first learns

node embeddings using Node2Vec and then uses these

embeddings as input to a Random Forest classifier.

zi = Node2Vec(G, vi) (76) 

yˆi = RandomForest([xi; zi]) (77) 

where zi ∈ R64 is the Node2Vec embedding of node vi. 

These methods incorporate network information but do not 

explicitly model message passing between nodes. 

3) Other Graph Neural Network Architectures:

• Graph Convolutional Network (GCN): A GNN that

uses a spectral convolutional operation to aggregate

neighborhood information.

H(l+1) = σ D̃ − 1 Ã D̃ − 1 H(l)W(l) (78) 

• GraphSAGE: A GNN that uses sampling and aggregation

to efficiently learn node representations.

h(l+1) = σ W(l) · CONCAT h(l), 

A. Model Performance Evaluation

1) Training Dynamics: The training of our GAT model

exhibited stable convergence behavior, as illustrated in Fig. 1. 

The model achieved convergence after approximately 170 

epochs, with minimal overfitting as evidenced by the small 

gap between training and validation accuracy curves. 

Fig. 1: Training and validation curves showing loss and accuracy 

over 200 epochs. The model achieves stable convergence with 

minimal overfitting. 

2) Classification Performance: Table I summarizes the

performance metrics of our model on the test set, along with 

comparisons to baseline methods. Our GAT-based approach 

achieved an accuracy of 93.33% and an F1 score of 0.9630, sig- 

nificantly outperforming traditional machine learning methods 

and other graph neural network architectures. 

TABLE I: Performance Comparison of Supply Chain Resilience 

Prediction Models 

Model Accuracy  Precision Recall F1 Score 

(l) 
j 

• GAT without Multi-Head Attention: A simp 

version of our proposed model that uses a single atte 

head instead of multi-head attention. 

h(l+1) = σ 

,

j∈N

Σ

(i)∪{i} 

(l) 
ij 

(l) (l) 
j 

These methods leverage the graph structure but differ from 

our proposed GAT model in their aggregation mechanisms. 

V. RESULTS AND ANALYSIS

This section presents the results of our experiments and 

provides an in-depth analysis of the proposed GAT-based 

framework for supply chain resilience modeling. We first 

evaluate the model’s performance in predicting node-level 

resilience, followed by a visualization-based analysis of the 

learned representations and attention patterns. Finally, we 

analyze the impact of various disruption scenarios on the supply 

The confusion matrix in Fig. 2 provides a detailed view of the 

classification performance, revealing that our model achieved 

perfect recall (1.0) for the resilient class, meaning all truly 

resilient nodes were correctly identified. This is particularly 

important in a supply chain context, where failing to identify 

resilient nodes might lead to unnecessary resource allocation 

for resilience enhancement. 

The statistical significance of our model’s performance im- 

provement over the baselines was evaluated using McNemar’s 

test. For each baseline method B, we computed the test statistic: 

2 (|n01 − n10| − 1)2 

chain network. χ = 
n01 + n10 

(81) 

(79) Logistic Regression 0.7867 0.8462 0.7333 0.7857 

Random Forest 0.8400 0.8571 0.8000 0.8276 

SVM 0.8000 0.8125 0.8667 0.8387 

lified FERF 0.8533 0.8710 0.9000 0.8852 

ntion Node2Vec + RF 0.8667 0.8800 0.9167 0.8980 

GCN 0.8800 0.8889 0.9333 0.9107 

GraphSAGE 0.9067 0.9091 0.9524 0.9302 

GAT (Single-Head) 0.9200 0.9130 0.9545 0.9333 

(80) GAT (Multi-Head) 0.9333 0.9286 1.0000 0.9630 
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Y 

Fig. 2: Confusion matrix showing classification performance of the 

GAT model. The model achieved perfect recall for resilient nodes 

(bottom right), with minimal false positives. 

where n01 is the number of instances misclassified by our 

model but correctly classified by baseline B, and n10 is the 

number of instances correctly classified by our model but 

misclassified by baseline B. The resulting p-values were all 

below the significance threshold of 0.05, confirming that our 

model’s improvements are statistically significant. 

B. Network Visualization and Interpretation

1) Supply Chain Graph Structure: Fig. 5 visualizes the

supply chain network, with nodes colored by type and resilience 

status. This visualization reveals several structural patterns that 

influence resilience. 

We observe a higher concentration of vulnerable nodes in the 

periphery of the network and different resilience patterns across 

entity types. We found a moderate positive correlation between 

node degree and resilience (r(d, ρ) = 0.64), confirming the 

relationship between connectivity and resilience. 

2) Attention Analysis: The attention-weighted visualization

in Fig. 5(b) reveals which nodes exert the strongest influence 

on their neighbors’ resilience. The color intensity represents 

the attention weight assigned by the GAT model. 

High-attention nodes often exhibit: high reliability (ri > 

0.9), strategic positions connecting multiple communities, high 

capacity relative to their node type, and low risk scores (rsi < 

0.15). These patterns suggest the GAT model has identified 

key properties that contribute to neighbor resilience. 

C. Disruption Impact Analysis

1) Comparative Analysis of Disruption Scenarios: Our

analysis of the resilience reduction percentage (RRP) for each 

of the five disruption scenarios described in Section IV revealed 

important patterns. The RRP metric quantifies the percentage 

of nodes that transition from resilient to vulnerable status as a 

result of the disruption. 

Our analysis reveals that the ”Central Distributor Failure” 

scenario caused the most significant reduction in network 

resilience (12.3%), followed by ”Multiple Transportation 

Delays” (8.7%). In contrast, ”Random Supplier Failure” had a 

0.49 

Fig. 3: Supply chain network with nodes colored by type and 

resilience status. Suppliers (blue), manufacturers (green), distributors 

(orange), and retailers (red). 

0.49 

Fig. 4: Supply chain network with nodes colored by attention 

weights. Brighter colors indicate nodes with stronger influence on 

neighbors’ resilience. 

Fig. 5: Supply chain network visualizations showing (a) node types 

and resilience status and (b) attention weights. 

minimal impact (0.0%), suggesting that the network is robust 

against random disruptions at the supply tier. 

The disproportionate impact of distributor failures can be 

explained by the cascade effect, where the disruption propagates 

through the network according to: 

P (vj affected|vi disrupted) = 1 − (1 − P (p affected)) 
p∈Pij 

(82) 

where Pij is the set of all paths from vi to vj. Distributors, 

by virtue of their central position in the supply chain (con- 

necting manufacturers to retailers), affect a larger number of 
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downstream nodes when disrupted. 

2) Node-Level Impact Analysis: Beyond the aggregate

statistics, we analyzed the node-level impact of disruptions to 

F 1(K) = 
2 × Precision(K) × Recall(K) 

(85) 
Precision(K) + Recall(K) 

identify patterns in vulnerability transitions. For each disruption 

scenario s and node vi, we computed the resilience drop: 
We found that performance increased monotonically with K 

up to K = 4, after which it plateaued or slightly decreased. This 

suggests that multiple attention heads capture complementary 

∆ρs = ρi − ρs (83) aspects of node relationships, up to a point of diminishing
i i returns.

where ρi is the original resilience score and ρs is the resilience The improvement can be attributed to the ensemble effect 

score after disruption s. 
i of multi-head attention, where the final representation is an 

aggregation of information processed through multiple attention 
Table II provides a detailed breakdown of the disruption 

impact metrics across all scenarios. 

TABLE II: Detailed Impact Metrics for Different Disruption 

mechanisms: 

(l+1) 

 

, 

1 Σ 
Σ 

(l,k) (l,k) 
(l)

Scenarios hi = σ 
K k=1 j∈N (i)∪{i} 

αij  W hj (86) 

Interestingly, we observed an asymmetry in the transition 

probabilities: nodes were much more likely to transition from 

resilient to vulnerable (R→V) than from vulnerable to resilient 

This aggregation reduces variance in the learned represen- 

tations, similar to ensemble methods in traditional machine 

learning. 

2) Node Feature Importance: To assess the importance of

different node features, we employed a permutation-based 

feature importance method. For each feature f , we randomly 

permuted its values across all nodes and measured the resulting 

decrease in model performance: 

(V→R). This asymmetry can be quantified by the transition 

ratio: 
Imp(f ) = F 1original − E[F 1f permuted ] (87) 

TR = 
P (R → V ) 

= 
nR→V /nR (84) 

where the expectation is taken over multiple random permuta- 

tions. 

P (V → R) nV →R/nV 
Fig. 6 illustrates the relative importance of different node 

where nR and nV are the original counts of resilient and 

vulnerable nodes, and nR→V and nV →R are the counts of 

nodes transitioning from resilient to vulnerable and vice versa, 

respectively. Across all scenarios, we found TR ≈ 12.4, 

indicating a strong bias toward resilience degradation rather 

than improvement under disruption conditions. 

D. Ablation Studies and Model Variants

To understand the contribution of different components of 

our framework, we conducted ablation studies by systematically 

removing or modifying key elements of the model architecture 

and training process. 

1) Impact of Multi-Head Attention: Table I already showed

that multi-head attention provides a significant performance 

boost compared to single-head attention (96.30% vs. 93.33% 

F1 score). To further analyze this improvement, we varied the 

number of attention heads K in the first two GAT layers and 

measured the resulting F1 score: 

features, normalized to sum to 100%. 

 

Fig. 6: Relative importance of node features for resilience prediction, 

based on permutation feature importance. Reliability and risk score 

are the most influential features, followed by node type. 

Reliability emerged as the most important feature (32.5%), 

followed by risk score (24.8%) and node type (20.6%). 

Geographical coordinates (Location X and Y) had the least 

impact on predictions, suggesting that in our synthetic supply 

chain, physical proximity plays a minor role in determining 

resilience compared to intrinsic node properties. 

3) Impact of Graph Structure: To isolate the contribution

of the graph structure, we compared our GAT model with a 

neural network that uses the same node features but ignores 

the graph structure: 

h(l+1) = σ(W(l)h(l) + b(l)) (88) 
i i 

Scenario Nodes Affected R→V V→R RRP (%) 

Random Supplier Failure 3 0 0 0.0 

High-Capacity Supplier Failure 7 0 0 0.0 

High-Risk Manufacturer Failure 8 0 0 0.0 

Central Distributor Failure 15 10 0 12.3 

Multiple Transportation Delays 12 7 1 8.7 
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This ”structure-blind” model achieved an F1 score of only 

0.7143, compared to 0.9630 for our GAT model. This substan- 

tial performance gap (24.87 percentage points) highlights the 

critical importance of network structure in predicting supply 

chain resilience, confirming our central hypothesis that graph- 

based modeling is essential for this task. 

VI. DISCUSSION

A. Theoretical Implications

Our results provide strong empirical support for the critical 

role of network structure in determining supply chain resilience. 

The substantial performance gap between graph-based and 

structure-blind models (24.87 percentage points in F1 score) 

confirms that resilience is fundamentally a network property 

that cannot be accurately predicted from node attributes alone. 

The relationship between network position and resilience 

exhibits a trade-off: central nodes benefit from multiple 

alternative paths but face increased exposure to cascading 

failures. This can be conceptualized as: 

R(vi) = α · Redundancy(vi) − β · Exposure(vi) (89) 

The superior performance of GAT models, particularly with 

multi-head attention, highlights the importance of adaptive 

aggregation in message-passing frameworks. The attention 

weights provide valuable interpretable insights into supply 

chain interdependencies, offering information not apparent 

from standard network analysis. 

B. Practical Implications

Our GAT-based framework offers several practical benefits 

for supply chain managers. It provides a data-driven approach 

to resilience assessment with high accuracy (93.33%) and 

perfect recall (1.0) for resilient nodes. The model can be 

used for real-time resilience monitoring, ”what-if” analysis 

of disruption scenarios, and optimal resource allocation for 

resilience enhancement. 

The finding that central distributor failures cause the most 

significant resilience reduction (12.3%) suggests these nodes 

should be prioritized. Our framework can also guide the design 

of new, more resilient network structures by identifying factors 

that contribute to node-level resilience. 

C. Limitations and Future Work

Key limitations include the use of synthetic data and 

treatment of supply chain structure as static. Future research 

should explore temporal graph neural networks, enhanced 

model architectures (edge-conditioned attention, hierarchical 

pooling), uncertainty quantification, and prescriptive analytics 

for resilience enhancement. 

VII. CONCLUSION

 

This paper introduced a novel Graph Attention Network 

(GAT) based framework for modeling and predicting supply 

chain resilience against multi-modal disruptions. By leveraging 

the inherent graph structure of supply chains and employing at- 

tention mechanisms, our approach offers significant advantages 

in both predictive accuracy and interpretability. 

Our key contributions include: (1) developing a graph-based 

representation of supply chains capturing both entity attributes 

and network topology; (2) implementing a GAT model that 

achieved 93.33% accuracy and 0.9630 F1 score; (3) leveraging 

attention mechanisms to identify critical dependencies; (4) 

developing a methodology for analyzing disruption impacts; and 

(5) demonstrating practical applications through case studies.

Key findings revealed that: network structure significantly

impacts resilience prediction; multi-head attention effectively 

captures complex dependencies; node reliability and risk score 

are the most important features; central distributors play a 

critical role in maintaining resilience; and there exists a strong 

bias toward resilience degradation under disruptions. 

Future work should focus on validating with real-world data, 

modeling temporal dynamics, incorporating advanced GNN 

architectures, quantifying prediction uncertainty, developing 

prescriptive analytics for resilience enhancement, and exploring 

cross-domain applications. 

In conclusion, our GAT-based framework represents a 

significant advancement in supply chain resilience modeling, 

offering both theoretical insights and practical tools for en- 

hancing resilience in an increasingly volatile global business 

environment. 
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