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This paper presents a production flow-oriented framework for measuring and enhancing 

productivity in construction projects. Departing from traditional resource-based approaches, the 

proposed framework integrates value stream mapping with advanced simulation techniques and 

real-world data acquisition to comprehensively assess process performance. The simulation 

model employs a Monte Carlo method, incorporating lognormal distributions to generate 

realistic process durations for key construction activities. This approach effectively captures both 

central tendencies and variability while preventing the occurrence of unrealistically short process 

times. Data were collected from an actual construction site in Munich, where piles were 

constructed using Kelly drilling machines with a diameter of 50 cm and a depth of 12 m, followed 

by reinforcing and concreting. On-site measurements were obtained via manual recording and 

automated sensor technologies, including camera-based monitoring and data from construction 

equipment. The simulated and measured process times were compared using density graphs and 

statistical indicators. This showed that some of the processes are very similar to the reference 

processes but that there are also significant differences in variability and durations. These 

findings highlight the necessity for process-specific productivity benchmarks and underscore the 

importance of a flexible, production flow-oriented approach that can be adopted to the unique 

operational requirements of individual companies. The framework provides a robust tool for 

productivity assessment and offers practical insights for optimizing construction processes and 

reducing schedule variability. 
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INTRODUCTION 

A. Problem identification 

The construction industry incurs annual expenditure of over $10 trillion, which accounts for 13% of the world’s gross 

domestic product. (Barbosa et al., 2017) Despite its scale and importance, the sector has consistently faced criticism 

for lagging behind other industries regarding efficiency and productivity. (Howell et al., 1993) Numerous reports and 

academic studies have identified a concerning trend in recent decades. While manufacturing sectors have embraced 

innovation and achieved significant productivity gains, the construction sector has often experienced stagnation or a 

decline in productivity. (Bogliacino Pianta, 2011; Heshmati, 2003) This situation is exacerbated by high 

fragmentation, where multiple stakeholders—owners, contractors, subcontractors, and suppliers—frequently operate 

in isolation rather than in concert, causing inefficiencies and communication barriers that delay progress and inflate 

costs. (Project Management Institute, 2013) 

In stark contrast, industries such as automotive have undergone a profound transformation by adopting Lean 

principles. (Kumar et al., 2022) Pioneered by the Toyota Production System (Ōno, 2008), Lean methodologies 

heavily emphasize optimizing workflow, eradicating waste, and fostering a culture of continuous improvement. 

(Nicholas, 2018) Decades of practice in manufacturing have led to massive gains in both productivity and quality, 
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positioning Lean as a highly sought-after model for managing complex processes efficiently. (Palange y Dhatrak, 

2021) Recognizing these advantages, researchers and practitioners alike have sought to transfer Lean concepts into 

construction. (D. Kim Park, 2006; Nowotarski et al., 2016) Lean Construction principles have emerged, highlighting 

ways to reduce inefficiencies and improve coordination in building projects. (Kashikar et al., 2016) Despite the 

promising theoretical underpinnings and demonstrable successes in select case studies (Nikakhtar et al., 2015), Lean-

based production methods—particularly those centered on managing and measuring flow—have yet to see 

widespread or systematic application in construction. 

One potential explanation for this gap is the fundamental differences between manufacturing and construction 

environments. (Riley Clare-Brown, 2001) While manufacturing is typically repetitive, factory-based, and controlled, 

construction sites are inherently dynamic, open to environmental unpredictability, and shaped by multiple, often 

competing, stakeholders. (Verein deutscher Ingenieure, 2019) Moreover, traditional productivity metrics in 

construction have historically focused on resource optimization—assessing the efficient use of materials, labor, and 

equipment—without adequately capturing the holistic flow of work across the entire project lifecycle (Modig 

Åhlström, 2012). This resource-centric perspective can obscure inefficiencies within the continuous process, thus 

hindering the identification of bottlenecks and process delays. Therefore, adopting a flow-oriented approach to 

measure productivity is crucial to accurately reflect the dynamics of construction operations. (Awad et al., 2021) 

Nevertheless, the ongoing calls for greater efficiency, cost savings, and timely project delivery underscore the 

importance of overcoming these barriers. Significant research on holistic production systems and Lean Construction 

methodologies exists, but industry adoption remains limited. (Albalkhy Sweis, 2021)  

Given the persistent calls for greater efficiency, productivity, and collaboration in construction, a systematic 

framework for adopting flow-based productivity measurement systems is both timely and critical. It is not enough to 

assume that Lean principles, originally initially developed for manufacturing, can be transplanted into building 

projects. Instead, careful analysis is required to identify where and why these principles fail to take root.  

The research question guiding this study is therefore: 

How can the production flow be used as an indicator to measure productivity on construction sites? 

B. Related work  

Many models deal with the resource-optimized approach. (Crawford Vogl, 2006; John O’Grady, 2014; Lowe, 1987) 

These models aim to assess productivity by evaluating the ratio of inputs to outputs, whereby a project is considered 

productive if it utilizes minimal resources. However, this productivity metric often neglects the significance of 

maintaining a continuous process flow. Focusing exclusively on resource minimization can result in bottlenecks, 

delays, and overall production disruptions. (Goldratt, 1990) In contrast, a flow-based production approach prioritizes 

continuous, synchronized workflows, enhancing system resilience and overall operational efficiency. (Womack 

Jones, 1997) Geiger et al. (2024) propose a novel production model for labor productivity in construction that shifts 

the analytical focus from traditional cost control to a flow-oriented approach. (Geiger et al., 2023) Their model is 

based on a modular construction toolkit design that emphasizes capturing the actual production flow on-site rather 

than relying solely on resource optimization. Their central approach – shown in Figure 1 - is the concept of 

standardized modules, which are used to decompose a building into discrete, manageable units. A "construction 

module" is defined as a distinct spatial and functional building segment produced through a specific, repeatable 

sequence of processes. These modules are further subdivided into building components, such as a bored pile or a wall 

section, each produced through a series of standardized process steps. 

The production process for each building component is systematically mapped using value stream mapping, a 

technique that breaks down the overall process into discrete steps, records the throughput times, and allows for a 

direct comparison with target process durations. The model enables the automatic capture and analysis of production 

data by standardizing these process steps and associating them with defined productivity parameters. In contexts 

where production is mainly mechanized, sensors and AI-driven pattern recognition can record real-time process 

times; in less automated environments, manual recording remains a viable alternative. This detailed tracking of the 
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production flow provides managers to gain a better understanding of where delays or inefficiencies occur, thereby 

offering concrete opportunities for process optimization, and consequently, improving productivity. 

A key advantage of this modular approach is its capacity to reflect the dynamic nature of construction sites, where 

variability in environmental conditions and process execution often renders cost-focused metrics insufficient. By 

concentrating on production flow, the model aligns closely with Lean Construction principles, which advocate for 

eliminating waste and improving processes (Womack Jones, 1997). Moreover, the standardized module toolkit 

facilitates just-in-time deliveries by ensuring that the duration of each process step is known and predictable, thus 

reducing idle times and enhancing overall operational efficiency. (Geiger et al., 2023) 

 

Figure 1: Modul toolkit design according to (Geiger et al., 2023) 

C. Objectives  

The primary objective of this study is to implement and extend the production model framework presented by Geiger 

et al. to develop a methodology for measuring productivity in construction. By adopting the modular construction 

toolkit design, the study aims to break down complex construction processes into discrete, repeatable modules that 

can be systematically analyzed and compared across different projects (Geiger et al., 2023). This approach is intended 

to capture the average performance of construction processes and the variability inherent in on-site production 

processes, thereby providing a more realistic basis for productivity benchmarking. To achieve this, the study sets out 

several specific objectives. First, objective is to develop a simulation model that mirrors the sequential production 

flow of construction processes and incorporatinges stochastic elements that reflect the inherent variability observed 

in practice. This simulation model uses advanced probabilistic methods to generate process durations. Second, the 

study aims to compare simulation model results with the measured data collected from construction sites, thereby 

establishing reference process times for production modules. This comparative analysis will highlight discrepancies 

between idealized simulation outcomes and actual performance, on identifying processes that often exhibit high 

variability and serve as significant productivity bottlenecks. Furthermore, the research provides a framework for 

companies to assess and improve their production flow. The proposed approach facilitates benchmarking across sites 

and projects by quantifying productivity based on the standardized modules of the production process. The model is 

designed to serve as both a diagnostic tool and a prescriptive framework, enabling practitioners to identify 

inefficiencies, reduce process variability, and ultimately optimize the production system. 

DEVELOPMENT OF DEVELOPMENT OF A METHODOLOGY FOR CONTROLLING AND 

IMPROVING PRODUCTIVITY IN CONSTRUCTION SITE PRODUCTION 
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The methodology for controlling and enhancing productivity in construction site production is built on a flow-based 

production model and comprises three key components that ensure comprehensive process control. 

In the first component involves developing a simulation framework that continuously generate reference processes. 

This probabilistic simulation runs in parallel with the actual construction activities, dynamically adapting to changing 

conditions and serving as a predictive baseline for assessing actual process performance. 

The component focuses on systematic monitoring of construction processes onsite. A comprehensive sensor network, 

including cameras and various data acquisition devices, is deployed to collect real-time operational data. The 

recorded data is analyzed and statistically evaluated using distribution functions to identify process deviations and 

uncover potential inefficiencies. 

In the third component involves managing the production flow by utilizing insights from both the simulation and the 

monitoring. Discrepancies are identified, the sensitivitiy of relevant parameters is assessed, and overall process 

productivity is analyzed. This is achieved by comparing the distribution functions derived from the simulation with 

real-time measurements. This combined approach enables precise process control. Decision-makers can detect which 

parameters remain stable and where subtle deviations occure, allowing for timely, real-time interventions or strategic 

adjustments.  

This integrated methodology not only enhances the efficiency of construction production but also significantly 

increases the resilience and adaptability of the construction process. 

 

Figure 2: Framework for the implementation strategy 

A. Modelling and simulating of the production-flow  

Creating a production flow begins with a detailed mapping of each step involved in the construction process. In 

practice, this is often accomplished through value stream mapping, a technique established in lean production 

systems that focuses on visually representing the flow of materials and information across all stages of production. 

By decomposing the construction flow into discrete tasks, practitioners can identify dependencies, handover points, 

and potential waiting times. This breakdown clarifies the order in which activities occur and shows areas where 

inefficiencies or disruptions might arise. Once the production flow has been mapped, each process step is associated 

with a probabilistic duration derived from historical data, empirical measurement, or mathematical estimation, 

forming a foundational “target state” for subsequent comparison. 

Building on this value stream representation, the next stage is to simulate the production flow. A common approach 

is to use a Monte Carlo simulation. The reason Monte Carlo methods are favored is that they can handle stochastic 

input variables in a straightforward manner: each process step is sampled repeatedly from an underlying probability 

distribution, and the results are aggregated to estimate the total production time distribution. By executing a 

sufficiently large number of such iterations, the simulation provides a robust statistical portrait of likely outcomes, 

including worst-case and best-case scenarios. This randomness allows the model to capture inherent variability and 
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uncertainty—an integral aspect of construction, where even the most standardized processes can be subject to 

influences such as weather, soil conditions, and logistical constraints.  

In many real-world applications, the distribution of process times is neither purely symmetric nor bounded by zero 

in a manner that a normal distribution would suggest. Instead, empirical evidence often shows that the durations are 

right-skewed and strictly positive—factors that make the lognormal distribution particularly suitable. If X follows a 

normal distribution with parameters μ and σ, then the random variable [𝑇 = 𝑒𝑋]follows a lognormal distribution. Its 

probability density function (PDF) is given by 

[𝑓𝑇(𝑡) =
1

𝑡 σ√2π
exp (−

(ln 𝑡 − 𝜇)2

2𝜎2
) ,  𝑡 > 0. ] 

This PDF ensures that all simulated durations are strictly greater than zero while accommodating the observed 

asymmetry (a longer right tail). The expected value E[T] and variance Var(T) of a lognormal random variable can 

therefore be computed as: 

[𝐸[𝑇] = exp (𝜇 +
1

2
𝜎2)] 

[Var(𝑇) = exp(2μ + σ2)(exp(σ2) − 1)] 

These closed-form expressions are particularly convenient for construction process simulations as they connect 

empirical estimates of μ and σ to well-known moments of the distribution. Moreover, a lognormal distribution can 

be further “truncated” to exclude unreasonably small (or, in some cases, tremendous) values that rarely occur. 

Truncated lognormal models are appealing because they ensure no sampled duration dips below a certain threshold 

(for instance, 80% of an empirically observed minimum), thus preventing artificially short process times. 

From the process times distribution, one can derive the mean or median total time, confidence intervals, quantiles 

(e.g., 90th percentile for worst-case planning), and an overall risk profile for potential schedule overruns. This 

simulation-based representation is then used to benchmark actual measurements obtained on-site. If the empirical 

times ,deviate substantially from the simulated reference distribution—mainly if they fall in the higher quantiles—

project managers can investigate the causes of these discrepancies and refine logistical processes, workforce 

allocation, or site coordination. 

B. Construction site monitoring 

1). Preparation for construction site monitoring  

Establishing robust and accurate methods for measuring process times on construction sites is the primary focus of 

this part. Accurate on-site data collection is essential for validating simulation models and benchmarking production 

performance, yet the inherent complexity of construction activities demands a multifaceted approach. Traditionally, 

manual data collection has been widely employed, where trained observers record the durations of specific tasks 

using stopwatches or digital tablets. Although manual time studies can provide detailed insights into individual 

process steps, they are labor-intensive and vulnerable to human error and subjectivity. Michael Ott (2007) 

demonstrated that manual observations, when executed under controlled conditions, can yield helpful valuable data 

(Ott, 2007); however, their scalability is limited due to the high cost of time recording and the reliability of such 

measurements often suffers due to observer bias and inconsistencies in measurement practices. 

In response to these challenges, recent advancements have introduced automated data collection techniques that 

significantly enhance the precision and the volume of data captured. Camera-based monitoring serves as a valuable 

tool. Modern digital cameras, combined with computer vision and deep learning algorithms, can continuously record 

construction activities and automatically extract time-related information. (Hjelseth et al., 2023) Such systems offer 

the advantage of capturing real-time data over extended periods, making them particularly valuable for large-scale 

projects where manual data collection would be prohibitive. 

In addition to camera systems, construction equipment is increasingly equipped with telematics devices that record 

operational data automatically. This method also enhances objectivity by reducing reliance on manual input and 
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providing continuous monitoring that can be integrated into a broader digital framework for process analysis. 

(Fischer et al., 2021) 

Furthermore, wearable technologies such as smart helmets (Aliyev et al., 09102020) offer a novel approach to data 

collection by monitoring the activities of workers directly. These devices can track various parameters, including 

movement, heart rate, and even spatial location, offering detailed insights into the human element of construction 

processes. Kim et al. (2019) have shown that wearable sensors can capture real-time work patterns effectively, 

enabling a more granular understanding of on-site productivity and safety. Such systems complement manual 

observations and machine-based data by delivering contextual information critical for a holistic analysis of process 

performance. (S. Kim et al., 2019) 

Overall, this phase aims to establish a comprehensive data acquisition strategy by integrating manual observations, 

automated camera monitoring, equipment telematics, and wearable sensor data. Each method contributes unique 

strengths: manual recordings offer high granularity in controlled settings; camera systems and telematics provide 

continuous and objective data streams; and wearables capture the nuanced human factors influencing process times. 

Together, these approaches form a robust basis for benchmarking and improving production flow on construction 

sites. 

2). On site process monitoring 

In the third phase, the focus shifts to analyzing the data collected directly from the construction site to derive accurate 

process time distributions. The next step is to characterize the underlying statistical distribution of the process times. 

Kernel density estimation (KDE) constitutes an effective method for deriving the relevant statistical distribution 

functions from empirical data. Given a dataset {t1,t2,…,ti} representing process durations, the KDE is defined as 

[𝑓(𝑡) =
1

𝑛 ℎ
∑𝐾 (

𝑡 − 𝑡𝑖
ℎ

)

𝑛

𝑖=1

, ] 

where 𝐾 is typically a Gaussian kernel, and ℎ is the bandwidth parameter controlling the smoothness of the density 

estimate. This method also highlights the central tendency of data and reveals the spread and skewness, which are 

critical for understanding the variability in construction processes. 

Furthermore, key statistical metrics such as mean, median, standard deviation, and variance are computed to 

summarize the performance. For instance, if T denotes the set of total process times, the sample meaning is given by 

[𝑡̅ =
1

𝑛
∑𝑡𝑖

𝑛

𝑖=1

, ] 

and the sample variance is calculated as 

[𝑠𝑡
2 =

1

𝑛 − 1
∑(𝑡𝑖 − 𝑡̅)2
𝑛

𝑖=1

. ] 

The range of outcomes, mainly the frequency of extreme values that may signal process disruptions or delays, can be 

predicted based on quantile analysis. By comparing the statistical distributions derived from the measured data with 

those predicted by simulation models, practitioners can assess discrepancies and identify potential inefficiencies. 

This comparison is instrumental in calibrating simulation models and providing actionable insights for process 

optimization. Integrating advanced analytical techniques, including machine learning and computer vision, into the 

data analysis workflow enhances the accuracy and reliability of productivity assessments, thereby supporting more 

effective decision-making in construction management. 

C. Steering the production flow 

In this part, the primary objective is to compare the distributions obtained from the simulation with those derived 

from field measurements to assess the productivity of the construction process. Based on these comparisons, active 

control measures can be applied to further improve the production flow. Notably, all three phases of the 



Journal of Information Systems Engineering and Management 
2025, 10(34s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

485 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which 

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

implementation model—simulation, monitoring, and controlling—operate concurrently and continuously 

throughout the construction process. Initially, simulated data are aggregated and preprocessed to yield a probability 

distribution for each process step and the overall production time. In parallel, field data are collected—manually or 

via automated methods such as camera-based monitoring, sensor readings from construction equipment, or wearable 

devices—and similarly processed to obtain a representative set of process durations. Non-parametric techniques, 

such as Kernel Density Estimation (KDE), are then applied to both the simulated and measured datasets to derive 

smooth density curves. These curves visually represent the underlying probability distributions, highlighting 

differences in central tendency, spread, and skewness. By overlaying the density plots of simulated and measured 

data, discrepancies between the idealized model and actual performance become evident. Importantly, this 

comparison is performed not only for the total production time but also for each process step. Such a detailed analysis 

facilitates identifying specific processes that conform to the simulated benchmarks versus those exhibiting significant 

deviations. A critical aspect of this phase is defining what constitutes “productive” performance. The criteria for 

productivity may vary between organizations—some may define productivity in terms of median process times, while 

others might rely on specific quantiles as benchmarks. By continuously comparing simulation and monitoring data, 

this analysis provides a quantitative basis for evaluating the performance of each process, identifying potential 

bottlenecks, and informing both immediate corrective actions and long-term strategic adjustments. 

EVALUATION 

A practical use case was implemented to assess the given framework. For this, a civil engineering project was selected, 

in which a bored pile wall was created using a Kelly drilling rig. Each pile was designed with a diameter of 50 cm and 

a target depth of 12 m. The construction process was divided into three sequential stages: drilling, reinforcing, and 

concreting. During the drilling phase, the Kelly drilling machine bore through the subsoil, establishing the initial 

cavity for the pile. Following drilling, each pile was reinforced with steel to ensure structural integrity, and finally, 

the piles were concreted to complete the foundation system. This site provides an ideal setting for data collection, as 

detailed measurements were recorded for each of the individual process steps. The data from this project facilitated 

the analysis of process times and the validation of the simulation model developed within the framework. By 

comparing the measured durations against the simulated outputs, it is possible to assess the effectiveness of the 

production flow-oriented approach and identify specific process steps that contributed to delays or exhibited high 

variability. In essence, this case also demonstrates the practical applicability of the framework and offers valuable 

insights into the factors influencing productivity in a real actual construction setting. 

A. Simulation of the production flow  

The first step in applying the production flow framework was to simulate the primary construction processes: drilling, 

reinforcing, and concreting. The overarching goal was to generate a probabilistic model that could capture the average 

performance and the variability of these tasks under realistic conditions. By creating a simulation that closely 

mimicked real-world constraints, it became possible to benchmark to each process's expected productivity and 

identify where external influences or operational inefficiencies might lead to significant deviations in actual 

performance. 
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Figure 3: Value stream mapping of Kelly-drilling 

The process times used/applied for the simulation are based here on literature data or assumptions and are broken 

down in Table 1.  

Table 1: Input-Parameters of the Simulation 

 Vale Source 

Drilling rate  0,12 m3/min (Andreas Fritz Köninger, 2021) 

Concreting rate 0,36 m3/min  (Maximilian Geber) 

Reinforcing rate 1,26 m/min (Maximilian Geber) 

Variance factor 0,5 (Wang et al., 2003) 

Influence of driver lognormal with σ = 1 Assumption 

Influence of ground conditions  lognormal with σ = 1 Assumption 

Influence of weather lognormal with σ = 1 Assumption 

Drilling was modeled using a stochastic approach designed to reflect the complex factors affecting the Kelly drilling 

machine’s operational speed, such as subsoil conditions, equipment characteristics, and weather-related delays. 

Rather than adopting a single deterministic time estimate, a distribution-based model was employed. For instance, 

a lognormal distribution was used to ensure that no unrealistically short drilling times were generated, while still 

capturing the longer tail associated with challenging ground conditions. This approach allowed the simulation to 

produce a wide range of drilling durations, reflecting typical performance and the possibility of considerable 

variability due to unexpected obstructions or mechanical issues. In a similar manner, reinforcing was also modeled 

probabilistically. The reinforcing process depends on the availability of steel cages, the speed of crane or hoist 

operations, and the skill level of the construction crew. Each of these influences was represented in the simulation 

through random variables that captured their individual effects on the overall reinforcing time. By integrating these 

variables into a single stochastic framework, the simulation could estimate a distribution of reinforcing durations 

rather than a single static value. This approach offered a more nuanced understanding of potential bottlenecks—such 

as crane downtime or crew coordination issues—that can cause delays in practice. Concreting, the third core process, 

was simulated with a focus on the concrete supply and the time required to pour and place the material in the drilled 

and reinforced pile shaft. Variations in supply logistics, concrete quality, and site coordination were accounted for 

using random variables influencing the placement rate and waiting times. As with drilling and reinforcing, a 

lognormal or a similar distribution was typically employed. This choice also allowed the model to incorporate the 

heavier tails that arise when external delays—such as traffic congestion affecting delivery trucks—exert an outsized 

influence on total placement time.  
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This simulation-based approach was selected because it captures the intrinsic uncertainties and operational 

complexities of each major process step, rather than relying on a deterministic estimate. By generating a probability 

distribution for drilling, reinforcing, and concreting, the model provides a robust statistical foundation for 

subsequent comparisons with measured data. It also allows for sensitivity analyses, in which parameters such as 

ground conditions or delivery schedules can be varied to assess their impact on productivity. Ultimately, this method 

ensures that the simulation output aligns more closely with the real-world variability observed on construction sites, 

thus enhancing the value of the production flow framework as a diagnostic and planning tool. 

 

 

Figure 4: Simulation of Process-Times 

Table 2: Statistical Parameters of the Simulation 

 Concreating Reinforcing Drilling Total time 

Mean value 7 min 10 min 26 min 43 min 

Median 7 min 9 min 23 min 42 min 

Standard deviation 3 min 5 min 11 min 13 min 

B. Preparation for construction site monitoring  
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Installing and calibrating the sensors to record key parameters during the construction process is a critical step. These 

sensors are selected based on their ability to provide detailed, real-time information about drilling operations and 

machine performance. For example, a depth sensor is employed to continuously monitor the progress of the bore, 

while crowd-force sensors record the thrust exerted on the drilling tool. Pressure pumps are also instrumented with 

sensors capable of measuring hydraulic pressures in multiple lines, and inclinometers track the angle of the processes 

to ensure vertical alignment. Finally, torque sensors are attached to the Kelly bar or rotary drive to measure the 

rotational force required to penetrate the ground. 

This sensor-based approach is deemed indispensable for accurately capturing the variability and complexity of on-

site operations. By integrating data from depth, crowd-force, pressure, inclination, and torque sensors, it becomes 

possible to establish a comprehensive picture of the drilling process and to correlate specific machine states or ground 

conditions with deviations in drilling speed or efficiency. These readings are then aggregated and timestamped, 

creating a synchronized dataset that can later be merged with other process information, such as reinforcing and 

concreting times. 

C. Monitoring of the processes on the construction site  

During the monitoring phase, two distinct approaches were employed to transform raw machine data into a coherent 

record of process times. Initially, a manual method was adopted, in which the data streams collected from sensors 

were carefully examined to identify the start and end points of each construction process step—such as drilling, 

reinforcing, and concreting. In practice, this involved aligning time stamps with changes in parameters like depth, 

torque, or pressure pump readings and then assigning these segments to the appropriate phase of the workflow. This 

labor-intensive procedure yielded a reliable reference dataset, providing clear demarcations of when a particular 

process began and concluded. 

Building on the insights from this manual assignment, a more automated technique was later introduced, leveraging 

a Long Short-Term Memory (LSTM) network. LSTM models are particularly well suited to time-series data, as they 

can learn to recognize patterns over extended sequences while mitigating issues of vanishing or exploding gradients. 

In this context, the model was trained to detect transitions between process steps based on torque sensor readings 

changes—such as crowd-force or rotary torque fluctuations. By presenting the LSTM with labeled examples from the 

initial manual assignment, the model was able to identify when drilling concluded and reinforcing began, or when 

reinforcing ended and concreting started – almost in real-time. 

Once the LSTM-based classification was sufficiently accurate, the resulting assignments of sensor data to discrete 

process segments enabled an automated derivation of process times. This allowed the creation of distributions for 

each phase—drilling, reinforcing, and concreting—without manual intervention. The distributions, in turn, were 

analyzed using standard statistical techniques (e.g., Kernel Density Estimation) to capture each process's variability 

and central tendencies. By comparing these automatically generated distributions to those derived from manual 

assignments, it was possible to validate the model's performance and confirm that the distributions aligned with the 

reference data. 
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Figure 5: Density Plot of Measured Times of Drilling/Reinforcing/Concreating/Total Time 

Table 3: Statistic Parameters of the Measurement 

 Concreting Reinforcing Drilling Total time 

Mean value 8 min 9 min 57 min 75 min 

Median 8 min 9 min 53 min 71 min 

Standard deviation 5 min 3 min 22 min 23 min 

D. Comparison of process times  

Overall, a process can be state productive, when 75% of the measured data is inside the 90th quantile of the simulated 

distribution. This threshold must be reviewed for each individual project based on the project-specific circumstances. 

The density plot, overlaid with both simulated and measured distributions, provides an immediate visual contrast 

between the idealized model and the actual process durations. In this specific scenario, the simulated data, generated 

using a lognormal distribution, displays a peak distribution between approximately 5 and 7 minutes, whereas the 

measured data reveals a slightly broader distribution extending further towards higher values. 

A more quantitative assessment is presented in the accompanying statistical table, which includes key metrics such 

as the mean, median, standard deviation, and variance for both datasets. The results indicate that the simulated 

distribution has a mean and median of 7 minutes, with a standard deviation of 3 minutes. By contrast, the measured 

distribution exhibits a mean and median of 8 minutes, accompanied by a higher standard deviation of 5 minutes. 

This discrepancy in the spread is further highlighted by the variance values of 9 (simulated) versus 21 (measured). 

Several interpretations arise from these findings. First, the elevated mean and median in the measured data suggest 

that, on average, concreting on-site took longer than the model predicted. This difference may stem from practical 

factors such as logistical delays, operator coordination, or variations in the concrete supply chain that were not fully 

captured by the simulation. Second, the notably higher variance in the measured data implies that real-world 

conditions introduce more variability—perhaps due to equipment availability, scheduling conflicts, or inconsistent 
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batching of concrete—than the simulation’s lognormal distribution was configured to represent. The two peaks could 

be the data generation over more than one day and, therefore, the work of two concreting crews. Nevertheless, with 

84% under the simulated data, a very productive process 

 

Figure 6: Overlapping density plots Drilling/Reinforcing/Concreating/Total Time measured and simulated 

Table 3: Comparison of Statistic Parameters 

 C. 

Simulated 

C. 

Measured 

R. 

Simulated 

R. 

Measured 

D. 

Simulated 

D. 

Measured 

TT. 

Simulated 

TT. 

Measured 

Mean value 7 min 8 min 10 min 9 min 26 min 57 min 43 min 75 min 

Median 7 min 8 min 9 min 9 min 23 min 53 min 42 min 71 min 

Standard 

deviation 
3 min 5 min 5 min 3 min 11 min 22 min 13 min 23 min 

Variance 9 min2 21 min2 21 min2 11 min2 128 min2 486 min2 163 min2 529 min2 

Overlap-

ping 
- 84% - 91% - 14% - 30,4% 

For reinforcement (R.), the comparison between simulated and measured process times offers valuable insights into 

the model’s ability to capture real-world variability. In the overlaid density plot, the simulated distribution exhibits a 

broader spread and peaks around 9–10 minutes, whereas the measured data cluster more tightly around a peak of 

approximately 8–9 minutes. While the mean values are similar (10 minutes simulated vs. 9 minutes measured) and 

the medians align at 9 minutes, the standard deviations differ more substantially: 5 minutes for the simulation versus 

3 minutes in the measured data. Consequently, the variance in the simulated dataset (21) exceeds that of the 

measured dataset (11), suggesting that the model projects more variability than was observed in practice. 
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From a productivity standpoint, this finding has twofold implication. First, the close alignment in mean and median 

indicates that the reinforcing process on-site was performed near the level predicted by the simulation’s central 

tendencies. This alignment suggests that the objective actual process is generally efficient and meets the simulated 

benchmarks for average performance. Second, the standard deviation and variance discrepancy highlights that the 

process is more stable and productive than in simulation. In practice, the narrower spread of the measured data 

implies more consistency in how the reinforcing crew operates, possibly due to stable crew skill levels, well-organized 

material supply, or reliable equipment availability. The process is even more productive, with more than 91% under 

the 90th quantile of the simulation. 

The comparison of drilling (D.) times reveals the most pronounced divergence between simulation and real-world 

performance among the three core processes. The density plot shows that the simulated distribution peaks around 

the 20–30-minute range, whereas the measured data exhibit a substantially higher mean and a right-skewed tail 

extending well beyond 50 minutes. This contrast is further underscored by the statistical metrics: while the 

simulation predicts a mean of 26 minutes and a median of 23 minutes, the measured data shows a mean of 57 minutes 

and a median of 53 minutes. Moreover, the measured standard deviation (22) and variance (486) significantly exceed 

those in the simulation (11 and 128, respectively), indicating not only a longer average duration but also much greater 

variability in actual drilling operations. 

From a productivity standpoint, this discrepancy implies that the drilling step is performing well below the simulated 

benchmarks. Field observations might point to causes such as unanticipated ground conditions, more frequent 

downtime for maintenance or tool changes, or logistical disruptions that impede a continuous drilling flow. The right 

tail of the measured distribution suggests that extreme delays—such as equipment malfunctions or unexpected 

geological obstacles—occur with greater frequency than the model initially accounted for. 

Considering the substantial gap between simulated and measured data, a first step toward improving productivity 

may involve stabilizing the drilling process to have a more stable time. Concurrently, on-site measures aimed at 

stabilizing the drilling process might include enhanced equipment maintenance schedules, improved crew 

coordination, or real-time monitoring systems that can promptly detect and address issues. 

By identifying how much longer drilling consistently takes in practice, decision-makers can prioritize process 

improvements, resource allocation, and contingency planning. Bridging the gap between simulated and measured 

drilling durations thus stands out as a key target for boosting overall productivity and reducing variability in the 

construction workflow. With only 14% under the 90th quantile and the extremely high variance, the process is not 

productive.  

When evaluating overall productivity, it is essential to examine the total production time, which aggregates drilling, 

reinforcing, and concreting durations into a single metric. The density plot comparing the simulated and measured 

total production times reveals a pronounced shift toward higher values in the real-world data. According to the 

statistical results, the simulation predicts a mean of 43 minutes and a median of 42 minutes, while the measured 

total times exhibit a mean of 75 minutes and a median of 71 minutes. Moreover, the standard deviation (13 for the 

simulation vs. 23 for the measured data) and variance (163 vs. 529) highlight a substantially wider spread in actual 

operations. 

Several factors contribute to this discrepancy. First, the cumulative effect of deviations in drilling, reinforcing, and 

concreting times can amplify any inefficiencies or delays. As shown in the process-specific analyses, the drilling 

phase, in particular, deviated significantly from the model’s assumptions, potentially due to unanticipated ground 

conditions or logistical hurdles. Second, the higher variability in the measured total times suggests that sporadic or 

extreme events—such as equipment breakdowns or major scheduling conflicts—occur with greater frequency in 

reality than the simulation had accounted for, and therefore, need to be eliminated. 

In conclusion, it can be stated that although two of the three processes demonstrated productivity, the overall 

processing times are primarily inefficient due to the exceptionally high variance. Consequently, future efforts should 

focus on optimizing the drilling process and mitigating the pronounced variability. Addressing these issues would 

result in a substantial enhancement of overall productivity. 
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DISCUSSION  

The results presented in this study highlight both the potential and the challenges of using a production-oriented 

flow-oriented framework in the construction industry. Several key observations have emerged by applying a 

simulation model that generates probabilistic distributions for drilling, reinforcing, and concreting, and by 

comparing these outcomes to actual data gathered on-site. 

First, the alignment between simulated and measured times varies considerably across processes. Reinforcing 

showed relatively close agreement in mean and median values, indicating that the simulation can adequately capture 

the central tendency of this step. By contrast, drilling displayed the greatest excellent, most significant deviation, with 

real-world times exceeding simulation outputs by a substantial margin. These differences underscore the importance 

of validating each process step individually rather than relying solely on total production times to gauge model 

accuracy. 

A second major theme is the role of variability. Processes like concreting showed a moderate spread in measured 

data, whereas variances. Significantly larger variances characterized drilling times. This pattern implies that certain 

operations are inherently more susceptible to external disturbances or site-specific conditions. The higher variance 

observed in the measured total production times further confirms that real construction projects tend to accumulate 

uncertainties across multiple steps, amplifying the overall risk of schedule overruns. 

The definition of productivity is another critical dimension. Each organization may adopt different criteria for 

assessing whether a process or total production time is deemed productive—some might focus on the median, others 

might rely on specific quantiles such as the 75th or 90th percentile. The findings suggest that reinforcing and 

concreting align well with simulation-based expectations, implying that current practices in this step are relatively 

efficient. However, drilling shows substantial gaps, indicating the need for deeper investigation into ground 

conditions, machine maintenance strategies, or crew coordination. Ultimately, the ability to tailor productivity 

thresholds to organizational goals ensures that the framework remains flexible and applicable to diverse project 

contexts. 

Several limitations should be noted. First, the simulation relies on lognormal distributions and Monte Carlo methods 

that, while robust, may not capture every source of variability. Second, the empirical data, though substantial, stem 

from a specific construction site in Munich with unique ground conditions and logistical frameworks. Generalizing 

these findings may require additional use cases or replication in different environments. Third, the definition of 

productivity remains subjective; organizations with different priorities may interpret the same data in varying ways, 

underscoring the importance of context in setting benchmarks and thresholds. 

Finally, the implications for future research extend in multiple directions. Integrating more advanced machine 

learning algorithms into the simulation—particularly for variability and highly variable processes—could yield more 

realistic predictive models. Ongoing data collection from multiple projects would allow for cross-site comparisons, 

improving the generalizability of the framework. Moreover, analyzing the interplay between process steps in a 

dynamic, near real-time environment could further enhance the predictive accuracy of total production times. This 

approach would be especially valuable for large-scale or complex construction endeavors, where marginal gains in 

accuracy can translate to substantial cost and schedule benefits. 

CONCLUSION 

In conclusion, this study demonstrates the viability and potential of a flow-oriented framework for measuring and 

enhancing productivity in construction projects. By integrating value stream mapping with advanced simulation 

techniques—specifically, Monte Carlo simulations employing lognormal distributions—this research has established 

a robust benchmark against which real-world process times can be compared. The simulation model provided a 

detailed probabilistic representation of the key processes, such as drilling, reinforcing, and concreting, enabling the 

derivation of individual and aggregate production time distributions. 

The comparison between simulated and measured data revealed critical insights. While the reinforcing and 

concreting processes showed relatively close alignment between simulation and reality, the drilling process exhibited 
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significantly higher variability and longer durations than anticipated. This discrepancy underscores the importance 

of reducing the variability of the processes to get a more productive process. Moreover, the analysis of total 

production time indicated that cumulative variances in individual processes could lead to substantial schedule 

deviations, reinforcing the notion that productivity must be evaluated holistically rather than in isolation. 

Furthermore, the study emphasizes that defining productivity remains a context-specific decision. Organizations 

must tailor their performance benchmarks based on medians, quantiles, or other statistical indicators to align with 

their operational objectives and risk tolerances. The framework presented herein offers a flexible foundation for such 

evaluations, supporting identifying inefficiencies and formulating targeted process improvements. 

Looking ahead, integrating real-time data acquisition methods, such as sensor networks, computer vision, and 

machine learning algorithms, holds promise for further enhancing the accuracy and responsiveness of the production 

flow model. As the construction industry continues to evolve towards digitalization and lean methodologies, the 

ongoing refinement of simulation models and systematic on-site data collection will be crucial for achieving sustained 

productivity improvements. Ultimately, this research lays the groundwork for a more data-driven and process-

oriented approach to construction management, providing both a diagnostic tool and a roadmap for future 

innovations. 
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