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In the realm of digital biometric authentication techniques, online signature verification hold 

promise as an alternative to traditional offline methods. But due to the nature of data and 

intraclass variability, online signature verification remains to a difficult task. Sequential 

models either lack the ability to fit the data (LSTMs) or are computationally very expensive 

(Transformers). To address this gap, this paper addresses a deep Siamese Neural Network 

that users Mamba SSM as the backbone connected to feed forward layers for 1v1 Signature 

verification. Mamba SSM is a recent development in State Space Model architectures that 

scales linearly with sequence length while giving performance comparable to transformers. 

Due to use of the Mamba backbone the model proves to be a fast, lightweight, while still 

accurate method of online signature verification. Our implementation gave an accuracy 0f 

80.5% on a 20% test set of the MCYT100 dataset. 
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INTRODUCTION 

Due to the internet being ubiquitous and also due to their inherent ease of use, the usage of fintech and digital 
banking systems is always on the rise. The increasing usage of these system calls for the need for advanced 
security and authentication systems. As time progresses, biometric authentication techniques are increasingly 
being preferred over other traditional methods. Among biometric methods, signature-based verification holds 
a unique place due to its traditional and widely accepted nature in legal and formal settings. Within the domain 
of signature-based authentication, online signatures stand as a more robust and informative option as they even 
capture temporal dynamics of the signature along with its spatial characteristics. Thus, in a sense, it captures 
the user signature in a multimodal manner. 

Even though online signatures are a promising way for biometric authentication applications, there are 
challenges in the actual verification system due to intra class variation i.e. variations in different signatures of 
the same user. There are various attempts at online signature verification models using various Convolutional 
and Recurrent Neural Network architectures. This paper proposes a method to develop a model for effectively 
perform verification of online signatures using a Siamese model architecture with Mambs SSM as the backbone 
and feed forward layers at the end for classification.  

Mamba is a recently introduced state space model (SSM) architecture, which offers a promising alternative to 
Transformers and RNN based models. As compares to RNN based models line LSTMs and GRUs, Mamba is 
able to avoid vanishing gradients and is able to capture long range dependencies much more effectively. Even 
though transformers may offer a good alternative they scale quadratically with sequence length making then not 
the best choice where speed is paramount. In contrast to that, Mamba, even while being able to compete with 
transformers in case of long-range dependencies, is able to scale linearly with sequence length. This makes 
Mamba an ideal candidate for online signature verification due to its speed and modelling ability. 
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2. RELATED WORK 

Online signatures are generally recorded using pen tablet systems that record the signatures as features 
recorded as a temporal sequence. Julita et al. [1] have proposed a system that integrates a digitizing tablet to 
form a practical security system. On the contrary, Kamel et al. [2] have proposed a novel system of data 
acquisition using a data glove, enabling capturing of multiple degrees of freedom. 

There are many methods that have been applied to the problem of online signature verification. Saleem and 
Kovari [3] have proposed dynamic time warping for signature preprocessing. Tang et al. [4] have proposed a 
system that uses an information-divergence based matching strategy for online signature verification. 
Applications of signal processing techniques in this domain have also been explored like the use of Fourier 
descriptors by Yanikolgu et al. [5] and the use of Discrete Cosine Transforms by Liu et al. [6]. The system 
proposed by Ansari et al. [7] that extracts segments using dynamic time warping and then performs fuzzy 
modelling on them. 

Use of Machine learning methods in online signature verification has also seen some exploration. The system 
proposed by Julita et al. [1] has used support vector machines for the signature verification system. Gruber et 
al. [8] have explored longest common subsequence (LCSS) kernel functions with support vector machines for 
verification. Manjunatha et al. [9] have proposed a verification system that uses writer dependent features and 
classifiers. They used 6 different classifiers, either statistical or neural network based. Leghari et al. [10] have 
done a comprehensive comparative analysis of Machine learning methods for online signature verification. 
Henway et al. [11] compare such ML and statistical methods of online signature verification.   

The current state of the art systems in online signature verification include deep learning systems. Bromley et 
al. [12] first introduced the Siamese network approach to online signature verification in 1993. Vorogunti et al. 
[13] have proposed a deep convolutional Siamese network called OSVNet for online signature verification, while 
Lai et al. [14] have used Recurrent Neural Networks with a novel descriptor called the length-normalized path 
signature. Gautam et al. [15] have proposed a hybrid CNN and Transformer based architecture called as 
OSVConTramer for online signature verification. This is the current state of the art for online signature 
verification. 

3. METHODOLOGY 

3.1 Dataset 

We experimented with the MCYT-100 online signature dataset [16], comprising real and forged signature 
samples from 100 writers. Each writer contributed 25 real and 25 expertly forged signatures. Each signature 
was captured as a time-series sequence of pen coordinates and dynamics (e.g., pressure, velocity). For robust 
evaluation, we adopted an 80-20 split: 80% of the real signatures were used for training, and the remaining real 
and forged samples were held out for testing. Fig. 3.1 shows the samples from the datasets. This is a line plot, 
but actually all then pressure information is also available. For visualization purpose the line plot is given, the 
actual signatures are sampled at 100 samples per second. 
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3.1 MCTY 100 Dataset – Samples of Genuine and Forgery Signatures 

3.2 Preprocessing 

All signature samples were normalized using Min-Max scaling to ensure a consistent feature range across users. 
Each signature was represented as a NumPy array containing a variable-length sequence of five original features 
per timestep and saved using the joblib format. No derived features such as velocity or acceleration were 
computed. To accommodate PyTorch’s [16] DataLoader requirements, padding was applied only during training 
and validation phases. The original sequence lengths were preserved, and no padding was used during testing 
to maintain the natural temporal structure of the signatures. 

3.3 Framework 

For model definition and training we used the Pytorch framework [17]. Pytorch was the obvious choice given its 
flexibility and ease of use. Also, Pytorch is widely considered as the most suitable DL framework for research 
applications. 

3.3.1 Model Architecture 
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We utilized the Mamba architecture [18], a cutting-edge state space model (SSM) known for its ability to capture 
long-range dependencies in sequential data with linear time complexity. This makes Mamba particularly well-
suited for modeling long and sparse signature sequences compared to traditional RNNs or Transformers. 

Each signature sequence, consisting of five features per timestep, was first passed through a linear embedding 
layer to project it into a 16-dimensional space. This was followed by four stacked Mamba blocks, which 
processed the embedded sequence. We sampled the output at the last timestep to represent the sequence. This 
final representation was passed through a fully connected layer of size 24, followed by a single output neuron 
with a sigmoid activation for binary classification (genuine vs. forged). Fig. 3.2 shows the Mamba Encoder 
architecture. These encoders are used in the Siamese Network as shown in Fig. 3.3. 

3.3.2 Network Architecture Diagram 

The architecture consists of the following components: 

1. Input Layer: 

o Accepts signature sequences with shape (T×5) 

o T = variable-length timesteps 

o 5 features per timestep 

2. Embedding Layer: 

o Linear projection: 5 → 16 dimensions 

o Output shape: (T×16) 

3. Mamba Core: 

o 4 identical Mamba blocks (16-dim hidden states) 

o Each block processes sequences with: 

▪ Selective State Space operations 

▪ Linear time complexity (O(n)) 

▪ Long-range dependency capture 

4. Temporal Pooling: 

o Last timestep sampling (T×16 → 16) 

5. Classifier Head: 

o FC Layer: 16 → 24 dimensions (ReLU) 

o Output Layer: 24 → 1 (Sigmoid) 

 

 

Figure 3.2: Mamba Encoder Architecture 
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Figure 3.3: Siamese Network Architecture 

Diagram Explanation 

The diagram visually represents the flow of data through the architecture: 

1. The Input Sequence is passed through a Linear Embedding Layer, which transforms it into a 
higher-dimensional space (16D). 

2. The embedded sequence is then processed sequentially through four stacked Mamba Blocks, each 
refining the representation. 

3. The output at the last timestep is extracted and passed to a Fully Connected Layer. 

4. Finally, the fully connected layer outputs a binary classification result using a Sigmoid Activation 
Function. 

5. The Mamba blocks maintain 16-dimensional hidden states throughout 

6. No residual connections mentioned (though typical SSM implementations use them) 

7. Binary cross-entropy is implied by the sigmoid output 

8. Total parameters ≈ 4×(Mamba block) + (16×24+24) + (24×1+1) 

3.4 Training Setup 

The model was trained with a binary cross-entropy loss function to be able to differentiate between real and fake 
signatures. For training purposes, the Adam optimizer was used set to a learning rate of 1e-4. A dropout of 0.1 
was introduced after the last linear layer to ensure good generalization. Early stopping was implemented in a 
manual fashion, observing general trends in validation loss. The final model was a result of training for 30 
epochs. A batch size of 49 was used for training and validation sets.  

3.5 Evaluation 

Evaluatin metrics used included standard classification metrics such as accuracy, precision, recall and F1-score. 
For threshold independent analysis metrics such as Area under the Receiving Operating Characteristic curve 
(ROC-AUC) and Equal Error Rate were used. Of the two, the latter holds much significance in biometric 
authentication systems. 

4. EXPERIMENTS 

4.1 Experimental Setup 

The machine used to train the model comprised of an NVIDIA RTX 3060 mobile GPU and an AMD Ryzen 
5800HS mobile processor. The Pytorch framework [17] was used for defining the model architecture and other 
utilities. Binary cross-entropy loss was used as the given task was a binary classification task. 
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The dataset was paired exhaustively for each user i.e. every verified user signature was paired with the other 24 
verified signatures with label 1 and with the 25 forgeries with label 0. The dataset was divided into training, 
testing and validation sets with a 7:1:2 ratio at user level to ensure completely user independent modelling. 

 

Figure 4.1: Loss vs Epochs for first 30 eopchs 

 
 

4.2 Dataset 

The dataset used was the MCYT-100 dataset [16]. It consisted of signatures from 100 users, with each user 
having 25 verified signatures and 25 forgeries. Each signature is represented as a sequence of 5 features, namely 
X, Y, Pressure, Azimuth and Altitude. Data preprocessing only included Min-Max normalization and storage in 
the form of a Joblib file for faster retrieval. Every signature was preserved as a sequence of its original length 
and dynamic length padding to max length from the batch size was done at training and validation time to 
facilitate the use of the Pytorch DataLoader. 

4.3 Evaluation Metrics 

Standard classification evaluation metrics were used for model evaluation. These include accuracy, recall, 
precision and F1-score. In addition, threshold independent metrics such as Equal Error Rate and ROC-AUC 
were used for evaluation. 

4.4 Results 

The proposed model has shown an 1v1 accuracy of 80.5% and an Equal Error Rate (EER) of 0.19552 on the test 
set. These results indicate the models ability to handle dynamic signature data and perform verification. 

5. RESULTS 

5.1 Classification Metrics 

The model performed well on classification on the validation set. The accuracy was 80.53%, precision was 
75.33%, recall (true positive rate) was 89.60%, and the F1-score was 81.84%. These results indicate that the 
model accurately separates real from forged signatures, with a bias towards high recall, which is essential in 

reducing false rejection of real signatures. 

Table 5.1 Results 

Metric Value 

False Acceptance Rate (FAR) 28.17% 

False Rejection Rate (FRR) 10.40% 

Equal Error Rate (EER) 0.1955 

AUC-ROC 0.8891 
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These measurements confirm the strength of the model in a biometric authentication context, exhibiting an 
equitable balance between accept and reject input samples. 

EER of 19.55% and AUC-ROC of 0.889 (Fig. 4.3) confirm the judicious balance between security (FAR) and 
usability (FRR), situating the model favourably alongside state-of-the-art signature verification systems [1,2]. 
Although FAR is still high compared to FRR, this is an intentional bias against minimizing genuine user 
inconvenience—a design decision consistent with use cases such as retail purchases or low-risk authentication. 

Comparative Analysis: 

• The recall-dominated performance (89.60%) ensures fewer genuine users are incorrectly rejected 
(FRR = 10.4%), critical for user retention in commercial systems. 

• The AUC-ROC near 0.9 highlights strong separability between genuine and forged classes, with the 
ROC curve (Fig. 4.3) showing consistent performance across threshold variations. 

Limitations & Trade-offs: 

The larger FAR (28.17%) implies potential improvement towards rejecting complex forgeries, especially under 
test scenarios simulating skilful forgery attacks. Introducing dynamic behavioural features (e.g., velocity, 
acceleration) to further separate adversary attempts may be a consideration in future research. 

5.2 Confusion Matrix 

 

Figure 4.2: Confusion Matrix of the Mamba-
based Signature Classifier 

 

Figure 4.3: ROC Curve of the Mamba-based 
Signature Classifier 

6. CONCLUSION 

In this paper, we proposed a Siamese architecture with a Mamba backbone and Feedforward layers. Our model 
showed good performance on the MCYT-100 dataset with a 1v1 accuracy of 80.5% and an EER of 19.552%. This 
shows the promise and potential of Mamba networks as a superior alternative to Transformers for online 
signature classification due to characteristics like long range sequence handling and faster throughput. 

In the future many aspects of this models can be explored. To train the Siamese network, learning techniques 
such as contrastive learning can be used with loss functions such as triplet loss to obtain better vector 
representations of signatures. Bidirectional Mamba Networks [19] can be used to better process signature 
sequences, to capture past and future aspects of the sequence. Ensemble approach can be used to use sequence 
processing in conjunction with spatial processing for better verification. For the same, models like Vision 
Mamba [20] can be used in conjunction with sequence models. 

REFERENCES 

[1]  Julita, A., Fauziyah, S., Azlina, O., Mardiana, B., Hazura, H., & Zahariah, A. M. (2009, March). Online 
signature verification system. In 2009 5th International Colloquium on Signal Processing & Its 
Applications (pp. 8-12). IEEE. 

[2]  Kamel, N. S., Sayeed, S., & Ellis, G. A. (2008). Glove-based approach to online signature 
verification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(6), 1109-1113. 



Journal of Information Systems Engineering and Management 
2025, 10(33s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

1087 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

[3] Saleem, M., & Kovari, B. (2020). Preprocessing approaches in DTW based online signature 
verification. Pollack Periodica, 15(1), 148-157. 

[4]  Tang, L., Kang, W., & Fang, Y. (2017). Information divergence-based matching strategy for online 
signature verification. IEEE Transactions on Information Forensics and Security, 13(4), 861-873. 

[5]  Yanikoglu, B., & Kholmatov, A. (2009). Online signature verification using Fourier descriptors. EURASIP 
Journal on Advances in Signal Processing, 2009, 1-13. 

[6] Liu, Y., Yang, Z., & Yang, L. (2014). Online signature verification based on DCT and sparse 
representation. IEEE transactions on cybernetics, 45(11), 2498-2511. 

[7]  Ansari, A. Q., Hanmandlu, M., Kour, J., & Singh, A. K. (2014). Online signature verification using 
segment‐level fuzzy modelling. IET biometrics, 3(3), 113-127. 

[8]  Gruber, C., Gruber, T., Krinninger, S., & Sick, B. (2009). Online signature verification with support vector 
machines based on LCSS kernel functions. IEEE Transactions on Systems, Man, and Cybernetics, Part 
B (Cybernetics), 40(4), 1088-1100. 

[9]  Manjunatha, K. S., Manjunath, S., Guru, D. S., & Somashekara, M. T. (2016). Online signature verification 
based on writer dependent features and classifiers. Pattern Recognition Letters, 80, 129-136. 

[10] Leghari, M., ali Chandio, A., Soomro, M. A., Nizamani, S. Z., & Soomro, M. H. (2024). A Comparative 
Analysis of Machine Learning Algorithms for Online Signature Recognition. VFAST Transactions on 
Software Engineering, 12(2), 231-240. 

[11]  El-Henawy, I. M., Rashad, M. Z., Nomir, O., & Ahmed, K. (2013). Online signature verification: state of 
the art. International Journal of Computers & Technology, 4(2), 664-678.  

[12]  Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., & Shah, R. (1993). Signature verification using a" 
siamese" time delay neural network. Advances in neural information processing systems, 6. 

[13] Vorugunti, C. S., Mukherjee, P., & Pulabaigari, V. (2019, September). Osvnet: Convolutional siamese 
network for writer independent online signature verification. In 2019 international conference on 
document analysis and recognition (ICDAR) (pp. 1470-1475). IEEE. 

[14]  Lai, S., Jin, L., & Yang, W. (2017, November). Online signature verification using recurrent neural 
network and length-normalized path signature descriptor. In 2017 14th IAPR international conference 
on document analysis and recognition (ICDAR) (Vol. 1, pp. 400-405). IEEE. 

[15] Gautam, A., & Pulabaigari, V. (2023). OSVConTramer: A Hybrid CNN and Transformer based Online 
Signature Verification. 

[16] Ortega-Garcia, J., Fierrez-Aguilar, J., Simon, D., Gonzalez, J., Faundez-Zanuy, M., Espinosa, V., ... & 
Moro, Q. I. (2003). MCYT baseline corpus: a bimodal biometric database. IEE Proceedings-Vision, 
Image and Signal Processing, 150(6), 395-401. 

[17]  Paszke, A. (2019). Pytorch: An imperative style, high-performance deep learning library. arXiv preprint 
arXiv:1912.01703. 

[18] Gu, A., & Dao, T. (2023). Mamba: Linear-time sequence modeling with selective state spaces. arXiv 
preprint arXiv:2312.00752. 

[19] Liang, A., Jiang, X., Sun, Y., & Lu, C. (2024). Bi-mamba4ts: Bidirectional mamba for time series 
forecasting. arXiv e-prints, arXiv-2404. 

[20] Liu, Y., Tian, Y., Zhao, Y., Yu, H., Xie, L., Wang, Y., ... & Liu, Y. (2024). Vmamba: Visual state space 
model. Advances in neural information processing systems, 37, 103031-103063. 

 


