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An essential consideration for a microgrid's cost-effectiveness is the size of its renewable energy 

sources.  A collection of RES, a storage system, converters, and loads make up the grid-connected 

hybrid renewable energy system. The operating area needed by the type of DG technology is one 

variable used in this article to determine the DG sizing, while all potential candidate buses in the 

various AC/DC micro-grid system zones are another variable, taking into account the HPC losses 

in the system. A hybrid AC/DC MG system is created to optimize the size and designing using 

different renewable energy sources. To evaluate the proposed approach, Butterfly Optimization 

Algorithm is implemented on aforementioned micro-grid systems and the obtained results are 

verified with other Particle swarm optimization in the paper. The results proved that the 

proposed approach is better than the other approaches in technical aspects. 
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INTRODUCTION 

Hybrid renewable energy systems (HRES) is a new way to generate low carbon emissions by moving away from 

conventional energy networks and they are expanding recognition in remote areas to be connected worldwide. 

Recently, renewable energy RE has been used for isolated households in various countries with the aim of controlling 

the flow of HRES electricity, particularly, a combination of solar and wind energy. The problem created by the 

conventional electricity has been resolved by the combination of renewable energy resources and storage devices in 

an optimal way [1]. The connection of multiple renewable energy sources plays a vital role and proper storage can 

substantially enhance the reliability and efficiency of HRES. It is reported that due to the unstable nature of electricity 

generated by RES, it is important to incorporate storage devices in remote locations. The photovoltaic power changes, 

which are significantly influenced by weather conditions, bring the stability of MG regarding frequency regulation to 

its limits. The unpredictable nature of power demand can further contribute to this issue. As frequency deviation 

from the nominal value is seen as a direct indicator of power balance between generation and consumption, it can 

degrade the reliability of connected devices or even harm them. This is likely even when ESS is incorporated, owing 

to the rapid changes in insolation fluctuations relative to DG and ESS dynamics [2]. Integrated Renewable Energy 

Systems are an emerging approach in recent years for providing power generation services for stand-alone 

applications, especially in remote locations. This can be attributed to the inherent drawbacks of single technology-

driven systems in separate mode, like high system cost and low reliability, as demand grows. Adaptive supervisory 

energy management systems, along with many other solutions have been proposed to overcome these challenges. 

The paper [3] outlines one such strategy that explores a hybrid renewable energy system comprising solar, wind, 

battery, and fuel cell technologies to satisfy the energy needs of remote locations. In this regard, the authors present 

an adaptive energy management for a supervisory system that adopts the adaptive Pontryagin's minimum principle 

to optimize the performance of hybrid fuel cell/energy storage system. The approach has shown an effective system 

performance monitoring, control and optimization in various simulation and experimental scenarios with system 

load profiles. A hierarchical energy management strategy is proposed [4] for an island PV/fuel cell/battery hybrid 

DC microgrid. The proposed strategy consists of a local control layer to control the natural running characteristics of 

the components comprising the system and a system control layer to determine the power distribution between the 

battery and fuel cell minimizing hydrogen consumption. This is a difficult challenge to tackle in the context of 
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microgrids especially when there is no central energy management system in place and no direct communication 

between the different units. A viable solution to this problem is offered by decentralized control strategies, which 

provide energy management in a continuous manner between generation units and loads connected without the need 

for complex communication infrastructure [5].  

The result of combining Ant Colony Optimization (ACO) and Artificial Bee Colony Optimization (ABCO) can lead to 

a stronger and more productive optimization algorithm that uses the best parts of both methods. This mixed approach 

tries to blend the exploring skills of ACO with the exploiting abilities of ABCO. This mix has the potential to find 

better answers to optimization problems [6]. The combination of Krill Herd Optimization (KHO) with Ant Lion 

Optimization (ALO) is one powerful algorithm with enhanced search capabilities. This combination exhibit improved 

convergence speed, better solution quality, and robustness in supervision complex optimization problems compared 

to using either algorithm individually. Additionally, the hybridization can control the harmonizing strengths of both 

techniques to achieve a balanced exploration-exploitation trade-off, resulting to potentially superior performance in 

solving optimization problems [7]. Cuckoo Search is a nature-inspired optimization algorithm that is based on the 

brood parasitism of some cuckoo species. The algorithm is known for its simplicity and efficiency in finding optimal 

solutions to optimization problems. The consequence of using Cuckoo Search includes fast convergence to high-

quality solutions, robustness in handling various types of optimization problems, improved management of grid-

connected and islanded modes for enhanced resilience, improved energy efficiency, and cost savings [8,9].The Firefly 

Algorithm rooted in how fireflies blink often gets used to crack optimization challenges. When FA is implemented 

into microgrid optimization, this algorithm comes up with answers that fit the special needs of microgrid set-ups. It 

provides balancing power generation and demand with efficient optimization of microgrid. It better deals in dynamic 

scheduling to minimize costs and enhance reliability [10]. The "Flower Pollination Algorithm" (FPA), is a nature 

inspired optimization technique, that mimics the pollination behavior of flowering plants. When applied to microgrid 

optimization, some potential results can be observed such as efficient management of power flow to meet the demand, 

enhanced grid stability, reliability by balancing supply and demand, dynamic adaptation to changing grid conditions, 

enhanced utilization of energy storage systems for peak shaving and backup power [11]."Particle Swarm 

Optimization" (PSO) is a metaheuristic algorithm implemented after how birds or fishes move in groups. When PSO 

is used to make microgrids better, it gives better outcomes that leads to making exact plans with low costs, reliable 

systems, use storage at peak times, real-time adaptation to changing grid conditions and demand profiles, optimal 

coordination of storage systems [12]. Multimodal Delayed Particle Swarm Optimization (MDPSO) is a superior 

version of Particle Swarm Optimization (PSO) designed to control multimodal functions by maintaining variety and 

avoiding impulsive convergence. In the perspective of microgrid optimization, MDPSO can be used for optimal 

energy management, helps in optimal scheduling of generators, reducing fuel costs and emissions, stability and 

reliability enhancement, helps in determining the best locations and sizes of DERs to minimize losses and improve 

grid efficiency, enables effective participation of consumers in demand-side management programs [13]. Hybrid 

Simulated Annealing - Particle Swarm Optimization (SA-PSO) combines the global search capabilities of Simulated 

Annealing (SA) with the fast convergence of Particle Swarm Optimization (PSO). This hybrid approach enriches 

exploration (diversity) and exploitation (convergence) in optimization problems, making it appropriate for microgrid 

applications [14].  

The design and optimization of microgrids has been the focus of broad research in recent years. One of the key 

challenges in microgrid design is the optimal sizing and placement of renewable energy sources, such as solar 

photovoltaic systems and wind turbines. There are various optimization techniques that have been proposed to 

discuss this problem, including linear and non-linear programming methods, dynamic programming, rule-based 

methods, and metaheuristic approaches [15]. Among the metaheuristic approaches, the Butterfly Optimization 

Algorithm has gained significant attention due to its ability to effectively solve complex optimization problems. The 

Butterfly Optimization Algorithm is a nature-inspired optimization algorithm that mimics the searching behavior of 

butterflies. The algorithm has been successfully applied to various optimization problems in the field of electrical 

power systems, including the optimal placement and sizing of distributed energy resources, the optimal operation of 

microgrids, and the design of power management systems [16]. In the context of microgrid optimization, the Butterfly 

Optimization Algorithm can be applied to find the optimal size and location of renewable energy sources, to minimize 

the complete cost of the microgrid while ensuring reliable and efficient operation [17]. For example,It has been 
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demonstrated in  [18] that a mixed-integer linear programming-based methodology for the optimal design of a 

microgrid, incorporating the sizing of the battery energy storage systems. The other example [19] describes a control 

methodology for an isolated microgrid system, where the battery energy storage systems are used as grid-forming 

units to maximize the exploitation of renewable energy sources. The proposed research paper aims to build upon 

these previous techniques by proposing a novel approach for the optimization of microgrid design using the Butterfly 

Optimization Algorithm. 

PROPOSED SYSTEM CONFIGURATION AND MODELLING 

In this research paper, we propose the use of the Butterfly Optimization Algorithm to address the problem of optimal 

sizing and placement of renewable energy sources in a microgrid. The Butterfly Optimization Algorithm is a nature-

inspired metaheuristic algorithm that has been successfully applied to various optimization problems in the field of 

power systems. The proposed methodology for optimizing the sizing and placement of renewable energy sources in 

a microgrid using the Butterfly Optimization Algorithm consists of the following steps: Firstly, the microgrid system 

and its components, including renewable energy sources, energy storage systems, and loads, are modeled 

mathematically. The objective function for the optimization problem is then defined, which typically includes the 

minimization of the total cost of the microgrid, including capital, operating, and maintenance costs, as well as the 

maximization of the utilization of renewable energy resources. Next, the Butterfly Optimization Algorithm is applied 

to the optimization problem, where the algorithm iteratively adjusts the size and location of the renewable energy 

sources to find the optimal solution. The algorithm's performance is evaluated using various metrics, such as the 

convergence rate, solution quality, and computational efficiency. The following assumptions are made in this analysis 

in order to determine the suitable resource mix: 

(i) The existing load scenario is used to calculate the optimal resource combination. 

(ii) Only discrete sizes of the candidate units are provided.  

(iii) It is assumed that the lifespan of generating units is equal to the number of planning years.  

(iv) It is expected that the initial costs increase in proportion to the size.  

(v) Only generators and battery storage are liable for operating and maintenance costs.  

(vi) It is assumed that converters and battery storage have no salvage value. 

Both DC and PFAC buses are present in the hybrid system. All DC energy sources (solar) are connected to the DC bus 

in this architecture via appropriate interface circuits. DC/DC converters are used to directly service DC loads via DC 

buses, if necessary. The PFAC bus provides electricity to AC loads. PFAC energy sources can be directly connected in 

this control scheme without the need for any auxiliary circuits. Consequently, compared to DC coupled and AC 

coupled schemes, the hybrid DC–AC coupled setup is more cost-effective and energy-efficient. The control and energy 

management of the hybrid scheme, however, are very complicated. 
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Fig 1: Integrated Hybrid Microgrid System consisting of PV, WT, DG, BS 

2.1 PV Modeling 

Photovoltaic modules are devices that generate power from direct sunlight. The annual energy consumption of a PV 

module at a specific location with known solar radiation and temperature can be modelled by the energy production 

per year 𝐸𝑃𝑉and the time duration (in hours) of the sun's operation on the PV with the output power P(T,G) of PV 

module at solar radiation G and temperature T  computed using eq.(1); 

 𝐸𝑃𝑉 = 𝑇ℎ𝑟 ∑ 𝑃(𝑇, 𝐺)

𝐺𝑚𝑎𝑥,𝑇𝑚𝑎𝑥

𝐺𝑚𝑖𝑛,𝑇𝑚𝑖𝑛

 (1) 

The output power P(T,G) is determined by equation (2); 

 P(T, G) = 𝑃𝑆𝑇

𝐺𝐼𝑁

𝐺𝑆𝑇

(1 + 𝑘(𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑟𝑒𝑓)) (2) 

where PST represents the maximum power for the PV module at standard test scenarios, GIN is the dropped 

irradiation, GST represents the irradiation at STC (1000 W/m2 ), k is the power temperature coefficient of power, Tcell 

is the cell temperature and Tref  is the reference temperature. 

2.2 Wind Turbine (WT) Modeling 

Wind turbines (WTs) generate mechanical energy from kinetic energy (derived from wind speed), which is 

subsequently used to produce electrical energy. The height of a WT and site weather data can be used to determine 

the electrical energy it produces. The equation (3) can be used to model the energy available from wind for a known 

or given speed profile. 

 𝐸𝑊𝑇 = 𝑇ℎ𝑟 ∑ 𝑃0

𝑉𝑚𝑎𝑥

𝑉𝑚𝑖𝑛

𝑓(𝑣, 𝑘, 𝑐) (3) 

Here, EWT and Thr denotes the energy output from wind turbine in kWh at a given location and  the time duration 

(hours) respectively. Po denotes the power output of wind turbine (kW), (Vmin,Vmax) denotes the minimum and 
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maximum speeds of wind, and f (v,k,c) denotes the Weibull function for a specified site wind speed (v) at a designed 

modeling coefficient k and scaling coefficient c. 

2.3 Diesel Generator (DG) Modeling 

Conventional diesel generators have been operated for standby power and peak shaving. Fuel efficiency and 

consumption are characteristics of the electricity produced by DGs. For more efficient use, DGs run between 80 and 

100 percent of their nominal power. A DG's potential energy output is calculated using equation (4); 

 𝐸𝐷𝐺(𝑡) = 𝜂𝐷𝐺𝑇ℎ𝑟𝑃𝐷𝐺(𝑡) (4) 

Here Thr denotes DG operating hours, PDG denotes DG rated power, EDG is the DG annual energy (KWh) and ηDG is 

the DG efficiency 

2.4 Battery Bank Modeling 

An electrochemical device called a battery is used to store electrical energy from AC or DC MG units for future use. 

In an MG system, the battery's state of charge (SOC) is continuously fluctuating in accordance with the random 

behavior of the renewable sources' (WT and PV) output. The formula for calculating the necessary battery bank 

capacity for an MG system is represented by equation (5) 

 𝐵𝑟𝑒𝑞 =
𝐿𝐴ℎ/𝑑𝑎𝑦𝑁𝑐

𝑀𝐷𝐷𝐷𝑓

 (5) 

where BReq is the necessary battery bank capacity in Ampere-hour (Ah), LAh/day is the Ah load consumption per day, 

MDD is the maximum discharge depth, Df  is the discharging factor and Nc represents the independent day’s number. 

In order to supply the Ah required by the MG system, the number of parallel linked (NP) batteries is calculated using 

equation (6) 

 𝑁𝑃 =
𝐵𝑟𝑒𝑞

𝐵𝑐

 (6) 

while the number of series connected (Ns) batteries for the specified VN is finalized using equation (7) 

 𝑁𝑠 =
𝑉𝑁

𝑉𝐵

 (7) 

where Bc is the chosen battery capacity in Ah , VN is the MG system voltage and VB is the voltage of battery. The NBT, 

or total number of batteries, is determined as 

 𝑁𝐵𝑇 = 𝑁𝑃𝑁𝑆 (8) 

2.5 Inverter Modeling 

The interface that connects energy between MG components and the load is typically an inverter. The maximum 

energy that AC loads may predict must be controlled by the inverter that is being used. Stand-alone, grid-tied battery-

less, and grid-tied with battery backup inverters are the three primary categories into which the inverters are divided. 

The equation (8) can be used to model and count the number of inverters required for a given load demand. 

 𝑁𝑖𝑛𝑣 =
𝑃𝑔_𝑚𝑎𝑥

𝑃𝑖𝑛𝑣_𝑚𝑎𝑥

 (8) 

Where, Ninv is the number of inverters, Pg_max is the maximum power generated by the MG, and Pinv_max is the 

maximum power that the inverter can deliver. 

MIROGRID OPTIMIZATION 



Journal of Information Systems Engineering and Management 
2025, 10(34s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

373 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which 

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Optimization is the process of selecting variables while keeping limitations in mind in order to determine a function's 

least or maximum value.  The fitness or objective function, which is the optimization function, is usually computed 

with the aid of simulation tools.  The best answer is not always found using an optimization technique.  This may not 

always be realized because of the nature of the problem.  Based on the category of cost function that needs to be 

solved, an optimization strategy is chosen.  Certain methods cannot handle non-convex and non-smooth 

optimization.  These methods struggle to deal with inequality limitations.  PSO is a reliable optimization method that 

is used in many MG applications.  Both discrete and continuous optimization issues can be resolved by it.  In this 

paper, Butterfly Optimization Algorithm is implemented to get the optimal solution for the placement and designing 

of a microgrid. 

3.1. Butterfly Optimization Algorithm 

A population-based, naturally inspired algorithm is the central concept of the Butterfly Optimization Algorithm. The 

BOA imitates the social and foraging behaviors of butterflies [12]. The following is a description of the biological and 

natural behavior. Butterflies are Lepidopteran insects. The five senses they possess are smell, sight, taste, touch, and 

hearing. They employ their three senses to locate food, find a mate, migrate, and flee from adversaries. Even though 

butterflies have many senses, their ability to smell is thought to be the most crucial one for locating food. The male 

butterfly uses the female's pheromone to identify her during mating.  

Butterflies emit a strong scent that spreads over distances as they travel from one place to another. The intensity of 

the butterfly's aroma attracts the other butterflies, who are able to detect it. A butterfly will approach the best butterfly 

when it detects its scent. This procedure is known as global search. In local search, it randomly shifts to a different 

location in the search space whenever it is unable to detect the scent of any butterflies.  

When a butterfly moves, it releases a strong smell. Based on the intensity of the smell, the other butterflies were 

drawn to the butterfly. Each butterfly's smell can be described using the formula shown in equation (9) 

 𝑝𝑓𝑖 = 𝑐𝐼𝑎 (9) 

where c and I stand for the sensor modality and scent intensity, respectively, and pfi for the perceived magnitude of 

reference. The power exponent, or parameter a, indicates the extent of smell absorption. 

3.2 Movement of butterflies (Global Search) 

Butterfly movements are based on the following three phases:  

1. Global search phase: When a butterfly travels, it releases a smell, and other butterflies are drawn to it based on how 

strong the smell is. This procedure, known as a global search, is described in equation (10) 

 𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + (𝑟2𝑔∗ − 𝑥𝑖
𝑡)𝑓𝑖 (10) 

where g is the overall optimal solution, r is a random number in [0,1], fi is the ith butterfly's fragrance, and 𝑥𝑖
𝑡  is a 

vector that represents the butterfly (solution) at iteration t. 

2. Local search phase: The butterfly moves erratically throughout the search area when it is unable to detect the scent 

of the other butterflies. This procedure is known as local search and is described by equation (11) 

 𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + (𝑟2𝑥𝑗
𝑡 − 𝑥𝑘

𝑡 )𝑓𝑖 (11) 

where two vectors, 𝑥𝑖
𝑡, 𝑥𝑗

𝑡, represent two distinct butterflies within the similar population. 

3. Analysis of the Solution: The butterfly's objective function is represented by the strength of its smell. Based on the 

intensity of its smell, the butterfly draws in other butterflies. 

3.3 Objective functions 

Single objective function 
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Single-objective optimization involves maximizing or minimizing a function. The objective functions that are 

commonly used in MG optimization are summed up in the following sections:  

(i) Minimize- The single objective function minimizes the Costs of life cycle [24], Emissions of gases, including 

CO2, NOx, SO2, PM2.5, and PM2.5-10,  Power outages (both reactive and active), Degradation throughout the 

years  

(ii) (ii) Maximize- The single objective function maximizes the profits or advantages, power generation, load ability, 

net present value, unmet load (UL), loss of load hours (LLH), loss of load risk (LOLR), loss of power supply 

probability (LPSP), loss of load probability (LLP/LOLP), and level of autonomy (LA) are all factors that affect 

reliability.  

Multi‑objective function 

Single-objective-function optimization is the term used to describe optimization problems where there is only one 

criterion to be maximized. In other situations, multiple criteria need to be optimized at the same time; this type of 

optimization problem is known as a multi-objective optimization problem. Multiple goals that need to be 

accomplished at the same time contribute to multi-objective optimization problems. The process of resolving 

conflicting objective functions is known as multi-objective optimization. 

Constraints 

Constraint for energy equilibrium: 

In the microgrid, the amount of power generated and consumed should always be balanced. As a result, the objective 

function should adhere to the constraints listed below in order to preserve the power balance and the physical 

boundaries of the generating systems.  

 𝑃𝑙𝑜𝑎𝑑 = 𝑃𝑃𝑉 + 𝑃𝑊𝑇 + 𝑃𝐷𝐺 + 𝑃𝐵𝑎𝑡𝑡  (12) 

where photovoltaic system output power is equal to PPV. PWT is the output power of the wind system. Pload is equal to 

load demand. PBatt is the battery's output power (positive while discharging, negative when charging). PDG is the 

output power of diesel generators. 

Constraint for photovoltaic (PV) system: 

The constraint for photovoltaic system can be written as 

 0 ≤ 𝑃𝑃𝑉 ≤ 𝑃𝑃𝑉,𝑚𝑎𝑥  (13) 

where PPV, max is the maximum output power of the PV system. 

Constraint for wind turbine (WT) system: 

The constraint for the wind turbine system can be written as 

 0 ≤ 𝑃𝑊𝑇 ≤ 𝑃𝑊𝑇,𝑚𝑎𝑥 (14) 

Where PWT, max  is the maximum output power of the wind turbine system. 

Constraint for battery storage (BS) system Battery storage system constraints include the nominal charging 

or discharging rates, the SOC limits, and the battery's maximum power under charging or discharging conditions. 

The limitations of the battery storage system can be expressed as 

 𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑡) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥  (15) 

 −𝑃𝑏𝑎𝑡𝑡,𝑚𝑎𝑥 ≤ 𝑃𝑏𝑎𝑡𝑡(𝑡) ≤ 𝑃𝑏𝑎𝑡𝑡,𝑚𝑎𝑥 (16) 

 −
𝑃𝐵𝑎𝑡𝑡_𝑛𝑜𝑚

𝑉𝐵𝑎𝑡𝑡

≤ 𝐼𝐵𝑎𝑡𝑡 ≤
𝑃𝐵𝑎𝑡𝑡_𝑛𝑜𝑚

𝑉𝐵𝑎𝑡𝑡

 (17) 
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where, Vbatt is the usual voltage SOCmin represents the lower limit of SOC, SOCmax represents the upper limit of SOC, 

PBatt_nom represents the battery's rated power, and PBatt,max represents the battery's maximum power under both 

charging and discharging conditions. 

Optimization constraints 

Equality constraint: 

Power balance is when the total power produced equals the demand for the load. The load power Pload is calculated 

using the power output Pi with the ith generating unit and t is the time. The total number of generating units is 

represented by N equation (18) 

 𝑃𝑙𝑜𝑎𝑑,𝑡 = ∑ 𝑃𝑖,𝑡

𝑁

𝑖

 (18) 

Inequality constraints: 

Power output from each producing unit must fall between the minimum (Pmin) and maximum (Pmax) limitations of 

the rate power unit. 

 𝑃𝑖,𝑚𝑖𝑛 ≤ 𝑃𝑖,𝑡 ≤ 𝑃𝑖,𝑚𝑎𝑥 (19) 

3.4 Particle Swarm Optimization 

It is believed that HMGS optimization is a multi-objective issue. A multi-objective function is converted into a single-

objective function using the linear scalarization method, and the objectives may be constraints or a linear function 

[17]. It is characterized by limitations that are specified as, and an objective function (fitness). 

 𝑓(𝑥) = 𝑚𝑖𝑛 {∑ 𝑤𝑖

𝑓𝑖(𝑥)

𝑓𝑖
𝑚

𝑘

𝑖=1

}  𝑤𝑖𝑡ℎ 𝑤𝑖 ≥ 0 𝑎𝑛𝑑 ∑ 𝑤𝑖

𝑘

𝑖=1

= 1 (20) 

 

 

 

The PSO process is as follows:  

1) Establish the goal function and its limitations, which include the number of dwellings [1,15], the renewable factor 

[> 0.01], PV [5,50], autonomous days [0,5], and wind turbines [0,5].  

2) Initialize the Population Array, Global Best, location, particle velocity, and population members.  

3) Choose the particle's position and velocity at random, create the starting population, and determine the swarm's 

optimal fitness value.  

4) Achieve your own best. As a worldwide best and update iteration, the lowest POE and LPSP have been chosen.  

5) Revise your worldwide and personal top positions. Put a stop condition in place.  
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Fig 3: Flowchart for Butterfly optimization 

PERFORMANCE COMPARISON OF VARIOUS OPTIMIZATION TECHNIQUES 

The cost-benefit analysis of an MG might not be justified in the absence of optimization methodologies. The goal of 

optimization is to determine which of a collection of given solutions is the most cost-effective or has the best 

achievable performance provided the given restrictions. In situations where traditional optimization techniques fail 

to yield an optimal solution, a variety of methods are available to handle optimization challenges. One approach to 

cost optimization that shows potential is artificial intelligence (AI). The primary benefit of artificial intelligence is its 

capacity to integrate many approaches, initially identifying the optimal primary answer and then identifying an 
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improved one. The optimization strategies utilized to find the most practical solution to the cost reduction problem 

in MGs are listed in the table 1. 

Table 1: Summary of studies of unit sizing based on different algorithms used 

Algorithm used Resources used Objective Function Outcome 

Hybrid of Ant Colony 

and Artificial Bee Colony 

optimization [26k] 

Gas turbine, Fuel Cell, 

Wind energy 

Voltage stability index, 

minimization of cost, 

emission and power losses 

faster convergence to 

optimal solutions 

Krill herd and ant lion 

optimization [18] 

PV, wind turbine, fuel 

cell, microturbine, 

battery, grid 

Total operational cost, 

pollutant emissions, 

minimization of cost and 

emissions 

achieve a balanced 

exploration-exploitation 

trade-off 

Cuckoo search [8] Wind turbine, PV, DG 

and batteries 

Minimizing total investment 

cost, emissions and their 

costs 

Minimization of peak load 

demand through intelligent 

scheduling and control 

strategies. 

Firefly Algorithm[27] Diesel generator, wind 

turbine and fuel cell 

Power output, cost Enhanced grid stability and 

resilience through 

intelligent optimization 

techniques 

Flower Pollination 

Algorithm [3] 

Microturbine, PV, Fuel  

cell, wind power and 

batteries 

DG price, start-up and 

shutdown prices in 

generation, storage price, 

and prices due to power 

interchange between the 

main grid and price in the 

demand response program 

Dynamic adaptation to 

changing grid conditions 

and load profiles, Improved 

utilization of energy storage 

systems for peak shaving 

and backup power. 

Particle Swarm 

optimization[16] 

Fuel cell, wind turbine, 

electrolyzers, a 

reformer, an anaerobic 

reactor and some 

hydrogen tanks. 

Total net present cost Enhanced resilience and 

reliability of the microgrid, 

Efficient optimization of 

microgrid operation by 

balancing generation and 

demand. 

Multimodal delayed PSO 

[4] 

WT, PV, DG and battery 

storage system 

minimum levelized cost of 

energy (LCOE), the lowest 

loss of power supply 

probability (LPSP), and the 

maximum renewable factor 

(REF) 

Prevents premature 

convergence to local 

optima, ensuring more 

stable microgrid operation. 

Hybrid simulated 

annealing PSO 

Wind turbine, PV, DG 

and battery 

LCOE, total benefit PSO accelerates solution 

discovery, while SA refines 

it, Ensures optimal 

scheduling and dispatch 

even under uncertain 

conditions. 

Whale optimization[14] DG, FC, microturbine, 

WT, PV and battery 

Operation cost, emission 

cost 

Balances exploration and 

exploitation for better 

optimization results. 

Butterfly optimization PV, WT, DG and battery Operating cost Improved stability 

performance, optimal sizing 

and operation 
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RESULT & DISCUSSIONS 

The proposed study using the butterfly optimization algorithm has been applied to a a microgrid system, and the 

results have been examined. A number of renewable energy sources, including photovoltaic, wind, and battery energy 

storage systems, are included in the case study microgrid system. Additionally, there is the option to purchase 

electricity from the main utility grid. The cost of purchasing electricity from the grid, the cost of battery degradation, 

and the capital and operating costs of renewable energy sources are all taken into account when minimizing the 

objective function. The results indicate that the butterfly optimization method can identify the ideal locations and 

sizes for the microgrid's renewable energy sources, resulting in a considerable decrease in total system costs while 

preserving dependable operation. The results are compared with other optimization techniques, such particle swarm 

optimization, to demonstrate the effectiveness of the proposed approach. Fig. 4a and Fig. 4b depicts the temperature 

and PV power plots, respectively, for the PV Array of the 5kW PV system for the Microgrid case study at different 

solar irradiance levels. It is clear that with the two parallel strings created from 17 series connected modules, the PV 

array system of 5kW with a peak current of 8 A and voltage 465V was realized for irradiance of 1000W/m2 at 25 ̊C.  

 

(a)       (b) 

Fig. 4. a) Temperature throughout the year  b) PV Power output throughout the year 

 

(a)       (b) 

Fig. 5.  a) Load Profile throughout the year  b) Solar Radiation throughout the year 

Simulation results of the PMSG WTGS connected to a controller obtained to determine its performance. As shown in 

Fig. 6a and 6b, it has been shown that the WT, which is directly connected to the PMSG, extracts the most power 

when exposed to a wind speed of 9 m/s and a pitch angle of 0 ̊. 

https://www.sciencedirect.com/science/article/pii/S2405844023018856#fig13
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(a)       (b) 

Fig.6. a) Wind speed throughout the year b)Wind generator power throughout the year 

The output voltage and current of the WECS is displayed in fig 7. At 0.6 seconds, the output voltage dips as the 

harmonics occurs for a short period of time. The output current also changes with the specific voltage conditions. 

 

Fig.7. WECS output voltage and current under grid voltage dips. 

The voltage, current and power of the grid side is shown in fig. 8 under the stable loads. As it can be seen that the 

power initially rises to above 100 kW and then further decreases after 0.1 second. Initially, high transient power can 

be seen but it quickly reaches to the steady state value. The voltage and current also has a minimal phase difference 

at the grid side. 

 

Fig.8. Grid side power, voltage and current under stable AC and DC loads. 

The instantaneous grid power spikes sharply and indicates the high inrush and transient power at the starting. The 

grid power gradually decreases to the steady state value.  The true power of AC load, wind and the grid side is shown 

in fig. 9. The contribution of the grid decreases as the wind energy supplies power to the load. 
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Fig. 9 Active power of AC load, wind and grid under stable AC and DC loads. 

The DC load current quickly stables after a high transient at starting. The DC load power is consistent under fixed 

load conditions. The voltage ensures the proper system performance and regulation in the DC system. The DC 

current, power and voltage waveform is shown in fig. 10. 

 

Fig. 10. DC load current, load power and load voltage. 

When the AC load changes, the AC load power, wind power and the grid power also changes in the system. As the 

load is changing after 0.5 seconds, the grid side power has also some transients in the system that can be shown in 

fig 11. As the system gets stabilized, the grid power is no more active for it.  



Journal of Information Systems Engineering and Management 
2025, 10(34s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

381 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which 

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Fig. 11. AC load power, wind power and grid power with AC load change. 

CONCLUSION 

The optimal sizing of the microgrid with different renewable sources have been examined in the paper. The two 

different optimization techniques involved in the study. The butterfly optimization technique has fast convergence 

speed and provides better results for the current scenario. In conclusion, this research paper presented the use of the 

Butterfly Optimization Algorithm for the optimal sizing and placement of renewable energy sources in a microgrid. 

The results demonstrate the effectiveness of the proposed methodology in finding the optimal configuration of the 

microgrid, which minimizes the overall cost while ensuring reliable and efficient operation. The application of the 

Butterfly Optimization Algorithm to microgrid optimization represents a significant contribution to the field of power 

systems engineering and provides a valuable tool for the design and operation of sustainable and efficient energy 

systems. 
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