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Accurate movement and posture are essential for effective physical therapy, as improper form 

can hinder recovery and worsen injuries. This project introduces a real-time human pose 

estimation system specifically designed for physical therapy, providing precise feedback on body 

alignment. Utilizing a mod- ified YOLOv8 architecture with custom heatmap regression, the 

system monitors key joints—particularly the wrist, elbow, and shoulder—vital for upper-body 

rehabilitation. Initially trained on a combined MPII and COCO 2017 dataset, the model was fine-

tuned on a custom dataset of 6,000 images derived from 1,250 video frames under varied lighting 

conditions, with a 380% augmentation rate to improve robustness across scenarios. Achieving a 

detection accuracy of 91.61%, the system surpasses widely used models like OpenPose and 

MediaPipe, which deliver accuracies of 85% and 88%, respectively. With an average frame rate 

of 27.94 FPS and latency of 19.24 milliseconds per frame, the system provides instant feedback, 

enabling users to adjust posture in real time. Personalized guidance is offered by calculating the 

distance between live and reference keypoints, maintaining a mean keypoint detection error 

under 5 pixels. This real- time corrective feature enhances rehabilitation by empowering users 

to self-adjust and allowing healthcare providers to track progress effectively. By focusing on 

physical therapy-specific movements, this system represents a significant advancement in 

integrating AI-driven solutions into rehabilitation, enhancing both effectiveness and 

accessibility. 

Keywords: Physical therapy, Real-time pose estimation, heatmap regression, yolo-v8, keypoint 

detection, Corrective feed- back. 

 

INTRODUCTION 

Physical therapy is a cornerstone of rehabilitation for indi- viduals recovering from injuries, surgeries, or chronic 

condi- tions, playing an essential role in restoring mobility, strength, and flexibility. For effective outcomes, it is 

crucial that pa- tients perform prescribed exercises with precision. Incorrect movements can hinder healing, prolong 

recovery periods, and even increase the likelihood of reinjury. Studies indicate that improper form in rehabilitation 

exercises contributes to de- layed healing, with an estimated 30% of patients experiencing recurring issues stemming 

from inaccurate movements during unsupervised sessions [1]. In conventional therapy settings, physical therapists 

provide real-time, in-person guidance to correct patient posture and movement, ensuring that exercises are executed 

correctly. However, access to frequent sessions is often restricted due to logistical challenges, high associated costs, 

and the availability of practitioners, particularly in remote or underserved areas. Additionally, the COVID-19 

pandemic introduced new barriers, as many patients had to rely on remote therapy sessions lacking real-time 

feedback, exacerbating these accessibility issues [2]. 

In recent years, advances in artificial intelligence (AI) and computer vision have spurred the development of 

automated systems capable of monitoring human pose and providing real- time feedback. These innovations offer 

promise for physical therapy applications by reducing dependency on in-person supervision. General-purpose AI 

models, such as MediaPipe and OpenPose, have demonstrated impressive capabilities in real-time pose estimation, 
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tracking key joints, and capturing postural information [3], [4]. However, while these systems are adept at general 

activity recognition, they lack the precision needed for physical therapy’s specific demands, particularly in tracking 

critical joints like the wrist, elbow, and shoulder, which are essential for upper-body rehabilitation. Evaluations of 

these models in therapeutic settings show that their accuracy and reliability often fall short of clinical requirements, 

as they struggle to detect subtle postural deviations necessary for effective therapeutic guidance [5], [6]. 

To address these limitations, this study presents a novel AI-based real-time human pose estimation system specifi- 

cally designed for physical therapy applications. Leveraging a modified YOLOv8 architecture with a custom heatmap- 

based keypoint regression technique, this system produces a probabilistic distribution for each keypoint rather than 

a direct coordinate, significantly enhancing accuracy in tracking therapeutic movements. Heatmap regression has 

been shown to improve pose estimation accuracy in complex environ- ments, making it particularly suitable for 

applications requiring fine postural adjustments [7]. Our system further enhances precision by assigning weights to 

critical therapeutic joints and calculating spatial distances between live keypoints and reference postures, delivering 

personalized corrective feedback that patients can immediately apply to refine their form. This real-time feedback 

loop empowers patients to self-correct during exercises, potentially reducing the risk of improper movements and 

accelerating recovery outcomes [8]. 

The inspiration behind this project is deeply personal: my brother experienced a bike accident that required extensive 

physical therapy to restore his mobility. Due to limited trans- portation options, we had to arrange for therapists to 

visit our home, which was costly and time-consuming. This experience underscored the need for a practical, 

affordable solution that could enable patients to engage in rehabilitation exercises independently and safely at home, 

with real-time guidance to minimize errors. 

This research aims to answer the question: Can an AI- driven, real-time pose estimation system tailored to physical 

therapy improve the accuracy and safety of patient movements during rehabilitation? We hypothesize that a 

specialized ap- proach combining high-precision pose estimation with instant corrective feedback will not only 

improve movement accuracy but also reduce the risk of reinjury. This work contributes to the growing field of AI in 

healthcare by offering an accessible, effective tool that promotes patient autonomy in rehabilitation. By making 

quality care more accessible, especially in remote or underserved areas, this research has the potential to en- hance 

recovery outcomes and support healthcare providers in delivering remote, personalized care. 

RELATED WORK 

Pose estimation has advanced significantly in recent years, with numerous systems capable of detecting human poses 

in real-time. OpenPose [9] marked a major step forward by using part affinity fields for efficient, real-time multi-

person 2D pose estimation, making it a popular choice for general applications. Despite its versatility, OpenPose’s 

general-purpose design lacks the granularity required for physical therapy, where accurate analysis of subtle joint 

movements, such as wrist, elbow, and shoulder adjustments, is critical for rehabilitation exercises. 

EfficientPose [10] extends pose estimation into 3D, offering valuable depth information that is advantageous for 

analyzing movement in physical therapy. This model provides high accuracy in tracking joint positions in three 

dimensions, which can be essential for therapeutic analysis. However, its compu- tational demands restrict its use in 

real-time applications on lower-end devices, a limitation in home-based therapy setups where accessible, lightweight 

solutions are preferred. 

YOLOv3 [11], originally developed for object detection, has also been adapted for pose estimation due to its speed 

and ef- ficiency. However, its regression-based design limits precision, particularly in capturing detailed, small joint 

movements. This limitation is significant in physical therapy, where even slight inaccuracies can affect rehabilitation 

quality. 

BlazePose [12] offers a mobile-friendly, lightweight model optimized for fitness tracking. Its efficient regression-

based approach allows it to run on devices with limited processing power, making it popular for general exercise 

monitoring. However, BlazePose’s focus on fitness rather than therapy means it lacks the fine-grained accuracy 

required for monitor- ing therapeutic joint movements and angles crucial in physical therapy. 
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HRNet [13] represents a notable advancement with its high-resolution heatmap-based pose estimation, allowing it 

to maintain detail in keypoint detection, making it particularly suited for physical therapy. This model’s architecture 

preserves high-resolution representations throughout the network, en- hancing accuracy in detecting and tracking 

essential upper- body joints like the wrist, elbow, and shoulder—areas critical in rehabilitation exercises that require 

precise tracking. 

AlphaPose [14] and ArtTrack [15] both contribute robust multi-person tracking capabilities. AlphaPose uses a pose- 

guided proposal generator for crowded scenes, while ArtTrack performs well in dynamic environments. However, 

both sys- tems are limited when applied to the finer joint adjustments needed in one-on-one therapy sessions. 

ArtTrack’s multi- person tracking is beneficial in group rehabilitation but lacks the accuracy needed for isolated, 

single-patient therapy. 

In contrast, DeepLabCut [16], initially designed for animal pose estimation, has been adapted for human 

applications, particularly in biomechanics. While it offers customization and precision, its reliance on extensive 

annotated data can be a drawback in settings where such data is limited, such as in smaller clinics or home-based 

therapy. 

VNect [17] and HoloPose [18] provide robust 3D pose estimation with monocular RGB cameras. VNect supports real-

time tracking in three dimensions, which is beneficial in physical therapy for depth analysis of joint movements. 

However, its computational requirements pose a challenge for real-time application on less powerful devices. 

HoloPose similarly provides 3D estimation but requires high-quality input data, which may not be feasible in all 

therapeutic environments where quick, flexible assessments are needed. 

LCRNet [19] and DensePose [20] contribute to understand- ing human surfaces and complex environments. 

DensePose maps human surfaces in 3D, beneficial for analyzing overall body shapes but lacking the joint-level detail 

necessary for therapeutic feedback. LCRNet’s strength lies in unconstrained environments with complex 

backgrounds, which is less rele- vant in the controlled settings of physical therapy. 

These existing models demonstrate substantial advance- ments in pose estimation. However, for applications in 

physical therapy, the need for a system that can deliver real-time feedback with high accuracy in critical joints, such 

as the wrist, elbow, and shoulder, remains unmet. Our approach aims to bridge this gap by utilizing a modified 

YOLOv8 architecture with heatmap-based keypoint regression, specifically designed to enhance tracking accuracy 

and adaptability in physical therapy settings. 

METHODOLOGY 

This study utilizes a quantitative approach to develop a real- time human pose estimation system specifically designed 

for physical therapy applications. The methodology emphasizes creating a model capable of providing immediate 

corrective feedback to users, allowing them to make real-time adjust- ments to their posture and movements. By 

employing a mod- ified YOLOv8 architecture and custom heatmap regression, this system enables precise tracking 

of key joints essential for therapeutic exercises. This section provides a comprehensive overview of the research 

approach, model architecture, data collection and preparation, training protocols, real-time pro- cessing, and 

feedback mechanisms. 

A. Research Approach and Model Architecture 

The model for this system is based on YOLOv8, known for its high speed and efficiency in object detection tasks. 

YOLOv8 is adapted to integrate a heatmap regression layer, which enhances joint localization accuracy and provides 

a probabilistic map of keypoint locations. This adaptation is essential for physical therapy, where the accurate 

tracking of joints such as the wrist, elbow, and shoulder is critical to assess posture and movement. 

Heatmap regression, as opposed to direct coordinate regres- sion, represents each keypoint by a Gaussian heatmap 

centered on the joint, which provides a probabilistic representation of the joint location. This approach reduces 

localization errors by focusing on a distribution around the likely joint position rather than a single coordinate point, 

thereby improving preci- sion. Each heatmap Hi for keypoint i is calculated as follows: 
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where (xi, yi) is the ground truth location of the joint, and σ controls the spread of the Gaussian distribution around 

this point. 

To further enhance precision, joint-specific weighting is applied during fine-tuning. This weighting process 

prioritizes accuracy for therapeutic joints by modifying the model’s loss function to give higher importance to these 

areas. The weighted mean squared error (MSE) loss function is defined as: 

 

where wi represents the assigned weight for joint i, Hi is the actual heatmap for the joint, and Hpred is the predicted 

heatmap. By assigning higher weights wi to joints such as the wrist, elbow, and shoulder, the model effectively focuses 

on reducing errors in these critical areas for improved therapeutic outcomes. 

B. Data Collection and Preparation 

The model was initially trained on a combination of MPII and COCO 2017 datasets to leverage their extensive annota- 

tions, enabling the development of a general-purpose pose es- timation foundation. Following this, the model was 

fine-tuned on a custom dataset tailored to physical therapy requirements. 

The custom dataset was constructed to capture upper-body movements typically prescribed in physical therapy 

exercises, such as shoulder flexion, elbow extension, and wrist rota- tions. A total of 1,250 frames were extracted from 

recorded physical therapy sessions, each frame capturing a range of joint positions across different exercises. From 

these frames, 6,000 images were created through data augmentation, which increased the dataset’s size by 380% and 

introduced variability to improve the model’s generalization across conditions. 

Images were captured in a resolution of 640x480 pixels to ensure a balance between sufficient detail and processing 

speed. This resolution allowed the model to detect joint positions accurately while maintaining real-time processing 

capability. 

C. Data Augmentation Techniques 

To increase robustness, the custom dataset underwent ex- tensive augmentation to simulate diverse real-world 

conditions and reduce overfitting. The augmentation techniques included: 

1. Rotation: Images were randomly rotated between -30° and +30° to expose the model to joint positions from 

various angles, improving its capability to handle natural variations in body orientation. 

2. Scaling Images were resized by factors between 0.8 and 1.2 to account for variations in distance between the 

subject and the camera, helping the model generalize to different spatial configurations during exercises. 

3. Color Adjustments Brightness, contrast, saturation, and hue adjustments were randomly applied to simulate 

different lighting environments, ensuring the model performs consis- tently across varied lighting conditions 

often encountered in home settings. 

4. Flipping Horizontal flipping was applied to simulate mirrored poses, allowing the model to recognize and adapt 

to exercises performed on both sides of the body. 

5. Images were randomly cropped and padded to introduce variability in the subject’s position within the frame. 

After- ward, all images were resized back to the target dimension of 640x480 pixels to ensure a consistent 

input size for the model. This approach allows the model to generalize to different body positions within the 

frame while maintaining compatibility with the fixed input size required by the architecture. 
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6. These augmentation techniques effectively expanded the dataset and increased variability, enabling the model 

to gener- alize across different backgrounds, orientations, and lighting conditions, all of which are common in 

real-world physical therapy settings. 

 

 

 

D. Training and Optimization 

The model was trained in two stages: initial training on the combined MPII and COCO 2017 datasets, followed by 

fine-tuning on the custom dataset to optimize for therapeutic poses. This two-stage process allowed the model to 

retain a broad understanding of human pose estimation while refining its accuracy for physical therapy applications. 

For the initial training phase, a standard MSE loss function was used, focusing on general pose estimation tasks. 

Fine- tuning was then performed using a custom weighted loss function, combining MSE for heatmap accuracy and 

cross- entropy loss for keypoint confidence. The fine-tuning loss function is expressed as: 

 

where α and β balance localization accuracy with keypoint confidence. Fine-tuning was conducted over 100 epochs 

with a batch size of 32, using an Adam optimizer at an initial learning rate of 0.001. Early stopping and learning rate 

decay were implemented to prevent overfitting. The model achieved a detection accuracy of 91.61% with an average 

keypoint error under 5 pixels, demonstrating its precision for therapeutic applications. 

E. Real-Time Execution and Frame Processing 

The system operates in real time, capturing live video through a standard webcam with a resolution of 640x480 

pixels, selected to balance processing speed with sufficient detail. Each frame is processed instantly to extract 

keypoints, followed by a comparison with reference postures for imme- diate guidance. 

The frame processing pipeline includes the following steps: 

1. Video Capture: Continuous video feed is captured via a connected webcam, streaming at a resolution of 

640x480 pixels for optimal performance. 

2. Keypoint Extraction: The modified YOLOv8 architecture is applied to each frame, enabling real-time detection 

of essential joint positions required for therapeutic feedback. 

3. Reference Comparison: Keypoints extracted from the live frame are compared to reference postures using a 

weighted Euclidean distance metric, which calculates deviations from the ideal posture, essential for corrective 

feedback. 

The system maintains an average frame rate of 27.94 FPS with a processing latency of 19.24 milliseconds per frame, 

ensuring the delivery of instantaneous feedback, crucial for users performing physical therapy exercises. 

F. Interactive Feedback Mechanism 

The feedback mechanism provides users with immediate guidance to adjust their posture. Deviations from the 

reference posture are calculated based on the Euclidean distance between corresponding joints, as defined by: 

 

where (xref, yref) and (xlive, ylive) are the coordinates of joints in the reference and live frames, respectively. When 

deviations exceed a predefined threshold, corrective feedback is triggered. For example, if an elbow angle deviates 

beyond the acceptable range, the system will suggest adjusting the arm alignment or elbow position. 
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G. System Deployment and User Interface 

The final system is deployed on a standard computing device equipped with a camera to capture live video. The user 

interface is designed to provide real-time visual feedback, highlighting areas needing correction and guiding users to 

adjust their posture. Color coding and on-screen annotations make the feedback easy to interpret, supporting safe 

and effective rehabilitation practices. 

OUTPUT AND VISUALIZATION 

The developed real-time pose estimation system provides essential visual feedback, which is crucial for effective phys- 

ical therapy. The system generates several types of outputs to help users understand and improve their posture during 

exercises. Each output type—keypoint heatmaps, annotated reference videos, and real-time feedback—enables users 

to monitor their performance and make necessary adjustments in real time. 

A. Keypoint Heatmaps 

One of the primary outputs of the system is the keypoint heatmap, which visually represents the probability 

distribution for the locations of specific joints in the user’s body. The heatmap highlights areas where the model 

predicts the pres- ence of particular body joints, with brighter areas indicating higher probabilities. This probabilistic 

output allows users to see both the detected keypoints and the model’s confidence levels in those detections, 

enhancing the clarity of the feed- back. 

 

Fig. 1. Input image for keypoint detection and heatmap generation. 

As illustrated in Fig. 1, the input image given to the model for keypoint identification is processed to generate a 

corresponding heatmap output, as shown in Fig. 2. In the heatmap, the brighter regions reflect areas where joint 

presence is most probable, providing an intuitive visualization of keypoint accuracy. 
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Fig. 2. Heatmap output showing the probability distribution of detected keypoints. Brighter areas indicate higher 

probability regions for specific joints. 

B. Annotated Reference Video 

In addition to heatmaps, the system provides an annotated reference video, offering real-time feedback by allowing 

users to compare their posture with an ideal or correct posture. The annotated video highlights key joints and skeletal 

connections necessary for proper movement, guiding users to make suitable adjustments during their exercises. 

An example of the annotated reference video output is shown in Fig. 3. This output visualizes the desired positions 

of critical joints, enabling users to view their posture in relation to the reference posture. 

 

Fig. 3. Annotated reference video with keypoints and skeletal structure highlighted for side-by-side comparison. 

C. Real-Time Feedback Output 

The system provides real-time feedback on the user’s posture, allowing for immediate corrections during physical 

therapy exercises. This feedback includes a distance metric that quantifies how closely the detected pose aligns with 

the reference pose, accompanied by corrective suggestions if needed. 
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As depicted in Fig. 4, the system evaluates the user’s pose and flags any deviations from the correct posture. In this 

example, the feedback indicates that the exercise is not performed correctly, as shown by the red text output 

displaying “Exercise Not Done Properly” and a distance metric of 2133.21. 

 

Fig. 4. Real-time feedback output, indicating incorrect posture with a red warning message, “Exercise Not Done 

Properly.” 

D. Side-by-Side Comparison 

To further support user progress, the system includes a side-by-side comparison of the live video feed and the ref- 

erence posture. This feature allows users to view their current movements alongside the ideal posture, enabling more 

precise adjustments and alignment. When the user’s posture is close to the reference posture, positive feedback is 

displayed. 

As shown in Fig. 5, the side-by-side comparison includes a green feedback message, “Good Job! To improve accuracy, 

focus on bending the elbow,” offering constructive guidance while acknowledging the user’s effort. 

 

Fig. 5. Side-by-side comparison of the live feed and reference video. A green message indicates successful posture 

with additional suggestions for minor improvements. 

Together, the outputs generated by the system—including heatmaps, annotated reference videos, real-time feedback, 

and side-by-side comparisons—enhance the user experience by providing intuitive, actionable feedback. This 

comprehensive visual guidance supports improved posture and movement, ultimately contributing to more effective 

rehabilitation out- comes. 

EVALUATION AND RESULTS 
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The developed pose estimation system was rigorously eval- uated using a test set consisting of various unseen physical 

therapy movements. The primary objectives of this evaluation were to assess the model’s accuracy in detecting 

keypoints associated with critical joints (wrist, elbow, shoulder) and its ability to provide reliable feedback for 

physical therapy exercises. Additionally, the system’s performance in terms of processing speed, frame rate, and real-

time feedback was examined to confirm its suitability for real-world applications. 

A. Keypoint Detection Accuracy 

The model achieved an impressive keypoint detection accu- racy of 91.856%, which marks a significant improvement 

over established general-purpose pose estimation models such as OpenPose and MediaPipe. OpenPose and 

MediaPipe recorded accuracies of 85% and 88%, respectively, when tested on similar physical therapy exercises. This 

enhanced accuracy can be attributed to the customized heatmap regression technique employed in the model, which 

provides more refined localiza- tion of keypoints critical for rehabilitation. 

 

Fig. 6. Real-time evaluation results showing processing speed, minimum distance achieved, final accuracy, total 

frames processed, average FPS, and average frame processing time. 

As shown in Fig. 6, the real-time evaluation of the model provides various performance metrics, including frame pro- 

cessing time and accuracy, which confirm the system’s effec- tiveness in a real-time setting. 

1) Accuracy Calculation: The keypoint detection accuracy was computed using the following formula: 

  (1) 

This formula quantifies the proportion of correctly detected keypoints relative to the total number of keypoints, 

providing a direct measure of the model’s performance in detecting key body joints as compared to the ground truth 

annotations. 

B. Distance Measurement for Pose Alignment 

In addition to accuracy, the system employs a distance metric to evaluate the alignment of the detected pose with a 

reference pose. This metric uses a weighted Euclidean distance approach, which accounts for the spatial deviation of 

each detected keypoint from its corresponding reference keypoint. The formula for calculating the distance metric is 

as follows: 
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where: - n is the total number of keypoints, - wi is the weight assigned to the i-th keypoint, - xi
det and yi

det are the 

detected coordinates for the i-th keypoint, - xi
ref and yi

ref are the reference coordinates for the i-th keypoint. 

This distance value serves as an indicator of how closely the user’s pose aligns with the ideal posture. Lower distance 

values signify better alignment, which is critical for accurate feedback in physical therapy settings. 

C. Performance Metrics Summary 

To provide a comprehensive evaluation, the performance of the system was compared with other established models. 

Table I summarizes the keypoint detection accuracy and relevant notes on the strengths and limitations of each model 

in the context of physical therapy applications. 

Table I. Comparison of Keypoint Detection Accuracy with Established Models 

Model Keypoint Detection Accuracy (%) Notes 

Custom Model 91.856 
Enhanced accuracy due to customized heatmap 

regression tailored for therapy exercises. 

OpenPose 85.0 
General-purpose model, less suited for detailed 

therapy movements. 

MediaPipe 88.0 
Effective for general use but not optimized for 

therapy-specific tasks. 

The custom model’s high detection accuracy demonstrates its suitability for physical therapy applications, where 

precise joint tracking is essential for effective feedback. 

D. Real-Time Performance Metrics 

The evaluation also included an analysis of real-time per formance metrics, such as frame rate, average processing 

time per frame, and overall system latency. These metrics are critical in determining whether the system can provide 

feedback at a speed that aligns with users’ movements during physical therapy exercises. As indicated in Fig. 6, the 

system processed a total of 559 frames with an average frame rate of 27.93 FPS and an average frame processing time 

of 10.54 milliseconds. This fast processing speed ensures the system’s capability to deliver near-instantaneous 

feedback, enhancing its effectiveness for real-time posture correction. 

The results from this evaluation indicate that the custom model offers significant improvements over traditional 

general- purpose models for physical therapy applications. Its high detection accuracy, optimized processing speed, 

and real-time feedback capabilities make it a valuable tool for rehabilitation. The model’s use of a distance metric for 

pose alignment allows for accurate, immediate feedback, which is crucial for users working on posture and movement 

accuracy during therapy feedback at a speed that aligns with users’ movements during physical therapy exercises. As 

indicated in Fig. 6, the system processed a total of 559 frames with an average frame rate of 27.93 FPS and an average 

frame processing time of 10.54 milliseconds. This fast processing speed ensures the system’s capability to deliver 

near-instantaneous feedback, enhancing its effectiveness for real-time posture correction. 

The results from this evaluation indicate that the custom model offers significant improvements over traditional 

general- purpose models for physical therapy applications. Its high detection accuracy, optimized processing speed, 

and real-time feedback capabilities make it a valuable tool for rehabilitation. The model’s use of a distance metric for 

pose alignment allows for accurate, immediate feedback, which is crucial for users working on posture and movement 

accuracy during therapy exercises. 

Future work will explore additional enhancements, includ- ing broader validation across diverse physical therapy 

exer- cises and further optimization of the model to improve its adaptability and accuracy. The promising results 

suggest that this system has the potential to play an essential role in home- based and clinical physical therapy 

settings, where real-time feedback is instrumental in improving patient outcomes. 

CONCLUSION 

exercise
s. 
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This research presents a real-time human pose estimation system specifically designed for physical therapy 

applications. By utilizing a customized YOLOv8 architecture with heatmap regression, the system achieves a high 

accuracy of 91.856% in detecting critical joints such as the wrist, elbow, and shoulder—essential for therapeutic 

exercises. The model was initially trained on large-scale datasets, COCO and MPII, to build a generalized 

understanding of human pose, followed by fine-tuning on a custom dataset comprising 6,000 augmented images 

specifically focused on physical therapy movements. This approach ensures that the model retains broad pose 

estimation capabilities while being finely tuned for therapeutic applications, enabling precise joint localization across 

diverse conditions. The system’s capability to provide real-time feed- back allows patients to immediately adjust their 

posture, which is crucial for safe and effective rehabilitation. 

The results indicate that an AI-driven pose estimation sys- tem with real-time feedback can significantly enhance 

physical therapy by ensuring correct exercise execution. By promoting accurate posture and joint alignment, the 

system reduces the risk of reinjury and supports more efficient recovery. This model bridges the gap between 

supervised and remote physical therapy, empowering patients to engage more independently in their rehabilitation 

while still benefiting from immediate corrective guidance. 

This work contributes to the growing field of AI applications in healthcare, particularly within physical therapy and 

rehabil- itation. The system’s success suggests that similar pose esti- mation technologies could be integrated into 

tele-rehabilitation platforms, making high-quality physical therapy accessible to patients in remote or underserved 

areas. Furthermore, the system generates valuable data for therapists, enabling the personalization of treatment 

plans and providing a balanced approach to automated and clinician-supported care. 

The primary benefit of this system is its ability to deliver accurate, real-time feedback during physical therapy 

exercises, thus improving patient outcomes and supporting therapeutic assessments. However, a limitation exists in 

its reliance on 2D pose estimation, which may be less effective in capturing depth and complex 3D motions required 

for certain exercises. This limitation may restrict the system’s applicability in movements requiring detailed depth 

information or full-body tracking. 

Future research directions include developing a 3D pose estimation model to capture a broader range of movements 

and provide deeper insights into body posture. Integrating tele- rehabilitation features, such as remote monitoring 

and inter- 

active therapist feedback, could expand the system’s reach, making physical therapy accessible to individuals in 

remote or resource-limited areas. Additionally, exploring adaptive models that can learn from each patient’s unique 

movements over time may enhance the personalization and effectiveness of AI-driven physical therapy. 
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