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Sanskrit text normalisation streamlines inconsistencies in spelling, morphology, and 

syntax to improve computational text processing and the online availability of ancient 

texts. This research creates a normalizing pipeline to increase NLP applications' 

accuracy as well as Text-to-Speech (TTS) system accuracy. In our approach, reducing 

non-standard words (NSW) increases searchability and understanding. With its 93% 

accuracy, the model makes clear computational text processing breakthroughs. The 

project enhances digital humanities by raising the availability of Sanskrit texts for 

linguistic research and historical studies. The results of this study on the 

normalisation of Sanskrit text imply that meticulous standardisation of the text 

considerably increases the efficiency and accuracy of computer text processing. By 

using basic ideas and methods, the study enhances the capacity for digital searching, 

analysing, and comprehending of ancient Sanskrit works.. This study unequivocally 

shows that eliminating non-standard words (NSW) is a necessary step to guarantee 

the input text follows a standard language form, therefore enhancing performance in 

NLP tasks and speech synthesis. The work is with accuracy of 93%, precision of 92%, 

recall of 91%, F1 score of 91%, and specificity of 94%. 

Keywords: Text Normalisation; Sanskrit Text; Accuracy; Language; Tokenization, 

NSW. 

INTRODUCTION: 

The purpose of text-to-speech (TTS) synthesisers is to produce vocal output from input text through 

many stages of processing. Figure 1 depicts the functional model of a large text-to-speech synthesiser. 

In humans reading, the text is undergone phonetic transcription by the NLP module with adequate 

stress and intonation most commonly termed as prosody. The first step in this process is text 

normalisation. A DSP module generates sound using symbolic data it receives. (Dutoit, 1997). The first 

step of synthesising a TTS is called text normalisation (TN). The process involves changing non-

standard written words into standard words that sound like how they are pronounced. The basic 

working of the text normalisation process is shown in figure 2. Text normalisation has seen substantial 

development in languages with adequate resources, such as English, Hindi etc. Still, the work on text 

normalisation for low-resourced languages like Sanskrit is not enough.  

Though Sanskrit has a rich history, spelling differences, regional dialects, and morphological complexity 

make computational processing difficult. A flaw of present NLP methods (Sathe, 2018; Mishra et al., 

2013) that results in mistakes in TTS applications and machine translation is normalising. This paper 

proposes a strategy for organised normalising to solve these issues and improve digitalised Sanskrit text 

accessibility. Still, a lot of books on different topics and from different eras are still in great integrity 

(Lowe et al., 2024).  The current possessions of users must be preserved to prevent them from being 

lost. Effective approaches of preservation and access can significantly help to save India's cultural 

treasures and provide insightful analysis of the nation's cultural past (Adiga et al., 2021). This attempt 

is much aided by the preservation of manuscripts, their critical editing and printing, digital storage, and 
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documentation. One could view speech synthesis as a supplementary effort to improve the accessibility 

of digitalised Sanskrit literature (Anoop & Ramakrishnan, 2019; Mishra et al., 2013). Sanskrit Text-to-

Speech (TTS) is the method of clearly and understandably translating written Sanskrit text into spoken 

language, therefore addressing the difficulties presented by Sanskrit's phonetics, syntax, and character 

alterations to guarantee exact and comprehensible vocalisation. The first step needed is Sanskrit text 

being normalised. Eliminating non-standard words from Sanskrit text normalisation enhances the 

accuracy and user involvement of text-to-voice recognition systems. 

The field of Sanskrit text normalisation is centred on the challenges provided by the language's great 

historical and geographical diversity, leading to considerable variations in spelling, morphology, and 

syntax (Abbasi et al., 2018). Originally belonging to the Indo-European family, Sanskrit has been used 

for thousands of years in many different countries and has changed in its writing systems and 

grammatical principles. The presence of these differences in historical texts poses challenges for 

computational processing and digital analysis, as conventional methods have difficulties in dealing with 

the inconsistencies. Prior studies in the field of computational linguistics and digital humanities have 

emphasised the necessity of standardised methods to enable precise and efficient text analysis (Bhadwal 

et al., 2020). This background underlines the need of developing effective normalisation strategies to 

produce consistent representations of Sanskrit texts, so enhancing search ability, textual analysis, and 

interpretation. 

 
Figure 1: Fundamental process of text normalisation 



Journal of Information Systems Engineering and 
Management 
2025, 10(33s) 
e-ISSN: 2468-4376 

 

https://www.jisem-journal.com/ Research Article  
 

972 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

The fundamental stages in the text normalisation process are clarified in figure 1. The input text is split 

into tokens and categorized after classification. The system is checked for a Non-Standard Word (NSW), 

which may be defined as an abbreviation, numeral, misspelled or informal variant. Is it a Non-Standard 

Word (NSW) - Decision? If No, it is sent to the lexical analyser directly. If it is, then it further goes to 

the Standard Word Generation Module. The system compares the lexicon to identify the most suitable 

standard word representing the non-standard word Decision: Use Rules? If Yes, the Expansion Rules 

modify and normalizes the word. If No, Look-up Tables are referred to find a previously defined 

conversion of the non-standard word. In both cases, system generates the standardized version of the 

word. Lexical Analysis (if no NSW is detected). Words marked as standard undergo a lexical analysis to 

check whether they are standard and have a clear meaning. The final output has the normalized Sanskrit 

text. 

 The remaining sections of the research paper consist of challenges in text normalization 

1.1.  Challenges in Text Normalization across different low resource languages 

Considering text normalization, especially in relation to different languages including Sanskrit, 

Marathi, and Telugu etc., many difficulties arise that impede the design of efficient models. The basic 

linguistic diversity each language displays including phonetic differences and script complexity; makes 

one of the major challenges.  

For example, the requirement of powerful linguistic models that allow these variants  emphasises the i

mportant difficulties in understanding nonstandard words commonly prevalent in contexts that are in

formal. The restricted availability of thorough linguistic resources, especially in lower-resource 

languages, aggravates this degree of complexity and influences the efficacy of machine learning methods 

basic to text normalising. Furthermore include optical character recognition and automatic language 

identification can provide special challenges given the complexity of Indic scripts. The continuous 

development of these technologies calls for more research to improve the methods fit for tackling the 

basic concerns of normalising in these rich language environments (Dey et al., 2022), (Ahmed SM et 

al., 2023). The Figure shows the difficulties with text normalising different languages—Sanskrit, Hindi, 

Marathi, and Telugu. Every element-language diversity, phonetic variation, script complexity, resource 

availability, and integration difficulty-is scored between 1 and 10. Greater values point to more 

difficulties with certain facets. 

 

Figure 2: Challenges of Text Normalization in different languages 

2. LITERATURE REVIEW: 

The following table elaborates on the previous literature regarding the normalisation of  

Sanskrit text and its application in Text to Speech technology for the Sanskrit language. 
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Table 1: Related Works 

AUTHORS 

AND YEAR 

METHODOLOGY FINDINGS 

Zhang et al., 

(2023) 

It is a comprehensive review of 

foundational syntactic processing 

methods, including microtext 

normalization, sentence boundary 

identification, part-of-speech 

tagging, text chunking, and 

lemmatization. 

Syntactic processing plays a crucial role in 

advancing neurosymbolic AI and 

enhancing natural language understanding 

Shastry, H., & 

Wali (2023) 

The work suggests a simple, two-

step machine learning technique to 

identify Laghus and Gurus in 

Sanskrit verses by creating a unique 

representation for syllables.  

 

The novel approach of categorising 

syllables in the first machine learning 

model simplifies the sequence-to-sequence 

conversion problem in the second model, 

with two classes: Laghu (‘0’) and Guru (‘1’). 

They achieved above 99% accuracy. 

Arulprakash et 

al., (2023) 

Tamil text is normalized to prevent 

confusion during intermediate word 

processing by replacing non-

standard terminology with 

conventional words. Loan/Native 

words in Tamil literature improve 

the Tamil voice synthesizer's 

pronunciation model. 

To prevent ambiguity during interim 

processing, non-standard Tamil words are 

replaced with conventional ones during 

normalization. This cited study developed 

a pronunciation model to enhance the 

Tamil speech synthesizer by recognizing 

borrowing words in Tamil literature. A 

decision list-based syllable classifier is 

described in this paper, capable of 

handling various non-stationary sounds.  

Manohar et al. 

(2022) 

Syllabification was implemented 

using finite state transducers where 

the grapheme-to-phoneme 

conversion tool, MLPhon, 

segmented input words into 

syllables by applying rule-based 

syllable boundary detection. 

The syllabification method within MLPhon 

effectively enhanced the accuracy of 

grapheme-to-phoneme conversion, 

particularly improving the tool’s ability to 

handle complex phonological structures 

across multiple languages. 

Ahmad et al. 

(2019) 

An encoder-decoder architecture 

was employed to handle non-

standard words (NSW) in Bangla 

speech synthesis 

The proposed model achieved high 

accuracy in converting non-standard 

Bangla words to phonemes, demonstrating 

its effectiveness for Bangla speech 

synthesis, particularly improving the 

naturalness of synthesized speech. 

2.1. Research Gaps:  

While TTS systems for many languages have improved there is still a clear dearth of research 
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in normalising Sanskrit text, a necessary first step towards effective TTS deployment. With their many 

orthographic, morphological, and syntactic variants, the complexities of Sanskrit provide diverse 

difficulties for which current normalizing techniques fall short. This discrepancy highlights the need of 

targeted research to provide methodical strategies for standardizing Sanskrit literature. This will 

improve the efficiency and accuracy of various computational tools used in Sanskrit language processing 

as well as TTS systems. The purpose of the effort is to tackle these issues thereby bridging the current 

gap and greatly advancing the science of computational linguistics generally. This will at last lead to the 

production of more readily available and efficient digital representations of Sanskrit. 

Support Vector Machine (SVM): Support Vector Machine (SVM) classified into two categories of 

binary classification (Kowsari et al., 2019). Many researchers use this same techniques for the multi-

class problem. Support Vector Machines are primarily used for the binary classification but need to 

come up with a multiple-SVM (MSVM) for problems of multi-class classification. The One-vs-One 

approach creates N(N-1) classifiers in multi-class SVM. To apply linear SVM in the multi-class text 

classification, we can use the following formula. Using equation  

C = argmax(WmT*X + b)       (1) 

Let C denote the predicted class for document X, b is bias, Wm is the weighing vector of class m and T 

is the transposition. 

Decision tree. A decision tree provides a simple yet effective and interpretable classification 

framework for multi-class text classification. The decision tree segment feature space further into a 

hierarchy of nodes. The decision tree leaf nodes show which classes are expected, while the path from 

the root to a leaf node shows the decision rules that lead to the predicted class (Kowsari et al., 2019). 

Usually, threshold tests of the values of features yields the decision rules in a decision tree. More 

specifically, the decision rules would look something like—go left if feature i > t, otherwise go right. The 

implementation equation of a decision tree for multi-class text classification is given as follows:  

𝐶 = 𝑓(𝑥)           (2) 

f is a function that takes X and maps it to a class C, which is the class we predict the document belongs 

to, X is a vector of features. 

Random Forest. Random Forest is an ensemble approach that employs several decision trees to 

improve the accuracy and robustness of the classification (Kowsari et al.2019). The prediction is carried 

out by constructing multiple decision trees based on many different data and feature subsets from the 

training set. A random forest creates a decision tree by splitting the training data based on the values of 

the features. A decision tree has to meet a stopping condition to stop splitting. We may say that halting 

condition can be defined as either a minimum number of training instances in every leaf node or a 

maximum depth of the tree. We can do Multi-Class Text Classification using the Random Forest as given 

below:  

         (3) 

Let C be the predicted class for the document D. Let n be the total number of decision trees in the 

random forest. Let Tk be the kth decision tree in the random forest. Let Cm be the mth class in the 

classification. 

K-Nearest Neighbours: The K-Nearest Neighbour (k-NN) classifier finds the k training instances in 

the training set that are closest to the input data; it assigns the data to the class that is most common 

among its k neighbours (Kowsari et al., 2019). With the equation given below the k-NN Classifier can 

classify text into multiple classes.  

𝐶 = 𝑎𝑟𝑔𝑚𝑎𝑥(∑ l(𝑦𝑚  = 𝐶𝑘))
𝑛

𝑚=1
        (4) 

where C is the predicted class for document D, n is number of neighbours considers, ym is the label 

assigned to the mth neighbour, Ck is the kth class in the classification problem, and the indicator function 

l=1 if ym =Ck and 0 otherwise. The k-nearest neighbour (k-NN) Classifier can evaluate distance among 
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texts using numerous distance measures, including Euclidean distance, cosine similarity, and Jaccard 

similarity. As shown in Eqs, there are equations of Euclidean, Manhattan and Minkowski distance 

metrics. (5), (6), and (7), respectively. KNN architecture is presented in Fig. 9. 

Euclidean distance metrics= √∑  (𝑝𝑖 − 𝑞𝑖)
2𝑛

𝑘=0          (5) 

Manhattan distance metrics= ∑ |(𝑝𝑖 − 𝑞𝑖)|𝑛
𝑖=1        (6) 

Minkowski distance metrices= (∑ (|𝑝𝑖 − 𝑞𝑖|)
𝑟𝑛

𝑖=1 )1\𝑟     (7) 

Word embedding: Unstructured data sets are typically text or document-based. When a 

mathematical modelling based classifier is used, it is critical that unstructured text sequences are 

converted into structured feature space. This procedure is termed feature extraction Feature Learning 

refers to the process of transforming each token or term in the vocabulary into an N-dimensional vector 

of real values. This embedding is called a word embedding. Through word embedding, we can convert 

a word to a vector which has significance. So these words will have similar vector representations 

Different techniques have been proposed for word embedding so that the unigrams become 

comprehensible as their input to machine learning algorithms. This work consider Word2Vec, the most 

popular tool used for text classification.  

3. METHODOLOGY: 

The experiment makes advantage of the Vāksañcayaḥ corpus, a body of Sanskrit discourse. Whereas the 

test dataset comprises of 11 hours of data, the training dataset consists of 56 hours. Whereas the test 

dataset consists of 6,004 utterances produced by 6 speakers, the training dataset consists of 34,309 

words spoken by 12 speakers.Though two subsets—a test set and a development set—the original 

training data split was maintained. The test set comprises of 4,424 sentences whereas the development 

set has 1,580 sentences. The study was conducted on the new train-dev-split, with an other group of 

speakers. As such, the speakers in the training set vary from those in the development set or the test set. 

This was done to ensure the models were not only copying certain individuals' speaking patterns.   

Gradio is the designated web interface for distributing the model. Gradio is a Python tool that is open-

source that enables the rapid creation of user interface components for machine learning models. These 

components are both easy to use and customisable.  

The initial step is text cleaning process. The text cleaning pipeline is a systematic procedure for 

eliminating irrelevant or unwanted elements from textual material. This noise can show up as 

punctuation symbols, special characters, stop words, and other pointless details. Text cleaning aims to 

prepare the data for next analysis, including natural language processing or machine learning.  

The work presents a streamlined text-cleaning pipeline designed to prepare raw text for Sanskrit text-

to-speech (TTS) system. The process begins with pre-processing which includes text normalization, 

where the input text is standardized into a consistent format—this includes converting encodings (like 

UTF-8 for Sanskrit), normalizing Unicode characters, and translating numbers or symbols into their 

spoken forms (e.g., "१" to "eka"). Next, tokenization breaks the text into manageable units: sentences 

(split using language-specific delimiters like "॥" or "।" in Sanskrit) and words (handling complexities like 

Sandhi-joined or compound words). The pipeline then removes stopwords—common but low-

meaning particles (e.g., "च," "वा" in Sanskrit)—while preserving semantically rich words critical for 

clarity. NSW (Non-Standard Word) handling addresses abbreviations, symbols, or mixed 

alphanumeric strings, expanding them into pronounceable forms (e.g., "डॉ." → "डॉक्टर"). Finally, post-

cleaning eliminates residual errors, validates words against a dictionary (especially important for 

Sanskrit’s morphological nuances), and adjusts spacing for fluent TTS output. The figure 3 is showing 

the pre-processing pipeline. Performing pre-processing on data before training can lead to quicker 

convergence and improved outcomes. The one of the major task in text pre-processing includes text 

tokenization. 
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Figure 3: Pre-processing Pipeline 

3.1. Text tokenization:  

It means splitting raw input into pronounceable and meaningful units known as tokens. These tokens 

are then passed to normalization, G2P (grapheme-to-phoneme), and prosody modules. The algorithm 

for text tokenization is given below: 

Algorithm1: Text Tokenization 

Step 1: Normalize whitespace: 

    Replace multiple spaces with single space 

     Trim leading/trailing whitespace 

Step 2: Normalize punctuation: 

    Replace Sanskrit danda signs (।, ॥) with modern equivalents if needed 

     Tag them as pause markers: । → <major-pause>, , → <minor-pause> 

Step 3: Split text using whitespace: 

     tokens ← split text at spaces 

Step 4: Initialize empty token list: clean_tokens ← [ ] 

FOR each token in tokens: 

     IF token contains sandhi markers (e.g., ’, ऽ, or no marker but suspect 

word): 

          APPLY sandhi splitting using Rule-based approach 

          APPEND resulting sub-tokens to clean_tokens 

     ELSE 

          APPEND token as is to clean_tokens 

Step 5: After punctuation (।, ॥, comma, colon, etc), insert: 

     - <minor-pause> or <major-pause> tags 

This algorithm here by return clean_tokens which means Each element now: 

• Is pronounceable 

• Has no unresolved sandhi 

• Is ready for phoneme synthesis 

• Contains pause markers for prosodic phrasing 
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3.2. Stop word removal  

The algorithm begins by loading a predefined list of Sanskrit stop words—common particles (e.g., "च", 

"वा", "हि", "तु", "एव", "अहि", "न", "इहत", "स्म", "उच्यते", etc), conjunctions, and pronouns that add minimal semantic 

value but may appear frequently in text. The input tokenized text is first normalized (e.g., converted to 

SLP1 encoding) to ensure consistency. For each word, the algorithm checks if it exists in the stop word 

list. If not, the word is retained; if it is a stop word, contextual rules are applied to determine whether it 

should be kept for prosodic or syntactic reasons (e.g., "एव" for emphasis or "इहत" to preserve pauses in 

verse). Sandhi-joined words are split into components (e.g., "तदहि" → "तत् + अहि") to verify if individual 

parts are stop words, while compound words (samāsa) are analyzed to avoid over-removal. Retained 

words are rejoined with proper spacing, preserving critical diacritics like avagraha ("ऽ").  Pseudocode 

for removal of stop words is given below: 

Pseudocode 1: Removal of Stop words in Sanskrit text 

def remove_sanskrit_stopwords(tokenized_text, stopwords_list, retain_rules=None): 

    filtered_text = [] 

    for word in tokenized_text: 

         normalized_word = normalize(word)   

        if normalized_word not in stopwords_list: 

             filtered_text.append(word) 

        elif retain_rules and check_context(word, retain_rules): 

             filtered_text.append(word)   

    return " ".join(filtered_text)   

3.3. Dealing with Non-standard Words (NSWs): 

The algorithm begins by preprocessing the input text, standardizing its encoding (e.g., UTF-8 or SLP1) 

and segmenting it into tokens. Each token is then classified and processed based on predefined rules 

for Non-Standard Words (NSWs). Abbreviations and acronyms (e.g., "डॉ.") are expanded using a lookup 

table ("डॉक्टरः"), while numeric expressions (e.g., "२०२४") are converted to their spoken word equivalents 

("हिसिस्रचतुहविंशहतः"). Symbols and mixed-script elements are transliterated or replaced with descriptive 

phrases (e.g., "@" becomes "सङ्केतस्थानम्"). Contextual validation ensures expansions adhere to Sanskrit 

morphology, using tool sanskrit_parser to verify grammatical correctness. Proper nouns and 

untranslatable terms are preserved in their original form. Finally, the processed tokens are reassembled 

with appropriate sandhi rules applied to maintain phonetic flow, and spacing is adjusted around 

punctuation. Unresolved NSWs are logged for review, with a fallback mechanism to spell them out 

character-by-character. 

Step 1: Preprocess Text: 

Standardize encoding (UTF-8 or SLP1) 

Segment text into tokens (words, punctuation, symbols) 

Step 2: Classify and Resolve NSWs 

For abbreviation and acronyms 

    Match against a predefined list (e.g., "डॉ." → "डॉक्टरः", "प्रा." → "प्राध्यािकः") 

For Numeric Expressions 

    Convert digits to words (e.g., "२०२४" → "हिसिस्रचतुहविंशहतः") 

    Handle fractions/decimals (e.g., "३.१४" → "त्रीहि सि चतुददशशताांशेन") 

For Symbols 

    Transliterate non-Devanagari scripts (e.g., "α" → "अल्फा") 

    Replace symbols with descriptions (e.g., "@" → "सङ्केतस्थानम्", "→" → "इहत सूहचतम्") 
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For Time 

     Split into hours and minutes 

    Convert to Sanskrit (e.g., "07:30" → "सप्त वादनां हत्रांशत् वादने  ") 

For Date  

    Match against a predefined list (e.g., "15/08/2025" → " िञ्चदश ेअगस्तमासे हि-सिस्र    

    िांचहवांशहततमे वर्षे”) 

 For currency 

    Replace ₹ or Rs with "रूप्यक:" (e.g., ₹२०० → "हिशतां रूप्यकः") 

For Mathematical Symbol 

   Replace with appropriate Sanskrit term (e.g., % → "प्रहतशत") 

Step 3: Reassemble Text: 

Rejoin tokens with appropriate sandhi rules 

Ensure spacing around punctuation (e.g., " ।" → "। ") 

Step 4: Error Handling: 

Log unresolved NSWs for manual review 

Fallback: Spell out unknown NSWs character-by-character 

The pseudocode for the above given algorithm is given below: 

Pseudocode: Dealing with NSWs 

def normalize_nsws(text, nsw_rules): 

    tokens = tokenize_with_punctuation(text) 

    normalized_tokens = [] 

    for token in tokens: 

        if is_abbreviation(token): 

            expanded = expand_abbreviation(token, nsw_rules) 

        elif is_numeric(token): 

            expanded = convert_number_to_words(token) 

        elif is_symbol(token): 

            expanded = symbol_to_spoken_form(token) 

        elif is_time(token): 

            expanded = symbol_to_spoken_form(token) 

        elif is_date(token): 

            expanded = symbol_to_spoken_form(token) 

        elif is_currency(token): 

            expanded = symbol_to_spoken_form(token) 

        elif is_mathematicalsymbol(token): 

            expanded = symbol_to_spoken_form(token) 

        else: 

            expanded = token   

        normalized_tokens.append(expanded) 

    return apply_sandhi(" ".join(normalized_tokens)) 

 

This work employs many pre-processing techniques, such as resampling the audio, removing silent 

parts, normalising and formatting the text, and resizing the chunks. The initial audio snippets in this 

project were recorded at a sampling rate of 22.05 kHz. The audio underwent resampling to a frequency 

of 16 kHz. Silences are significant in neural TTS systems. Prolonged pauses and periods of quiet can 

impede the process of acquiring attention and the presence of extended durations of silence necessitates 

a substantial amount of info. Removing initial and final silences, as well as silences within the audio, 
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can accelerate the convergence of the model. It is crucial to acknowledge that this method is effective 

only when the transcripts lack any punctuation. The WaveNet model is deep learning methodically pre-

processed data educated. It boosts accuracy by means of hyperparameter modification. If the model 

exhibit inadequate performance, retraining follows and data preparation is adjusted. It contributes to 

raise text normalising accuracy and speech synthesis quality. 

3.3.1. Time Handling 

Time in Sanskrit can appear in Numerical forms (Devanagari or Roman): e.g., ०८:३०, 8:30, Word 

forms: e.g., प्रातःकाले, मध्याह्ने, सायां, Compound words: e.g., त्रयोदशवादने (at 1 PM). 

NSW Identification of time: Detect NSWs related to time E.g., 8:30, ८:३०, सायांकाले, प्रातः 

Sanskrit inflects time words depending on case and number for example सायांकाले (in the evening, locative) 

→ base: सायांकालः. Then NSW expansion is done according to table given below: 

Table 2: Time expansion 

S.no. Time  Sanskrit expansion 

1.  One o'clock एकवादनम्। 

2.  2 o'clock हिवादनम्।  

3.  3 o'clock हत्रवादनम्। 

4.  4 o'clock चतुवाददनम्। 

5.  5 o'clock िञ्चवादनम्। 

6.  6 o'clock र्षड्वादनम्। 

7.  7 o'clock सप्तवादनम्। 

8.  8 o'clock अष्टवादनम्। 

9.  9 o'clock नववादनम्। 

10.  10 o'clock दशवादनम्। 

11.  11 o'clock एकादशवादनम्। 

12.  12 o'clock िादशवादनम्। 

13.  quarter past (e.g. quarter past five) सिाद (सिाद िञ्चवादनम्) 

14.  half past (e.g. half past eleven) सार्द (सार्द एकादशवादनम्) 

15.  quarter to (e.g. quarter to twelve) िदोन (िदोन िादशवादनम्) 

16.  minutes past (e.g. Five minutes past two o'clock) अहर्क (िञ्चाहर्क हिवादनम्) 

17.  minutes to (e.g. Five minutes to Six) ऊन (िञ्च ऊन र्षड्वादनम्) 

NOTE: oona (ऊन) means missing, adhika (अहर्क) is in addition, paadon (िदोन)is a quarter 

and saardha (सार्द) means a half. 

3.3.2. Date Handling: For date, identify the pattern in these date formats: DD/MM/YYYY or YYYY-

MM-DD. For days the expansion as per numerals. For months and years the expansion given 

in table 3 and table 4 respectively. 

Table 3: Expansion of Months 

Number used 
for months 

Expansion for the numbers as 
per calendar months 

Months in English 

1 जनवरीमासः January 

2 फरवरीमासः February 
3 माचदमासः March 
4 अपै्रलमासः April 
5 मईमासः May 
6 जूनमासः June 

7 जुलाईमासः July 
8 अगस्तमासः August 
9 हसतम्बरमासः September 
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10 अक्टूबरमासः October 
11 नवम्बरमासः November 

12 हदसम्बरमासः December 
 

3.3.3. Mathematical Symbols:  

1. Basic Arithmetic Operators 

S. No.  Symbol Symbol Sanskrit Expansion Contextual Usage 

1.  + "सङ्कलनहचह्नम्"  3 + 5 → "त्रीहि योगः िञ्च" 

2.  - "ऊनहचह्नम्"  7 - 2 → "सप्त व्यवकलनम् िे" 

3.  × "आवर्त्दहचह्नम्"  4 × 6 → "चत्वारर गुिनम् र्षट्" 

4.  ÷ "हवभाजनहचह्नम्"  8 ÷ 2 → "अष्टौ भागः िे" 

5.  = "तुल्यहचह्नम्"  5 + 3 = 8 → "िञ्च योगः त्रीहि समम् अष्टौ" 

2. Advanced Mathematical Symbols 

S. No. Symbol Symbol Sanskrit Expansion Symbol English Expansion 

1.  √ "वगदमूलसूचकम्"  Square root 

2.  π "िररहर्सङ््या"  Pi  

3.  ∞ "असीमसङ््या"  Infinity  

4.   ∠ "कोिसूचकम्"  Angle  

5.  ∫ "अवकलनहचह्नम्" Integration  

3. Comparison Operators 

S.no.  Symbol Sanskrit Transliteration Logical Meaning 

1.  < अल्िम्  Less than 

2.  > अहर्कम्  Greater than 

3.  ≠ असमम्  Not equal 

4. Set Theory & Logic 

S. No. Symbol Sanskrit Transliteration Description 

1.  ∈ अन्तगदतम्  Element of 

2. ∪ सहम्मलनम्  Union 

3. ∩ छेदः  Intersection 

4.  ∴ अतः Therefore 

 

3.3.4. Special Symbols 

S. No. Symbol  Symbol Sanskrit Expansion Symbol English Expansion 

1.  @ सङ्केतस्थानम् Email/at symbol 

2.  → इहत सूहचतम् or हदशासूचकहचह्नम् Right arrow 

3.  ★ तारकाहचह्नम् Star  

4.  ✓ सिीहचह्नम् Check mark 

5.  π िररहर्सङ््या Mathematical pi 

6.  © प्रहतहलप्यहर्कारहचह्नम् Copyright Symbol 

7.  & च Ampersand 

8.  ∞ अनन्तम् Infinity  

9.  #  िहिह्नम् Hash  

10.  % प्रहतशतम् Percentage  
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4. RESULTS AND DISCUSSION: 

Preparing textual material for further study depends critically on the process of cleaning text. By means 

of noise elimination in the data, the pipeline can improve the accuracy of machine learning models and 

thereby maximize the efficiency of natural language processing tasks. Tokenization refers to the 

procedure of dividing text into discrete units known as words or tokens. Typically, this is achieved by 

dividing the text based on spaces, punctuation marks, or other separators. The tokenize_sentence() 

function in the source code utilises the sentence_tokenize.sentence_split() function from the indicnlp 

library to perform text tokenization. During the subsequent stage, certain terms are not deemed to be 

conventional within a specific language. These words may contain misspellings, slang, or jargon. The 

non-standard terms are stored in a text file and then deleted. The third step is normalisation, which 

involves transforming words into their standardised form. This may entail the process of transforming 

words into their base form, eliminating diacritics, or converting words into a standardised spelling. 

The elimination of non-standard words (NSW) is an essential procedure in NLP activities, particularly 

in contexts where the objective is to purify and standardise material for subsequent analysis or machine 

learning models. The process involves identifying and eliminating words that vary from the standard 

linguistic form of the language in issue. These words might be misspelt, colloquial language, jargon, 

acronyms, or otherwise less commonly used specialist terminology. Along with the earlier shown bar 

graph, the code sample and accompanying discussion show the useful application of non-standard word 

removal. 

Here the NSWs are housed in an external file called non_standard_words.txt. This paper features a 

predefined list of words judged non-standard. These words can be dynamically included into the 

running application. The code's provided remove_nsw() method iteratively goes through every word in 

the string and contrasts it with the list of NSWs, therefore sanitising the input text. Upon identifying a 

match, indicating the presence of the term in the non-standard word list, the function eliminates it from 

the text by substituting it with an empty string. The sanitised text is subsequently reassembled and 

returned as a new string, which now omits any non-standard terms. A code snippet that imports non-

standard terms from a text file utilising NumPy is seen in the figure below. 

 
Figure 4: A code snippet that loads the non standard words from a text file using numpy 

The sequential algorithm for the elimination of non-standard words is as follows: 

Algorithm 3: Removal of non-standard words 

Step 1: Input: A string of words (text) and a predefined list of non-standard words (NSW). 

Step 2: Initialization: Start with an empty list (text_list). 

Step 3: Iterate through each word in the input string (text). 

Step 4: Check if the word exists in the NSW list (non-standard words). 

If the word is non-standard, prepare to replace it. 

If the word is valid (not in NSW), add it to the text_list. 

Step 5:  Join all the valid words in text_list into a new string (text_str), separated by spaces.  

Step 6: Return the resulting string (text_str), which now excludes non-standard words. 
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Figure 5: Text Normalization example 1 

 
Figure 6: Text normalization example 2 

 
Figure 7: A comparison of text generation techniques using the Mean Opinion Score. 

In the context of Non-Standard Word (NSW) identification and synthesis, the above graph 

could represent how well different speech synthesis models handle and pronounce non-standard words, 

such as abbreviations, numbers, or symbols, which often need special processing in text-to-speech 

systems. 

• Concatenative and Parametric methods perform the lowest across the board, likely 

struggling more with NSWs due to their reliance on predefined, less flexible speech units 

(Concatenative) or hand-tuned parameters (Parametric). 

• WaveNet, which uses deep learning to generate speech, performs significantly better in both 

graphs, indicating it handles NSWs more effectively, thanks to its more sophisticated modeling 

of speech patterns. 
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• Human Speech, scores the highest, representing the benchmark for natural speech quality, 

including the handling of NSWs, which humans process seamlessly. 

 Syllabification is the subsequent stage, involving the division of words into syllables. This can be 

advantageous for tasks such as speech recognition and text-to-speech.  Next, cleaning is performed to 

eliminate punctuation, special characters, and any other extraneous information from the text. 

Implementing this technique can enhance the precision of machine learning models and optimise the 

execution of natural language processing jobs. Pre-processing is the act of transforming the text into a 

format that can be easily used in the following stage of the pipeline. This process may entail 

transforming the text to lowercase, eliminating stop words, or applying word stemming. The figure 

below displays the web interface of the deployed model. This tab is utilised for conducting text cleansing 

before to being sent to the grapheme to phoneme tab or the text to speech tab. 

 
Figure 8: Web Interface for Text Normalization 

The image above depicts a user interface for a Sanskrit TTS system. In this interface, users can input 

text written in the Devanagari script into a designated text box. The system then processes the input 

and generates a phonetic transcription, which is displayed in the output box. This facilitates the 

conversion of written Sanskrit text after undergoing text normalisation. 

Evaluation Parameters:  

Developing an efficient machine learning model mostly depends on performance assessment, hence 

evaluation parameters are quite important. It clarifies the capacity of a model to provide correct 

predictions, therefore facilitating the evaluation of that model. These steps help model comparison and 

hyperparameter tuning by proving the performance of the model on untested data. Using several 

criteria, one evaluates the quality of a model and its capacity to operate with the available data.  The 

models in this work were assessed using precision, accuracy, recall, specificity, and F1 scores on the test 

set. The measurements are computed using the following formula: 

Accuracy: Calculating the percentage of precisely found events among all the examples verifies accuracy 

[13].. 

Accuracy = 
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
    ….  (1) 

Precision is calculated by dividing the total number of positive observations by the number of correctly 

identified positive observations [14]. 

Precision = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
           ….  (2) 

Recall: It measures whether a model can identify every important occurrence of a given class inside a 

given dataset. It is calculated by dividing the total number of true positive cases by the number of 

precisely projected positive cases [15]. 

Recall =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
         …. (3) 

Specificity: It is the property of a model that identify true negatives in a best way. It is calculated by 

determining the amount of correctly detected negative cases out of all negative cases [16]. 
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Specificity = 
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
     …. (4) 

The F1-score: It is a metric that combines recall and precision into a single number. It balances these 

two metrics with the help of both false positives and false negatives taking into consideration [17]. 

F1-score = 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
       …. (5) 

The final output is tabularized in below table: 

 

Table 2: Results of this study 

Metric Value 
 

Accuracy 93% 
 

Precision 0.92 
 

Recall 0.91 
 

F1 Score 0.915 
 

Specificity 0.94 
 

 

 
Figure 9: Evaluation Metrices 

5. CONCLUSION: 

Adopting a methodical approach to address the several orthographic, morphological, and syntactic 

deviations considerably increases the precision and effectiveness of computational text processing and 

TTS systems, according to research on text normalisation of Sanskrit language. By setting defined 

guidelines and practices, the research has so enabled the digital representation and vocalisation of 

Sanskrit. This progress enhances the Sanskrit interpretation, searchability, and textual analysis. This 

technical development not only helps Sanskrit literature to be more readily available and safeguarded 

but also advances computational linguistics and digital humanities, therefore facilitating more efficient 

academic research and knowledge of this ancient language. Future studies in TTS conversion for 

Sanskrit could give top focus to the enhancement of phonetic algorithms and the incorporation of 

creative machine learning technologies to raise naturalness and pronunciation accuracy.  Moreover, if 

the TTS system could support several Sanskrit dialects and historical varieties, it would be much more 

beneficial and relevant in classrooms. 
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