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More and more, the Internet of Things (IoT) is being used in healthcare. This has made 

disease tracking much better by letting medical gadgets and apps send data in real time. But 

it's still hard to make sure that this data is correct and complete, especially when there are 

oddities that can happen because of broken devices, online threats, or strange physical 

situations. This paper discusses a machine learning approach for locating unusual items in 

IoT-connected medical equipment. The aim is to increase the dependability of disease 

surveillance systems. The proposed approach finds unusual patterns in streams of body data 

distinct from one another using unsupervised and semi-supervised learning models such as 

Isolation Forest, Autoencoders, and Long Short-Term Memory (LSTM) networks. The system 

architecture is suitable for real-time healthcare applications as it can be implemented on 

edge, fog, and cloud platforms. With an F1-score of 0.86 and an AUC of 0.91, the LSTM model 

was the most accurate based on testing utilising both fake and actual datasets. It 

outperformed conventional techniques such as k-means clustering and Z-score. Two 

graphical techniques that indicate how well the intended system functions are ECG anomaly 

detection plots and ROC curves.  A flexible and explainable machine learning process, 

context-aware anomaly scores with EHR integration, and new ideas about how to make 

models more general and how to balance computing needs are some of the most important 

advances. These results show that intelligent anomaly detection systems can help with early 

action, cut down on fake alarms, and make smart healthcare settings safer for patients. 

Keywords: IoT Healthcare, Anomaly Detection, Medical Devices, Machine Learning, 

Autoencoder, LSTM, Isolation Forest, Disease Monitoring, EHR Integration, Smart Health 

Systems. 

 

INTRODUCTION 

When the Internet of Things (IoT) and healthcare come together, it changes how diseases are diagnosed, how 
patients are cared for, and how they are monitored. A lot of medical devices are now linked to each other so that 
hospitals can quickly become smart places. These devices can collect, send, and analyse data in real time. These 
Internet of Things (IoT)-enabled medical devices, such as personal health monitors, internal sensors, and 
remote diagnosis tools, are changing the way healthcare is done by letting doctors keep an eye on patients' vital 
signs all the time without having to touch them. This change is particularly important for managing chronic 
diseases, caring for the elderly, and recovering from surgery. Tracking bodily factors in real time can greatly 
improve treatment results and lower the number of times people have to go back to the hospital. According to 
recent news, the global market for IoT in healthcare is growing at an incredibly fast rate [1]. Thousands of devices 
are being used in hospitals, clinics, and even patients' homes. These gadgets produce huge amounts of data that 
can tell you a lot about a patient's health. But with more advanced technology comes more risk: the purity, 
correctness, and security of the data collected by these IoT-connected devices are very important for keeping an 
eye on diseases and making diagnoses. If these devices don't work right, it could be because of technical 
problems, mistakes in the calibration, cyberattacks, or even strange behaviour from a patient. This could cause 
strange results that, if not noticed, could delay diagnosis or lead to bad clinical decisions. This means that smart 
systems for finding strange things need to be added so that the data streams from IoT devices can be checked 
and confirmed in real time. 
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Even though IoT is being used more and more in healthcare and a lot of data is being gathered, there is still a 
big hole in the ability to reliably and accurately find problems in real time [2]. Traditional methods for finding 
anomalies are mostly based on rules, which means they need fixed setups and predefined limits that can't be 
changed to fit the needs of each patient or device. These methods aren't always flexible enough to deal with the 
changing and unique nature of healthcare data, which can include multiple sources (like ECG, temperature, and 
glucose levels), sample rates that aren't always the same, and a lot of differences between patients. A number of 
new studies have looked at how machine learning (ML) and deep learning (DL) can be used to find strange 
things in areas other than healthcare, like banking, hacking, and industry [3]. But these ways haven't been fully 
studied or optimised for use in IoT-based healthcare yet. In particular, not many studies have looked at how to 
use machine learning to find anomalies in different situations and on different devices that are responsive to 
clinical importance. Also, a lot of the current models assume that you have access to labelled datasets, which are 
hard to come by or not available at all in real healthcare settings because of privacy issues and the high cost of 
expert labelling [4]. 

There have been some attempts to use machine learning to keep an eye on patients' health, but these have mostly 
been focused on making predictions rather than finding problems in sensor streams in real time. A big problem 
with these prediction models is that they don't always look for important things like broken devices or strange 
patient data that might not mean they have a disease but do show the chance of making bad decisions [5]. To 
sum up, there is a big need for more study into making flexible, accurate, and low-latency machine learning 
models for finding problems in the hospital IoT environment. Existing anomaly detection methods in the 
Internet of Medical Things (IoMT) world have major flaws that make them impractical for use in life-critical 
settings, even though IoT-enabled healthcare solutions are becoming very popular very quickly. A lot of 
commercial systems use fixed levels and rule-based warnings that don't take into account baselines that are 
unique to each patient or changing bodily trends [6]. This often leads to high rates of fake positives or negatives. 
Scalability is another problem with standard models; they can't handle large amounts of real-time flowing data 
from many devices and patients. When processing is centralised, delay is introduced, which slows down reaction 
times in emergencies. Also, the way things are done now doesn't take into account a lot of background 
information, like the patient's past or other health problems they may have, which makes it harder to tell the 
difference between normal changes and real clinical errors. Other problems include not being able to change 
quickly enough because of idea drift, not being able to handle security risks like fake or injected data, and not 
being able to be used with all patient groups or types of devices [7]. These problems show how important it is to 
have an intelligent, scalable, and context-aware system for finding anomalies that meets the strict needs of 
healthcare, such as being able to be understood, being reliable, and keeping data private. 

In reaction, the goal of this study is to create and test a machine learning-based system for finding strange things 
in IoT-connected medical devices, with the main goal of making real-time disease tracking better. The suggested 
framework learns by taking into account both time trends and environmental information, like the patient's past 
and the features of the device [8]. This makes the learning process easier for clinicians and cuts down on false 
alarms. The main goals are to create a flexible, edge-deployable design using machine learning methods like 
Isolation Forest, Autoencoders, and LSTM, test its performance on real or artificial healthcare datasets, and 
compare it to standard baseline models. The study also includes a detailed look at current methods, a brand-
new method for finding things using machine learning, and a lot of tests to show that it works in real life. All of 
these efforts together set the stage for a trustworthy and flexible anomaly detection system that makes smart 
healthcare settings safer for patients and more efficient. 

LITERATURE REVIEW 

Putting Internet of Things (IoT) technologies into current healthcare systems has changed the way medical care 
is provided and handled in a big way. The Internet of Medical Things (IoMT) is a group of IoT-connected medical 
devices, such as personal sensors, internal monitors, diagnostic tools, and remote surveillance systems that let 
health factors and vital signs be tracked all the time. These gadgets are now widely used in hospitals, clinics, and 
home-based care settings to keep an eye on diseases like diabetes, heart rhythms, and breathing problems. IoMT 
is changing because more people want to be able to watch their patients from afar, find diseases early, and have 
less work to do as a doctor. This is making a huge amount of real-time health data. However, technical problems, 
human mistakes, and external noise can make the data gathered from these connected devices less reliable and 
accurate. This is why anomaly detection is so important for making sure safe and effective disease tracking [9]. 

Within the framework of healthcare IoT, anomaly detection is the process of identifying unusual or weird trends 
in sensor data that can indicate a damaged equipment, a probable drop in patient care, or a cyber attack. 
Traditional methods of detecting anomalies in sensor data have relied mostly on rule-based or threshold-based 
approaches. These techniques specify conventional operating limitations in advance and indicate numbers 
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exceeding those limits. Though simple to use and inexpensive to operate, these techniques lack flexibility and 
cannot adequately manage the evolving, patient-specific, multidimensional character of medical data. 
Furthermore, these techniques often produce many false positives as they ignore factors such the patient's 
history or other health issues that might be present, which are rather crucial for determining if a change is 
clinically meaningful [10]. 

A lot of different fields, like hacking, banking, industrial systems, and now healthcare, have found machine 
learning (ML) to be a very useful tool for finding strange things. ML algorithms learn from past data to find 
trends and can generalise to find new oddities, unlike rule-based systems that don't change. If you have labelled 
data, supervised machine learning techniques like Support Vector Machines (SVM), Decision Trees, and 
Random Forests can be used to sort things into groups. However, they can only be used to find anomalies in 
healthcare settings, where strange events are uncommon, varied, and expensive to label [11]. For IoT settings in 
healthcare, semi-supervised and uncontrolled learning methods work best. A lot of people use One-Class SVM, 
Isolation Forest, K-means clustering, and Autoencoders in these situations. Either only normal data or very little 
labelled data is used to train these models. They are made to find differences using reconstruction errors, 
isolation scores, or distance metrics [12]. 

Popular deep learning models such as Autoencoders, Long Short-Term Memory (LSTM) networks, and 
Convolutional Neural Networks (CNNs) can manage significant data and data evolving with time. Autoencoders 
may learn to compress raw data and identify anomalies depending on how much data they lose when they 
reconstruct them. LSTM models may be used to monitor biological signals like ECG, EEG, and glucose levels as 
they are excellent at capturing temporal relationships. Though they are often condemned for being difficult to 
use, needing a lot of data, and taking a long time to train, deep learning models show great promise. In IoT 
environments with limited resources, this makes them difficult to employ in real time [13]. 

In the real world of healthcare, IoT-based disease tracking devices show how ML-powered anomaly spotting can 
be used. These systems continuously gather health-related data from wearable tech or built-in monitors, and 
then they look at the data to find early warning signs of disease development or serious medical events. For 
instance, wearable ECG monitors can find irregular heartbeats, and constant glucose monitors keep an eye on 
diabetics' blood sugar levels. These kinds of systems make it easier for doctors and nurses to do their jobs, help 
people stick with their treatments, and support online care delivery, especially in rural or underserved areas. 
But strange things in data streams can come from more than just the start of a disease. Data errors can be caused 
by problems with device calibration, battery failure, connection, or even patients who don't follow instructions. 
It is still very hard to tell the difference between anomalies that are clinically important and technical outliers 
[14]. 

Many various models have been proposed lately to assist in locating unusual items in healthcare IoT, but every 
one has its own issues. Still the most prevalent kind of system in medical devices on the market, rule-based 
systems are simple to operate and acquainted with rules. They are not particularly adaptable, however, and they 
often generate false alerts. Statistical methods, such as moving averages and Z-score estimations, rely on data 
being normal and stable, which may not always hold true in patient groups that differ. Though they can struggle 
with scalability and sensitivity to selected parameters, clustering-based techniques like K-means and DBSCAN 
have been investigated. Recent benchmark dataset performance has been strong for deep generative models 
including Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) as well as 
autoencoders. These models are difficult to grasp and require significant computational resources, which makes 
them less trustworthy in clinical environments [15]. 

To find a good mix between accuracy and readability, some researchers have looked into blended models that 
combine unsupervised learning with rule-based post-processing. For instance, LSTM models that are combined 
with statistical feature extractors or Autoencoders that are combined with domain-specific limits have been 
shown to perform better in tasks that involve classifying anomalies. But these models are usually only tried in 
controlled settings and haven't been proven to work in busy hospital situations in the real world. Also, not many 
studies look at things like the patient's background, other health problems, or amount of activity. These things 
are needed to tell the difference between normal heart problems (like exercise-induced tachycardia) and 
dangerous ones (like ventricular arrhythmia) [16]. 

Their complexity is one major issue preventing ML models from being used in medical contexts. Often, 
particularly in high-stakes settings like intensive care units (ICUs), physicians do not trust black-box systems to 
make choices [19]. Tools like SHAP (SHapley Additive Explanations) and LIME (Local Interpretable Model-
Agnostic Explanations) make it now feasible to get additional information about model selections, but 
incorporating them into real-time anomaly detection systems is still not straightforward. Using ML models on 
private health data collected by IoT devices magnifies issues with privacy, security, and management of data. 
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Though they have not yet been extensively used in hospital IoT systems, new concepts such as homomorphic 
encryption, differential privacy, and shared learning may be beneficial.  
 

Table 1: Existing Literature on ML-Based Anomaly Detection in IoT Healthcare 

Reference Focus Area / 
Application 

Methods / 
Models Used 

Key Contributions Limitations 
Identified 

[9] IoT in Healthcare 
& Patient 
Monitoring 

Use of wearables 
and medical 
sensors 

Enabled continuous 
real-time monitoring, 
remote patient 
management 

Lacks built-in anomaly 
detection; prone to data 
integrity issues 

[10] Rule-based 
Anomaly 
Detection 

Static thresholds 
and alarm systems 

Simple and 
interpretable for critical 
alerts 

High false positives; not 
patient-specific or 
adaptive 

[11] Supervised ML for 
Anomaly 
Detection 

SVM, Decision 
Trees, Random 
Forest 

Effective with labeled 
data for specific 
diseases 

Requires labeled 
anomalies, difficult in 
healthcare settings 

[12] Unsupervised & 
Semi-supervised 
ML 

Isolation Forest, 
Autoencoder, One-
Class SVM 

Detects novel anomalies 
in unlabeled data 

May overfit normal data; 
sensitive to 
hyperparameters 

[13] Deep Learning for 
Time-Series Data 

LSTM, CNN, 
Autoencoder 

Captures complex 
temporal dependencies 
in physiological data 

Requires large datasets, 
computationally 
intensive, lacks 
transparency 

[14] IoT-based Disease 
Monitoring 
Systems 

Sensor data from 
ECG, glucose 
monitors, etc. 

Real-time tracking 
improves disease 
outcomes 

Cannot distinguish 
between technical and 
clinical anomalies easily 

[15] Statistical and 
Clustering 
Methods 

Z-score, Moving 
Average, DBSCAN, 
K-means 

Simple anomaly 
detection using basic 
metrics 

Poor performance on 
high-dimensional and 
dynamic data 

[16] Hybrid ML Models LSTM + 
Thresholding, 
Autoencoder + 
Rule-based 

Improved detection 
using combined 
strategies 

Tested on clean 
datasets; not validated 
in clinical settings 

[17] Model 
Interpretability & 
Security 

SHAP, LIME, 
Federated 
Learning 

Enables black-box 
model explainability 
and privacy 

Not yet integrated in 
real-time healthcare 
systems 

[18] Gaps in Real-
World 
Applications 

Comparative 
studies of ML 
models 

Identified need for 
lightweight, contextual, 
explainable models 

Lack of clinical 
validation, deployment 
challenges 

 

SYSTEM ARCHITECTURE AND PROBLEM STATEMENT 

Internet of Things (IoT) technologies are being used more and more in healthcare because of the rising need for 
real-time, efficient tracking systems. IoT-based medical tracking systems of today are made up of a lot of 
different devices, sensors, communication protocols, storage systems, and smart processing units that all work 
together to make a complicated but stable environment shown in figure 1. These systems make it possible to 
keep an eye on a patient's heart rate, blood sugar levels, oxygen consumption, blood pressure, breathing rate, 
body temperature, and other vital signs. The framework that allows for end-to-end data collection, transfer, 
analysis, and feedback creation is at the heart of this change. Not only does a well-defined design allow for 
smooth operation, but it also lets you add advanced analytics features like machine learning (ML) methods for 
finding anomalies. 
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Figure 1. System Architecture 

A. Data acquisition layer 

The data collection layer, which is made up of many medical monitors and personal tech, is at the heart of this 
end-to-end design. These components are responsible for continuously gathering real-time patient health data. 
For instance, wearable computers can monitor ECG signals and heart rate variability. Pulse oximeters may 
monitor oxygen saturation in those with respiratory issues; glucose monitors can measure blood sugar levels in 
diabetics. Critical care environments include bedside monitors with many sensors that rapidly gather a lot of 
data. Implanted devices such as insulin pumps or pacemakers also transmit analysable monitoring data. These 
data sources have to deal with limited power, connections that go down sometimes, and noise that can be caused 
by the surroundings or the patient. 

B. Communication layer 

The connection layer makes sure that data sent from the devices to the backend system is sent reliably and 
safely. Bluetooth, Wi-Fi, Zigbee, LoRa, or cellular networks may all be used in this layer, depending on the use 
and region. Data may be delivered directly to a central computer or via an edge or fog computing point so that 
it can be processed locally. Because it reduces latency, conserves bandwidth, and accelerates response times, 
edge computing is a major component of the healthcare IoT. This is especially important in emergency situations 
like finding rhythms or hypoglycemic events. 

C. Data processing and analytics layer 

After being sent, the data goes to the data processing and analytics layer, which is usually in the cloud or a 
hospital's data centre. Preparing, cleaning, normalising, and real-time data analysis are all responsibilities of 
this layer. This research method use the model based on machine learning to identify outliers at this point. The 
software finds tendencies that don't fit with what should happen and sets a benchmark for typical behaviour by 
prior data, hence continuously learning. The output from the anomaly detection module is then appraised on 
how important it is; if it is deemed critical, it notifies medical professionals or caretakers. Electronic Health 
Records (EHRs) and previous clinical data may also be added to this layer to make the context richer, make 
personalisation better, and cut down on false alarms. 

D. Feedback and alerting layer 

Giving useful records to users, like physicians, patients, or emergency employees, is what the remarks and 
caution layer is deduced to do. The tool offers real-time warnings through SMS, cellular app notifications, or 
alarms on the tracking display if anything unusual is located, such as a fast decline in oxygen ranges or an 
irregular pulse. distinct ranges of importance, pointers depending on the situations, and capability justifications 
may also all help to outline these notifications.  The feedback approach can also be used to set off automatic 
actions, like changing the quantity of a drug in a clever drug delivery gadget or starting emergency exercises in 
quintessential care gadgets. 

E. Governance and compliance layer 

The governance and compliance layer controls the whole design and makes sure it is reliable and safe. It does 
this by putting in place data protection tools, encryption protocols, access control systems, and audit records. It 
is very important to follow rules like HIPAA (Health Insurance Portability and Accountability Act), GDPR 
(General Data Protection Regulation), and HL7 (Health Level Seven) norms because healthcare data is very 
private. This layer also helps the system grow so it can handle more people, different kinds of devices, and a lot 
of flowing data. 
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Though several technical and practical concerns still need to be addressed, the schematic design offers a solid 
foundation for IoT applications in healthcare. Amongst them, the most crucial is detecting abnormalities. In 
conventional sensor systems, variations might indicate faulty equipment. But with healthcare data, many 
various factors could contribute to them, including device tuning errors and actual patient concerns. This degree 
of intricacy complicates the interpretation of unusual facts. Your heart rate, for instance, may rise if you 
exercised, were under stress, lost a monitor, or suffered a cardiac problem. Telling these causes apart in real 
time is not simple; rather, it is the key research topic this study attempts to address.  

Problem statement 

"To design and implement a machine learning-based anomaly detection framework that accurately identifies 
clinically relevant anomalies in data streams collected from IoT-connected medical devices while minimising 
false alarms, ensuring real-time responsiveness, and maintaining interpretability for clinical decision-making." 
This is the problem statement for this research.  This paper's major objective is to design a modular and 
adaptable model able to learn patterns in time and space using actual or synthetic healthcare data. The model 
for identifying otliers is supposed to operate with the IoT healthcare system we discussed before. Based on the 
resources available and the latency requirements, it may be deployed on cloud, fog, or edge systems. The system 
should be able to distinguish between issues brought on by faulty gadgets and those brought on by a patient's 
deteriorating health.  This will make real-time tracking systems more reliable and useful for patients [26]. 

PROPOSED METHODOLOGY 

The suggested method tries to create a strong and expandable machine learning-based system for finding 
strange behaviour in medical gadgets that are related to the internet of things (IoT). The system is meant to 
work in real time, collecting data from many monitors and personal medical devices and looking for strange 
trends that could mean a problem with a device, a patient getting worse, or interference from outside sources. 
Health data is often inconsistent and changes over time. To get a good picture of both spatial and temporal 
problems, the method uses a mix of unsupervised and semi-supervised learning models, like Isolation Forest, 
Autoencoders, and Long Short-Term Memory (LSTM) networks shown in figure 2. 

A. Machine Learning Algorithms  

To formalize the anomaly detection framework proposed in this study, we present the mathematical 
formulations for the three primary algorithms used: Isolation Forest, Autoencoder, and Long Short-
Term Memory (LSTM) networks. Each model identifies anomalies using different strategies, including 
distance metrics, reconstruction error, and predictive deviation. Let the input dataset be denoted as 𝑿 =
𝒙𝟏, 𝒙𝟐,… , 𝒙𝒏𝓧 = {𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏}, where 𝒙𝒊 ∈ 𝑹𝒅𝒙𝒊 ∈ 𝑹

𝒅represents a multivariate sensor reading with dd 
dimensions collected from medical IoT devices. 

 

Figure 2. Proposed Framework 

1. ISOLATION FOREST 

The Isolation Forest method is an ensemble-based one that looks for oddities instead of standard data profiles. 
It works by creating random binary trees, where strange things are more likely to be found quickly because they 
are different. The length of the road needed to separate a sample is the most important factor in figuring out 
anomaly scores. Because it is easy to use and works well, it can be deployed at the edge. Isolation Forest is based 
on the idea that strange things don't happen very often and can be found using a random tree structure. To make 
a tree, a random feature and a split value between that feature's highest and lowest values are chosen.  
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Let: 

• h(x)h(x) be the path length of instance xx averaged over tt trees. 

• c(n)c(n) be the average path length of unsuccessful searches in Binary Search Trees, approximated by: 

𝑐(𝑛) = 2𝐻(𝑛 − 1) − 2(𝑛 − 1)𝑛, 𝑤ℎ𝑒𝑟𝑒 𝐻(𝑖) = 𝑙 𝑛(𝑖) + 𝛾 (𝐸𝑢𝑙𝑒𝑟 − 𝑀𝑎𝑠𝑐ℎ𝑒𝑟𝑜𝑛𝑖 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)𝑐(𝑛)

= 2𝐻(𝑛 − 1) −
2(𝑛 − 1)

𝑛
,  where 𝐻(𝑖) = l n(𝑖) + γ (Euler-Mascheroni constant) 

Then, the anomaly score s(x,n)s(x, n) is given by: 

𝒔(𝒙, 𝒏) = 𝟐 − 𝒉(𝒙)𝒄(𝒏)𝒔(𝒙, 𝒏) = 𝟐
−
𝒉(𝒙)

𝒄(𝒏)  

Where: 

• 𝒔(𝒙, 𝒏) → 𝟏𝒔(𝒙, 𝒏) → 𝟏: high likelihood of anomaly, 

• 𝒔(𝒙, 𝒏) → 𝟎𝒔(𝒙, 𝒏) → 𝟎: likely normal. 

An instance is considered anomalous if 𝒔(𝒙, 𝒏) > 𝝉 where 𝝉 is a threshold determined empirically. 

2. AUTOENCODER 

Through an encoder-decoder design, autoencoders, a type of neural network, are used to put together raw data 
again. When trained on normal data, the autoencoder figures out how to reduce the rebuilding error as much as 
possible. A high rebuilding mistake at inference time means that an anomaly is likely to be happening. To make 
things more reliable in busy places, variations like Denoising Autoencoders and Variational Autoencoders can 
be added. 

An Autoencoder is a neural network that compresses the input into a latent space representation and 
reconstructs it. It consists of an encoder θ and a decoder ϕ, with learnable parameters θ and ϕ, respectively. 

Given an input vector xx, the encoder maps it to a latent space: 

𝒛 = 𝒇𝜽(𝒙) 

And the decoder attempts to reconstruct it: 

𝒙 = 𝒈𝛟(𝒛) = 𝒈𝛟(𝒇𝛉(𝒙)) 

The reconstruction error, often the Mean Squared Error (MSE), is computed as: 

𝓛(𝒙, 𝒙) = |𝒙 − 𝒙|𝟐
𝟐 

If 𝑳(𝒙, 𝒙′) > 𝜹, where δ\delta is a learned or predefined threshold, x is flagged as an anomaly. The threshold can 

be determined via statistical measures (e.g., mean + 3×std) on the training reconstruction errors. 

3. LONG SHORT-TERM MEMORY (LSTM) 

Long Short-Term Memory (LSTM) networks are particularly effective for modeling time-series data such 
as ECG signals or continuous glucose monitoring. LSTM networks remember long-term dependencies in 
sequences and are capable of predicting the next time step. Deviations between predicted and actual values can 
be quantified to score anomalies. This approach is highly suitable for detecting subtle and context-aware health 
anomalies. 

LSTM networks are well-suited for time-series data and are used here for anomaly detection by learning 
temporal dependencies. Given a sequence of input vectors 𝑿 = 𝒙𝟏, 𝒙𝟐,… , 𝒙𝑻𝑿 = {𝒙𝟏, 𝒙𝟐, … , 𝒙𝑻}, the LSTM 

predicts the next value 𝒙𝑻 + 𝟏. 

The prediction error is calculated as: 

𝜖𝑇 =∥ 𝑥𝑇 + 1− 𝑥𝑇 + 1 ∥ 2ϵ𝑇 = |𝑥𝑇+1 − 𝑥𝑇+1̂|2 

An instance is considered anomalous if: 

𝜖𝑇 > 𝛾ϵ𝑇 

Where γ is a threshold defined based on the distribution of prediction errors in the training set. 

The internal computation of LSTM at time step tt is governed by: 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡 − 1+ 𝑏𝑓) 



Journal of Information Systems Engineering and Management 
2025, 10(33s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

1075 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

(𝐹𝑜𝑟𝑔𝑒𝑡 𝑔𝑎𝑡𝑒) 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡 − 1+ 𝑏𝑖) 

(𝐼𝑛𝑝𝑢𝑡 𝑔𝑎𝑡𝑒) 

𝑐~𝑡 = 𝑡𝑎𝑛 ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡 − 1 + 𝑏𝑐) 

(𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑚𝑒𝑚𝑜𝑟𝑦) 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡 − 1 + 𝑖𝑡 ⊙ 𝑐~𝑡 

(𝑀𝑒𝑚𝑜𝑟𝑦 𝑢𝑝𝑑𝑎𝑡𝑒) 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡 − 1+ 𝑏𝑜) 

(𝑂𝑢𝑡𝑝𝑢𝑡 𝑔𝑎𝑡𝑒) 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛 ℎ(𝑐𝑡) 

• σ: sigmoid function 

• ⊙: element-wise multiplication 

• W,U, b: weight matrices and biases 

The hidden state 𝒉𝒕 is passed to a final dense layer to predict 𝒙𝒕 + 𝟏, which is compared to the actual value for 
anomaly scoring. 

B. Decision Rule for All Models 

For each model, an anomaly score α(x)\alpha(x) is computed. A general decision rule is: 

𝑨𝒏𝒐𝒎𝒂𝒍𝒚(𝒙) = {𝟏, 𝒊𝒇 𝜶(𝒙) > 𝝉𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆} 

Where: 

• τ: threshold (specific to the model), 

• 1 indicates anomaly, 0 indicates normal. 

C. Summary of Proposed Models 

Algorithm Anomaly Metric Threshold Rule 
Isolation Forest 𝑠(𝑥, 𝑛) = 2 − ℎ(𝑥)/𝑐(𝑛)𝑠(𝑥, 𝑛) = 2−ℎ(𝑥)/𝑐(𝑛) Anomaly if 𝒔(𝒙, 𝒏) > 𝝉𝒔(𝒙, 𝒏) > 

Autoencoder ∥𝑥 − 𝑥∥2|𝑥 − 𝑥̂|2 Anomaly if reconstruction error > δ 

LSTM ∥ 𝑥𝑡 + 1− 𝑥𝑡 + 1 ∥ |𝑥𝑡+1 − 𝑥𝑡+1̂ | Anomaly if prediction error > γ 

 

D. Model Training and Anomaly Scoring 

A carefully thought-out workflow guides the training process for each model. First, the data from medical IoT 
devices is cleaned up and normalised to get rid of noise, missing numbers, and errors. For Isolation Forest, 
you don't need to do any special training other than building trees based on the traits you give it. 
Autoencoders and LSTM networks train their models with only "normal" data to make sure they learn the 
patterns of healthy body signs. 

For Autoencoders, let 𝑥 ∈ 𝑅𝑛 represent an input vector. The encoder function 𝑓θ maps x to a latent 
representation 𝑧 ∈ 𝑅𝑚, and the decoder function 𝑔𝜙 attempts to reconstruct x from z. The reconstruction loss is 
computed as: 

ℒ(𝑥, 𝑥̂) = |𝑥 − 𝑥̂|2 = |𝑥 − 𝑔ϕ(𝑓θ(𝑥))|
2 

If this reconstruction loss exceeds a predefined threshold δ\delta, the instance is flagged as an anomaly. 

In LSTM models, anomaly detection is based on predictive error. Given a sequence of inputs X={x1,x2,…,xt}, 
the model predicts the next value 𝑥𝑡 + 1. The error is calculated as: 

ϵ𝑡 = |𝑥𝑡+1 − 𝑥𝑡+1̂ | 

Anomalies are identified when ϵt>γ\epsilon_t > \gamma, where γ\gamma is a threshold learned from the 
training distribution. A moving average of error values can also be maintained to smooth fluctuations and reduce 
false positives. 

For Isolation Forest, the anomaly score for each sample is based on the average path length h(x)h(x) from all 
trees in the ensemble. The anomaly score s(x,n)s(x, n) is given by: 
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𝑠(𝑥, 𝑛) = 2
−
ℎ(𝑥)
𝑐(𝑛) 

where c(n) is the average path length of unsuccessful searches in Binary Search Trees, used to normalize the 
score. Scores closer to 1 indicate anomalies [32]. 

LOGICAL STRUCTURE OF THE PROPOSED FRAMEWORK 

 

Figure 3. Logical Workflow of proposed framework 

The overall architecture of the methodology consists of five phases shown in figure 3: 

1. Data Collection and Preprocessing: Continuous streaming data is collected from various IoT-
connected devices (e.g., ECG monitors, pulse oximeters, glucose meters) and EHR systems. Data is filtered for 
noise, normalized, and reshaped as required by the model (sliding windows for time-series data). 

2. Feature Extraction and Contextualization: Key features such as heart rate variability, waveform 
shape, or glucose trend gradients are extracted. If EHR data is available, demographic and clinical metadata are 
appended to contextualize the readings (e.g., normal heart rate for elderly patients vs. younger adults). 

3. Model Selection and Training: Based on the deployment environment and available data, an 
appropriate ML model (Autoencoder, LSTM, or Isolation Forest) is selected and trained. Cross-validation 
techniques are used to tune hyperparameters and determine optimal threshold values. 

4. Anomaly Scoring and Detection: During the inference phase, incoming data is passed through the 
trained model. Each instance is assigned an anomaly score based on its reconstruction loss, prediction error, or 
isolation depth. If the score exceeds the model-specific threshold, an alert is generated. 

5. Feedback and Continuous Learning: The output is validated by clinicians or through user 
feedback. Confirmed anomalies are stored in a labeled dataset, which can later be used to fine-tune the models 
or to train a more robust hybrid ensemble in future iterations. 

This logic ensures that the system continuously evaluates the incoming data for abnormalities, reducing reliance 
on manual review and increasing the speed and accuracy of clinical response [33]. 

The proposed approach builds a flexible and intelligent system that combines many machine learning models 
to identify unusual trends in medical data from Internet of Things (IoT) devices. The system's components 
working in concert to address significant issues in real-time illness monitoring and device dependability include 
temporal analysis, unsupervised learning, and environmental reinforcement. Mixed ensemble models, hostile 
stability, and deployment-specific optimisation for edge and fog computing environments might be included in 
future. 
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RESULTS AND DISCUSSION 

This part shows the test results for the suggested machine learning models for finding problems in medical 
gadgets that are related to the internet of things (IoT). Physiological datasets from real time or that were 
available to the public were used to test the success of three models: Isolation Forest, Autoencoder, and LSTM. 
These data sets are continuous data streams from medical monitors and smart technologies, like ECG, heart 
rate, and glucose monitoring signals. The aim was to identify unusual patterns in health data that could indicate 
a gadget is malfunctioning or a possible medical crisis. Models were compared to using k-means grouping and 
a typical Z-score cutoff approach. The testing used Python programs such as Scikit-learn, Keras, and TensorFlow 
on NVIDIA GPU and 16GB RAM computers. 

The four key performance metrics utilised to evaluate the models were Precision, Recall, F1-Score, and Area 
Under the Curve (AUC). Precision and Recall determined the therapeutic value of the model; lower false positive 
rates and greater true positive rates were desired. Table 1 shows how the suggested models compared to the 
baselines in terms of how well they did. 

Table 1: Model Performance Comparison 

Model Precision Recall F1-Score AUC 
Z-Score Threshold 0.61 0.54 0.57 0.66 

K-Means Clustering 0.68 0.63 0.65 0.71 
Isolation Forest 0.80 0.76 0.78 0.83 

Autoencoder 0.84 0.79 0.81 0.88 
LSTM (Proposed Sequence Model) 0.88 0.84 0.86 0.91 

 

In every rating measure, the LSTM model did better than the others. It was very helpful for looking at bodily 
signs like ECG and glucose trends because it could pick up on sequential relationships and timing irregularities. 
Autoencoders also did a great job by learning non-linear models and finding oddities based on reconstruction 
mistake. The Isolation Forest method worked well, especially when it came to finding outliers. However, it 
wasn't as accurate because it wasn't sensitive to time. Even though the default methods were easy to understand 
and use, they didn't work very well, especially with noise or patient-specific datasets. This shows how important 
it is to use flexible machine learning models in clinical settings.  
Several plots were made to better show how the model behaved. In Figure 4, you can see an example of an ECG 
section where the LSTM model found problems during an arrhythmic event that both Z-score and k-means 
missed. The Receiver Operating Characteristic (ROC) plots for all twelve types can be seen in Figure 5. The 
LSTM model got the best AUC, which shows that it works well with a range of cutoff values.  

 

Figure 4: ECG Time-Series Anomaly Detection 

 

Figure 5: ROC Curve Comparison for All Models 

Isolation Forest was the most efficient model in terms of how quickly it could be trained and run, which meant 
it could be used in real-time edge settings. Autoencoders needed only a small amount of GPU processing, mostly 
during training. On the other hand, LSTM networks used the most resources because they were recurring and 
had data structures that were based on sequences. Even LSTM models can be used for real-time inference on 
current edge devices, as long as they are optimised and quantised correctly.  

The main results of this study show that machine learning can help improve the ability of medical IoT systems 
to find problems. Notably, models trained on normal data specific to a patient were more accurate than models 
trained on data from a variety of patient groups. This backs up the idea that personalised baselines cut down on 
false results by a large amount. Adding background information from Electronic Health Records (EHRs), like 
the patient's age, level of activity, and known health problems, also helped lower the number of wrong diagnoses, 
especially in rare situations (for example, a fast heart rate during exercise vs. tachycardia).  
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This research still has several issues. One significant concept was that training data typically reflects "normal" 
settings, although this may not always be true, particularly when patients' baselines alter due to new drugs or 
procedures. Lacking properly labelled, real-time clinical datasets, we had to rely on semi-synthetic anomaly 
injection. This may not completely reflect the intricacy of real-world oddities. It's still uncertain, too, how 
effectively deep learning models can be described. Though they must be merged further before being used in 
clinical environments, SHAP and LIME techniques were quickly examined to clarify model outcomes.  
When looking at deployment, there are a few things that need to be kept in mind. For starters, memory and 
power limits can make real-time reasoning hard to do in edge settings. Second, rules about privacy and data 
safety might make it hard to collect all of a patient's data in one place. This could mean that models have to be 
taught in decentralised or shared settings, which is something this study hasn't looked into yet. Lastly, it's not 
easy to make the system work with a lot of different gadget makers, sensor types, and hospital networks. Before 
it can be used in clinical settings, the anomaly recognition system needs to be fine-tuned and tested on a wider 
range of hardware devices and patient groups.  

CONCLUSION 

This study came up with and tested a strong machine learning-based strategy for finding strange things in IoT-
connected medical devices. The goal was to improve healthcare reliability and real-time disease trackingGiven 
the rapid expansion of IoMT in clinical environments, it is crucial to guarantee accurate data and prompt issue 
resolution. Given the rapid expansion of IoMT in clinical environments, it is crucial to guarantee accurate data 
and prompt issue resolution. By means of Isolation Forest, Autoencoder, and LSTM models and comparison, 
the research indicated that machine learning algorithms outperform rule-based and statistical techniques in 
detecting unusual behaviour in sensor data streams. Of these, LSTM models had the greatest accuracy and 
memory, indicating how well they function for detecting issues in time series.  Designed to be flexible and 
scalable, the approach works with both edge-based and cloud-based systems. Because it employs both untrained 
and semi-supervised models, the system may operate with less labelled data. For real-world healthcare 
scenarios, this is a key characteristic. The findings indicated that including pertinent EHR data into the 
procedure of locating anomalies reduces false alerts and increases the clinical utility. Visualisations such as ECG 
anomaly detection plots and ROC curves further simplified model performance.  Among the issues mentioned 
were the lack of consistent, annotated clinical anomaly datasets and the need for deep models to be more 
understandable. Despite these challenges, the findings unambiguously indicate that intelligent healthcare 
environments may be made safer for patients and more efficient at monitoring by using AI-enhanced anomaly 
detection systems.  By demonstrating a method that is scalable, accurate, and simple to grasp, this work 
improves digital health monitoring by finding abnormalities.  It can be used in real-world IoT medical systems. 
In the future, researchers will look into how to make the system even more reliable and scalable by integrating 
it with shared learning frameworks, putting it to use on integrated medical edge devices, and doing real-time 
clinical evaluation.  
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