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This paper introduces Perfect Geodesic Intuitionistic Fuzzy Graphs (PGIFGs) with each node in 

at least one geodesic basis, so that the pseudo geodesic number is zero. PGIFGs, based on 

intuitionistic fuzzy set theory, use membership, non-membership, and hesitancy values, making 

them more applicable in the field of cybersecurity. Complete intuitionistic fuzzy graphs and 

intuitionistic fuzzy cycles possess perfect geodesic characteristics, which are suitable for fault-

tolerant and secure network topologies. This framework maximizes threat detection, 

identification of key nodes, and secure communication, enhancing the resilience of networks. 
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1. INTRODUCTION

Zadeh introduced fuzzy sets, a mathematical theory, in 1965 [15] to describe uncertainty in real-world situations. 

Rosenfeld later developed the theory of fuzzy graphs with Yeh and Bang in 1975. Rosenfeld developed fuzzy versions 

of various graph concepts such as connectedness, paths, cycles, and trees and studied their properties [10]. With the 

passage of time, other authors have also introduced ideas like fuzzy interval graphs [6], fuzzy trees [9], cycles, and 

co-cycles for fuzzy graphs [7]. The idea of fuzzy groups and a metric in fuzzy graphs was introduced for the first time 

by Bhattacharya [1]. The idea of strong arcs was introduced for the first time by Bhutani and Rosenfeld in 2003 [4], 

and in the same year they built fuzzy end nodes and studied their properties [2]. Bhutani and Rosenfeld initially 

introduced the concept of geodesic distance in 2003 [3]. Based on this geodesic distance, Suvarna and Sunitha 

subsequently introduced the concept of the geodesic iteration number and the geodesic number of a fuzzy graph in 

2013 [13], studying some of its properties. In 2015 [5], Linda and Sunitha employed-distance to introduce similar 

concepts. The set of nodes that do not belong to any geodesic basis of a fuzzy graph Γ(Ω,Λ,ξ) is called the pseudo 

geodesic set of G. The pseudo geodesic number(PGN) of G is the cardinality of this set [11]. Fuzzy graphs with a PGN 

of zero—also known as perfect geodesic fuzzy graphs—are the focus of this study. Examples of such graphs and some 

of their properties are provided in the study. Fuzzy cycles and complete fuzzy graphs are demonstrated to be members 

of the class of perfect geodesic fuzzy graphs. Yang et al. [16] enhance fuzzy system classification accuracy through 

geodesic fuzzy rough sets for feature extraction. In their research on fuzzy graph geodetic dominance integrity, 

Ganesan et al. [17] contribute to the exploration of network resilience. The two articles present new computational 

and structural findings in fuzzy graph theory. 

MOTIVATION 

• In the realm of geodesic intuitionistic fuzzy graphs(GIFGs), these ideas offer additional ways to express

uncertainty, providing a versatile framework.

• The utilization of these ideas in GIFGs expands the repertoire for handling uncertain information.

• However, this approach has limitations in capturing highly ambiguous information.
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•  In the context of GIFGs, employing these ideas could yield valuable and meaningful outcomes. 

NOVELTY 

• In this work, we define the concepts of the highest product in GIFGs.  

• We provide a new definition for the complement of GIFGs. 

•  This study introduces the concepts of the maximum product and complement in GIFGs.  

•  To handle decision-making uncertainties effectively, we utilize the Max product of the complement in geodesic 

intuitionistic fuzzy graphs, increasing the representation of uncertainty in the process. 

STRUCTURE OF THE ARTICLE 

Basic concepts are clarified in Section 2: Preliminaries. PGIFGs are mathematically defined as IFGs with PGN zero 

in Section 3: Geodesic Structure in IFGs. There are proofs establishing that completed IFGs and intuitionistic fuzzy 

cycles also possess this property. Theoretical findings are illustrated by examples. The applications of PGIFGs in 

cybersecurity are discussed in Section 4: Applications, where they assist in the detection of critical security nodes, 

enhancing threat detection, and ensuring secure network communication. The findings are concluded in Section 5: 

Conclusion, which also emphasizes the role of PGIFGs in fault-tolerant systems and network resilience as it discusses 

possible areas for further research. 

2. Preliminaries 

An IFG is a triplet 𝛤 ∶  (Ω, 𝛬, 𝜉, 𝜂), where Ω is the crisp vertex set and 𝛬 is an intuitionistic fuzzy relation on Ω. These 

functions satisfy the following conditions for all 𝑎, 𝑏 ∈  Ω: 

 𝜉2(𝑎, 𝑏)  ≤  𝜉1(𝑎)  ∧  𝜉1(𝑏), 𝜂2(𝑎, 𝑏)  ≥  𝜂1(𝑎)  ∨  𝜂1(𝑏).    (1)  

We assume that Ω is finite and non-empty, and the functions ξ and η satisfy the following properties:  

Reflexivity:  𝜉2(𝑎, 𝑎)  =  𝜉2(𝑎, 𝑎), 𝜂2(𝑎, 𝑎)  =  𝜂2(𝑎, 𝑎), ∀𝑎 ∈  Ω.  (2)  

Symmetry:  𝜉2(𝑎, 𝑏)  =  𝜉2(𝑏, 𝑎), 𝜂2(𝑎, 𝑏)  =  𝜂2(𝑏, 𝑎), ∀𝑎, 𝑏 ∈  Ω.  (3) 

The underlying crisp graph is denoted as 𝛤∗  =  (𝛬∗, 𝜉∗), where: 

 𝛬∗  = {𝑎 ∈ 𝑏|𝛬(𝑎)  >  0}, 𝜉∗   = {(𝑎, 𝑏) | 𝑎, 𝑏 ∈  Ω, 𝜉(𝑎, 𝑏)  >  0}.   (4) 

Here, we assume 𝛬∗  =  Ω. An IFG is called a complete IFG if:  

𝜉2(𝑎, 𝑏)  =  𝜉1(𝑎)  ∧  𝜉1(𝑏), 𝜂2(𝑎, 𝑏)  =  𝜂1(𝑎)  ∨  𝜂1(𝑏), ∀𝑎, 𝑏 ∈  𝛬∗.   (5) 

A path 𝑃𝑛 of length n is a sequence of distinct vertices 𝑎0, 𝑎1, … , 𝑎𝑛 such that the condition 𝜉(𝑎𝑗 −1, 𝑎𝑗)  >  0 holds for 

every 𝑗 =  1,2, … , 𝑛. We designate the weakest arc of Γ as the arc in Γ with minimum positive membership value. The 

strength of a path is defined as the minimum membership value of its arcs. If 𝑎0  =  𝑎𝑛 and 𝑛 ≥  3, then the path is a 

cycle. A cycle is particularly termed to be a fuzzy cycle if it contains greater than one weakest arc. The most substantial 

path between nodes a and b, denoted as 𝐶𝑂𝑁𝑁𝐺(𝑎, 𝑏), is the level of connection of the two. An intuitionistic fuzzy 

network Γ is linked when each pair of nodes 𝑎, 𝑏 ∈  𝛬∗ has 𝐶𝑂𝑁𝑁𝐺(𝑎, 𝑏)  >  0. An arc (a,b) is said to be strong in an 

IFG if, when the arc (a,b) is removed, its weight is equal to or greater than the connection strength of its end vertices 

a and b. A strong path is a path P that only has strong arcs between vertices a and b. Themeasure of connectivity 

between two nodes a and b is determined by the highest strength among all paths linking a and b, denoted as 

𝐶𝑂𝑁𝑁𝐺(𝑎, 𝑏). An IFFG Γ is considered connected if 𝐶𝑂𝑁𝑁𝐺(𝑎, 𝑏)  >  0 for all pairs of nodes 𝑎, 𝑏 ∈  𝛬∗. An arc (a,b) 

within an IFG is called strong if its weight is at least equal to the connectivity strength of its endpoints a and b when 

the arc (a,b) is removed. A path P between nodes a and b that consists only of strong arcs is known as a strong path. 

If there is no shorter strong path from a to b, then the strong path is a geodesic. The length of the geodesic path is the 

geodesic distance from a to b, which is denoted by 𝑑𝑔𝑛𝐼𝐹𝐺  (𝑎, 𝑏). 

A subset of nodes of a linked intuitionistic fuzzy network Γ may be denoted as 𝛩. Every node in 𝛩 and any additional 

nodes that appear on geodesics between elements of 𝛩 form the geodesic closure 𝛩(𝛤) of 𝛩. A geodesic cover (or 
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geodesic set) of 𝛤 is a set 𝛩 if 𝛩(𝛤)  =  Ω(𝛤). A geodesic basis of Γ is a geodesic cover with the minimum number of 

nodes. The number of nodes in the geodesic basis of an IFG Γ is its geodesic number, denoted by 𝑔𝑛𝐼𝐹𝐺(𝛤).  

Corollary 2.1. For a complete IFG 𝛤 on n nodes, 𝑔𝑛𝐼𝐹𝐺(𝛤)  =  𝑛.  

Corollary 2.2. For an intuitionistic fuzzy cycle Γ on n nodes, 𝑔𝑛𝐼𝐹𝐺(𝛤)  =  2 if n is even, and 𝑔𝑛𝐼𝐹𝐺(𝛤)  =  3 if n is odd. 

3. GEODESIC STRUCTURE IN INTUITIONISTIC FUZZY GRAPH 

Definition.3.1. Let 𝛤(Ω, 𝛬, 𝜉, 𝜂) be a connected IFG, where 𝜉 ∶  Ω × Ω → [0,1] represents the membership function, and 

𝜂 ∶  Ω × Ω → [0,1] represents the non-membership function, satisfying 0 ≤ 𝜉(𝑎, 𝑏) + 𝜂(𝑎, 𝑏)  ≤  1, ∀𝑎, 𝑏 ∈  Ω. Let 𝛩 be 

a geodesic basis of 𝛤. The set of nodes that do not belong to any geodesic basis of 𝛤 is called the intuitionistic pseudo-

geodesic set 𝛩′ of 𝛤. The intuitionistic pseudo-geodesic number, denoted as 𝑔𝑛𝐼𝐹𝐺(𝛤), is the cardinality of the pseudo-

geodesic set 𝛩′. 

Example.3.2. Consider an IFG in Fig.1 𝛤(Ω, 𝛬, 𝜉, 𝜂) with the following:  

• Vertex set: Ω =  {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}  

• Edge set: 𝛬 =  {(𝐴, 𝐵), (𝐵, 𝐶), (𝐶, 𝐷), (𝐷, 𝐸), (𝐴, 𝐶), (𝐵, 𝐷)}  

The intuitionistic fuzzy membership function 𝜉 and non-membership functionη are given as: 

Edge 
(u,v)  

ξ(u,v)  η(u,v)  

(A,B)  0.9 0.1 

(B,C)  0.8 0.15 

(C,D)  0.7 0.2 

(D,E)  0.85 0.1 

(A,C)  0.6 0.3 

(B,D)  0.75 0.2 

 

The geodesic basis is 𝛩 =  {𝐴, 𝐶, 𝐸}. The intuitionistic pseudo-geodesic set is 𝛩′ =  {𝐵, 𝐷}. The intuitionistic pseudo-

geodesic number is 2. 

 

Remark 3.3. In the intuitionistic fuzzy graph 𝛤(Ω, 𝛬, 𝜉, 𝜂) shown in Fig. 1, not all nodes of Γ belong to the geodesic 

basis of 𝛤. Therefore, the intuitionistic pseudo-geodesic number satisfies: 𝑔𝑛𝐼𝐹𝐺(𝛤)  ≥  0. However, there exist 
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certain intuitionistic fuzzy graphs in which every node belongs to at least one geodesic basis. In such cases, the 

intuitionistic pseudo-geodesic set is empty, and thus: 𝑔𝑛𝐼𝐹𝐺(𝛤)  =  0.  

Example 3.4. Consider an intuitionistic fuzzy graph in Fig. 2 𝛤(Ω, 𝛬, 𝜉, 𝜂) with:  

• Vertex set: Ω =  {𝐴, 𝐵, 𝐶}  

• Edge set: 𝛬 =  {(𝐴, 𝐵), (𝐵, 𝐶), (𝐴, 𝐶)}  

The intuitionistic fuzzy membership function 𝜉 and non-membership function 𝜂 are given as: 

Edge 
(u,v)  

ξ(u,v)  η(u,v)  

(A,B)  0.9 0.1 

(B,C)  0.85 0.1 

(C,A)  0.8 0.15 

 

 
The geodesic basis contains all vertices. The intuitionistic pseudo-geodesic set is empty 𝛩′ =  ∅. The intuitionistic 

pseudo-geodesic number is 0.  

Proposition 3.5. Let 𝛩1, 𝛩2, . . . , 𝛩𝑛 be the geodesic bases of an IFG 𝛤 =  (Ω, 𝛬, 𝜉, 𝜂), where 𝜉 and 𝜂 represent the 

membership and non-membership functions, respectively. Then, the intuitionistic pseudo-geodesic number is 

given by 𝑔𝑛𝐼𝐹𝐺(𝛤)  = |⋂ 𝛩𝑗
𝑐𝑛

𝑗=1 |  .  

Proof. The intuitionistic pseudo-geodesic set of Γ is represented by 𝛩′. In order to show that 𝑔𝑛𝐼𝐹𝐺(𝛤)  = |⋂ 𝛩𝑗
𝑐𝑛

𝑗=1 |.  

It is enough to prove that 𝛩′ = ⋂ 𝛩𝑗
𝑐𝑛

𝑗=1 . Let 𝑣 ∈  𝛩′ and be a node of 𝛤. By definition 3.1,v is not an element of any 

geodesic basis of 𝛤, i.e., 𝑣 ∉  𝛩𝑗 , ∀𝑗 = 1,2, . . . , 𝑛. This implies 𝑣 ∈  𝛩𝑗
𝑐 , ∀𝑗 = 1,2, . . . , 𝑛 Hence, 

𝑣 ∈  ⋂ 𝛩𝑗
𝑐𝑛

𝑗=1  .Therefore, 𝛩′ ⊆  ⋂ 𝛩𝑗
𝑐𝑛

𝑗=1 . Conversely, if u be a node of 𝛤 then 𝑢 ∈  ⋂ 𝛩𝑗
𝑐𝑛

𝑗=1 . This means: 𝑢 ∈  𝛩𝑗
𝑐 , ∀𝑗 =

1,2, . . . , 𝑛. ⇒ 𝑢 ∉  𝛩𝑗 , ∀𝑗 = 1,2, . . . , 𝑛. By definition, u does not belong to any geodesic basis of 𝛤, which implies  𝑢 ∈

𝛩′. Therefore, ⋂ 𝛩𝑗
𝑐𝑛

𝑗=1  ⊆  𝛩′ . 

From (1) and (2), we conclude 𝛩′ = ⋂ 𝛩𝑗
𝑐𝑛

𝑗=1 .  Thus, 𝑔𝑛𝐼𝐹𝐺(𝛤)  = |⋂ 𝛩𝑗
𝑐𝑛

𝑗=1 |  .  

 Theorem 3.6. A complete intuitionistic fuzzy graph is a PGIFG. 

Proof: By Corollary 2.1, the intuitionistic geodesic number of a complete IFG 𝛤 on n nodes is given by: 𝑔𝑛𝐼𝐹𝐺(𝛤)  =

 𝑛. Thus, the entire vertex set Ω of 𝛤 forms the unique geodesic basis, i.e., 𝛩 = Ω. By Proposition 3.6, the 

intuitionistic pseudo-geodesic set is given by  𝛩′ = ⋂ 𝛩𝑗
𝑐𝑛

𝑗=1 . Since 𝛩 =  Ω, every node belongs to at least one 

geodesic basis, which implies: ⋂ 𝛩𝑗
𝑐𝑛

𝑗=1 =  ∅. Thus, the intuitionistic pseudo-geodesic number is 𝑔𝑛𝐼𝐹𝐺(𝛤)  =  0. 

Proposition 3.7. An intuitionistic fuzzy cycle 𝛤 on n nodes is a PGIFG.  

Proof. Consider the following cases:  

Case (1): n is even. By Proposition 2.2, the intuitionistic geodesic number 𝑔𝑛𝐼𝐹𝐺(𝛤) =  2 when n is even. Clearly, 

𝛩𝑗  =  {𝑣𝑗 , 𝑣𝑗+
𝑛

2
  𝑚𝑜𝑑𝑛} , (1 ≤ 𝑗 ≤ 𝑛), are the only geodesic bases of 𝛤. Then, by Proposition 3.6, the intuitionistic 

pseudo-geodesic set is: 𝛩′ =  ∅. Thus, 𝑔𝑛 𝐼𝐹𝐺
′ (𝛤)  =  0. Hence, 𝛤 is a PGIFG. 
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 Case (2): n is odd. By Proposition 2.2, the intuitionistic geodesic number 𝑔𝑛𝐼𝐹𝐺(𝛤) =  3 when n is odd. Clearly, 

𝛩𝑗  = { 𝑣𝑗 , 𝑣
𝑗+

𝑛−1

2
 
𝑚𝑜𝑑𝑛, 𝑣

𝑗+
𝑛+1

2
 
𝑚𝑜𝑑𝑛} , (1 ≤ 𝑗 ≤ 𝑛), are the only geodesic bases of 𝛤. Then, by Proposition 3.6, the 

intuitionistic pseudo-geodesic set is: 𝛩′ =  ∅. Thus, 𝑔𝑛𝐼𝐹𝐺
′ (𝛤)  =  0.  Hence, 𝛤 is a PGIFG. 

4. APPLICATION 

As cyber-attacks continue to grow in number and sophistication, the need to secure sensitive information has never 

been more critical. Organizations are striving to implement effective measures to secure their data. One such method 

by which the security of a computer network can be created and studied is by using perfect geodesic intuitionistic 

fuzzy graphs (PGIFG). This concept assists in the modeling of the network at a higher level so that weak points can 

be rapidly identified, intrusion detection is aided, and secure flow is guaranteed between devices on the network. 

Such a set of nodes is called a geodesic basis in a graph that ensures minimal cover of all shortest paths to other 

nodes. Nodes outside a geodesic basis form a set called the pseudo geodesic set. A graph is said to be a PGIFG if its 

pseudo-geodesic set is empty. When applied to the field of cyber security, this model can lead to enhancement in the 

degree of threat detection and issues regarding network defense arawithering security boundaries of systems at 

communication nodes. Every infiltration and network security device in a cybersecurity structure such as firewalls or 

monitoring servers is integrated through communicating links. Each item of the system Intuitionistic Fuzzy Graph 

(IFG) corresponds to a device within the network while the edges represent the communication links that have fuzzy 

values associated to them.  

Membership: The degree to which the connection can be considered secure (𝑟𝑎𝑛𝑔𝑒: 0 𝑡𝑜 1).  

Non-membership: Likelihood of facing a cyberattack (range 0 to 1). We have devised a network with the following 

nodes:  

S1- Firewall 

 S2- Database Server  

S3- Web Server  

S4- Work Station  

S5- Security Monitoring System  

These nodes have edges that either represent secure connections. 

PYTHON CODE FOR VERIFYING PERFECT GEODESIC INTUITIONISTIC FUZZY GRAPH 

 import networkx as nx  

def is perfect geodesic ifg (graph):  

shortest paths = dict(nx. all pairs dijkstra_path (graph , weight=’weight ’))  

geodesic basis = set()  

for source in shortest paths : 

 for target in shortest paths [ source ]: 

 geodesic basis .update( shortest paths [ source ][ target ])  

pseudo geodesic set = set(graph.nodes) – geodesic_ basis 

 return len (pseudo geodesic set) == 0, pseudo_ geodesic_ set 

# Create an intuitionistic fuzzy cybersecurity graph  

graph = nx.Graph()  
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graph .add weighted edges from([  

( ”S1” , ”S2” , (0.9 ,0.05)) , 

 ( ”S1” , ”S3” , (0.85 , 0.1)) , 

 ( ”S2” , ”S4” , (0.8 , 0.15)) , 

 ( ”S3” , ”S4” , (0.75 , 0.2)) , 

 ( ”S4” , ”S5” ,( 0.9 , 0.05)) , 

 ( ”S2” , ”S5” , (0.7 , 0.2)) 

 ] ) 

 is perfect pseudo geodesic nodes = is perfect geodesic if g (graph) 

 print(”Is Perfect Geodesic Intuitionistic Fuzzy Graph” , is perfect) 

 print(”Pseudo Geodesic Set :” , pseudo geodesic nodes) 

RESULT ANALYSIS 

The Perfect Geodesic Intuitionistic Fuzzy Graph (PGIFG) analysis for the provided cybersecurity network proves its 

efficacy in providing maximum security and flow of communications. The calculated geodesic basis comprises all the 

nodes {S1, S2, S3, S4, S5}, which shows that each node has a key function in finding shortest paths in the system. The 

pseudo-geodesic set is discovered to be empty, thus affirming that the network is a PGIFG, which means that all 

nodes are necessary for optimizing paths, and there are no unnecessary nodes outside of the shortest path 

architecture. 

From a cyber-security point of view, this outcome indicates that the network is designed for optimal fault tolerance, 

best security, and efficient threat defense. The intuitionistic fuzzy structure guarantees that secure data paths are 

built up and safe risk factors (non-membership values) are taken into consideration, so this method is very 

appropriate for practical intrusion detection systems and network security frameworks. The ideal geodesic structure 

guarantees quick determination of key security points, thus increasing network resistance to cyber attacks. 

7. CONCLUSION 

The Perfect Geodesic Intuitionistic Fuzzy Graph (PGIFG) generalized the geodesic structure concept in fuzzy graphs 

with the inclusion of intuitionistic fuzzy set theory, which deals with membership, non-membership, and hesitancy 

values. For this system, the pseudo geodesic set is the set of nodes that are not part of any geodesic basis, and a graph 

is said to be perfect when this set is null. Using intuitionistic fuzzy modeling, this method strengthens cybersecurity 

through the identification of key security nodes, the optimization of threat detection, and the provision of secure 

communication channels within network structures. Complete intuitionistic fuzzy graphs and intuitionistic fuzzy 

cycles are demonstrated to have perfect geodesic properties and are thus best applied in applications where fault 

tolerance, security, and maximum connectivity are paramount.  

Future developments could include AI-powered threat intelligence, blockchain-protected communication, and 

neutrosophic extensions to deal with high uncertainty in cyber risk evaluation. The PGIFG framework offers an 

efficient tool for contemporary cybersecurity, providing effective, adaptive, and robust network security. 
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