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The driver's hypnosis detection system will be processed by image processing. The background 
and purpose of this research are to detect street hypnosis and increase street awareness. The 
road hypnosis detection method is based on eyelid closure and the detection of physiological 
parameters of the driver's HRV signal to improve the accuracy of detecting the occurrence of 
hypnosis. This study used the facial landmark method to detect decreased HRV signals related 
to the driver being asleep or awake. The initial process begins with streaming the camera with a 
webcam mounted on the vehicle's dashboard. Detection of the facial area uses an eye aspect ratio 
algorithm that is processed in images captured by a webcam, then an eye ratio algorithm is used 
to report sleepy eyes in the form of output. The prediction for the first test data is very close to 
the actual value (0.5567 vs 0.58), which suggests that the model can perform the prediction quite 
well. 
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INTRODUCTION 

Detection of eyelid closure with HRV (Heart Rate Variability) signal interaction is used to monitor the dynamics of 
stress in drivers, including road hypnosis. Changes in eyelid closure and HRV signals are often associated with the 
sleep phase and overall sleep quality. The collaboration between the two can establish a real detection of when 
street hypnosis occurs or the structural pattern of street hypnosis. 

National Highway Traffic Safety Administration (NHTSA), United States Department of Transportation [1] 
recorded a high number of deaths due to drowsiness while driving an average of 846 people over the past 10 years. 
16% of fatal accidents are caused by driving fatigue [2]. 

HSV and MIIR algorithms were developed to realize a robust heart rate estimation system of webcam-based facial 
color images to detect drowsiness [3]. A sleepiness detection algorithm has been proposed based on eight HRV 
features of an electrocardiogram (ECG) [4]. This study proposes a sleepiness detection model system to detect 
simultaneously, using a webcam to cover all levels of sleepiness, from mild hypnosis to severe [5]. Eye position 
detection is combined with facial images, so drowsiness is assessed based on eye-opening and closing [6]. HRV 
LF/HF ratio processing is used as an early warning of driver hypnosis [7]. 

METHODS 

Participants 

Ten non-smoking male drivers with no history of heart disease, no drugs, and no caffeine were included. They were 
35-38 years old and had enough sleep before the driving observation. 

Devices 

The non-contact method, a photoplethysmographic imaging (PPGI) method using a webcam to receive changes in 
light, has the advantage of not making the subject feel uncomfortable because there is no contact with the human 
body [8]. The open and closed eye detection method involves image processing by determining the position of the 
eyes using the color analysis method and the angle method [9]. 
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In this study, dashboard cameras installed on vehicles are positioned to capture eyelid movements symmetrically 
and precisely. 

Figure 1. Installation and Position of Dashboard Camera on Vehicle 

 
Perclose Data Processing 

The given code detects blinks in a video using face detection and eye landmark analysis with MediaPipe and 
OpenCV. The code also calculates the number of blinks based on the Eye Aspect Ratio (EAR), which detects whether 
the eyes are closed (blinking) or open. The level of alertness labeling was obtained from the correlation of the HRV 
signal and the Perclose level. 

 

 

 
 

 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 

 
 

 

 

 

Figure 2. Stages of the Perclose Algorithm 

 
Eye aspect ratio Function (EAR) 

This function is used to calculate the Eye Aspect Ratio (EAR), which is the ratio between the vertical (top-bottom) 
and horizontal (left-right) distances of the eye. The EAR is used to determine whether the eyes are open or closed. If 
the EAR is low, this indicates shut eyes, which can indicate flickering. A, B, and C are the Euclidean distances between 
specific points on the eye landmark (e.g., points 1, 2, 5, 6, etc.). The formula calculates EAR: 

(A + B) / (2.0 * C) (1) 

Function detect_blinks 

This function detects blinks in videos and saves relevant frames. The footage is read using cv2. VideoCapture. The 
program will issue an error message if the video doesn't open. FaceMesh detects facial landmarks in each video 
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frame. This landmark finds the eye's position and calculates the EAR. 

EAR is calculated for the left and right eyes. If the EAR is less than the threshold (e.g., 0.20), it is considered that 
the eyes are closed. EAR_THRESHOLD is the EAR's lower limit, which is regarded as a sign of closed eyes. At the 
same time, EAR_CONSEC_FRAMES is the number of consecutive frames that must be kept closed to count as a 
single blink. If the EAR remains low for several successive frames, then this counts as a single wink. Each frame is 
saved with a frame_<frame_count>.jpg name for further analysis. 

The detect_blinks function is called to detect flickering in a video for 1 minute (duration = 60 seconds). The number 
of blinks detected over 1 minute of the video is displayed with print(f"Number of blinks for 1 minute: 
{blink_count}"). Each frame with the detected face landmark is also saved as a jpg image in Google Drive. 

When a person enters a state of sleep, the Rapid Eye Movement (REM) cycle begins. When the REM cycle increases 
to 2, a wave ÿ appears, which can be rated as the point when the driver is completely asleep [10,11,12, 13]. 

RESULTS 

Exploring HRV Signals While Driving 
From the results of the recapitulation of heart rate records on all driver samples, a max/min HR of 131/42 bpm, an 

average HR of 81 bpm for 24 hours, an average HRV (wake/sleep) of 85/76 bpm, a monotonic geometric average 

HRV of 77-86 bpm, and a geometric fluctuating average HRV of 82-88 bpm. The recorded data shows that when 

driving, HRV tends to decrease from average to sleep mode [14,15,16,17]. 

(a) 

(b) 
 

 

 

 

(c) 

Figure 3. HRV Interaction While Driving in Monotonous Road Conditions, (a) At the beginning 
of departure, (b) At the end of the trip, (c) For 24 Hours 

 

RR (ms), QT (ms), and PQ (ms) data were obtained from the recording of Holter monitor data for 24 hours. This data 
produces an analysis of the dominance of the driver's autonomic nerve in every activity carried out by the driver 
[18,19] 
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Figure 4. Conditions of (a) RR Signal, (b) QT Signal, (c) PQ Signal in Driver 
 

In Figure 4(a), the RR interval is shorter. This condition interprets that when a person is in a state of stress, the 
heart rate becomes faster, which causes the RR interval between successive heartbeats to be shorter [20,21,22]. The 
QT interval is shorter (Fig.4(b)). In mild or short-term stress, some studies suggest that adrenaline can decrease 
the duration of the QT interval, possibly due to a rapid increase in heart rate (shorter time between heartbeats). It 
is the body's response to stress, which allows the heart to adapt quickly to changes. PR/PQ interval figure 4(c), 
decreased heart rate variability (HRV), interprets the activation of the sympathetic nervous system due to stress. 
This condition can cause an increase in heart rate accompanied by decreased heart rate variability (HRV). This 
condition shortens the PR interval on the ECG. When the sympathetic nervous system predominates, the speed of 
conduction of electrical impulses from the atria to the ventricles can increase, which causes shorter PR intervals so 
that alertness decreases [23,24,25]. 
 

Table 1. Analysis of Driver's Autonomous Neural Dominance on Sleep and Driving Conditions 
 

Condition Time SDNN LF/HF LF HF RMSSD HRV Parameter 

Sleep 01.00 AM 115 0,92 0,61 0,67 71 70 Parasympathetic 

Sleep 02.00 AM 109 0,77 0,51 0,67 78 65 Parasympathetic 

Sleep 03.00 AM 154 1,02 0,51 0,5 56 72 Parasympathetic 

Mean of Sleep 105 0,86 0,51 0,60 63 72 Parasympathetic 

Monotonous 
Road Driving 

07.00 AM 43 1,27 0,29 0,23 23 88 Sympathetic 

Monotonous 
Road Driving 

08.00 AM 50 1,37 0,36 0,26 29 81 Sympathetic 

Monotonous 
Road Driving 

09.00 AM 75 1,18 0,31 0,27 31 82 Sympathetic 

The Mean of  
Monotonous Road Driving 

56 1,27 0,32 0,25 27,67 84 Sympathetic 

A decrease in SDNN from RR data processing of more than 5% % to 15% can indicate that the driver has begun to 
enter a hypnotic state (with sympathetic dominance) [26,27,28]. 
 

 

Figure 5. Driver hypnosis in the SDNN ratio change during driving 
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Perclose 
Observing drivers while driving revealed a decrease in HRV. However, a reduction in HRV does not cause HRV in 
any noticeable sleep conditions. 

 

  
(a) (b) 

Figure 6. Blink Detection, (a) Eyes Open Detection, (b) Eyes Closed Detection 

 

    

Figure 7. Blink Detection EAR Results 
 

Perclose Model Development 
The model is built using the Hard Sequential API. First, an LSTM layer is added with 50 units (neurons). This layer 
will process the given time series data. A dropout layer was added to prevent overfitting. Then, a Dense layer is 
added to produce a single prediction output (value Perclos (%). The model is compiled using the Adam optimizer 
and the loss function mean_squared_error. 
HRV_(bpm) Number_of_flickers Duration_of_flickers_(Seconds) Perclos (%) 
0 99.009901 25 7.5 0.125 

1 95.846645 44 13.2 0.220 

2 98.684211 55 16.5 0.275 

3 99.667774 43 12.9 0.215 

4 98.360656 49 14.7 0.245 
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Fatigue Level 

0 0 

1  0 

2 0 

3 0 

4 0 

The training model was trained using training data, with the number of epochs specified as 20 and batch_size 32. 
Epoch 1/20 
/usr/local/lib/python3.11/dist-packages/keras/src/layers/rnn/rnn.py:200: UserWarning: Do not pass an 
`input_shape`/`input_dim` argument to a layer. When using Sequential models, I prefer using an 
`Input(shape)` object as the first layer in the model instead.' 

super(). init (**kwargs) 

5/5 ━━━━━━━━━━━━━━━━━━━━ 5s 14ms/stop - loss: 0.2046 Epoch 

2/20 

5/5 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/stop - loss: 0.1790 Epoch 

3/20 

5/5 ━━━━━━━━━━━━━━━━━━━━ 0s 18ms/stop - loss: 0.1547 Epoch 

4/20 

5/5 ━━━━━━━━━━━━━━━━━━━━ 0s 11ms/stop - loss: 0.1337 Epoch 

5/20 

5/5 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/stop - loss: 0.1164 Epoch 

6/20 

5/5 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/stop - loss: 0.1067 Epoch 

7/20 

5/5 ━━━━━━━━━━━━━━━━━━━━ 0s 19ms/stop - loss: 0.0854 Epoch 

8/20 

5/5 ━━━━━━━━━━━━━━━━━━━━ 0s 16ms/stop - loss: 0.0751 Epoch 

9/20 

5/5 ━━━━━━━━━━━━━━━━━━━━ 0s 11ms/stop - loss: 0.0587 Epoch 

10/20 

5/5 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/stop - loss: 0.0505 Epoch 

11/20 

5/5 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/stop - loss: 0.0415 Epoch 

12/20 

5/5 ━━━━━━━━━━━━━━━━━━━━ 0s 40ms/stop - loss: 0.0362 Epoch 

13/20 

5/5 ━━━━━━━━━━━━━━━━━━━━ 0s 23ms/stop - loss: 0.0273 Epoch 

14/20 

5/5 ━━━━━━━━━━━━━━━━━━━━ 0s 29ms/stop - loss: 0.0208 Epoch 

15/20 

5/5 ━━━━━━━━━━━━━━━━━━━━ 0s 21ms/stop - loss: 0.0207 Epoch 

16/20 

5/5 ━━━━━━━━━━━━━━━━━━━━ 0s 26ms/stop - loss: 0.0170 Epoch 
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17/20 

5/5 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/stop - loss: 0.0151 Epoch 

18/20 

5/5 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/stop - loss: 0.0150 Epoch 

19/20 

5/5 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/stop - loss: 0.0138 Epoch 

20/20 

5/5 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/stop - loss: 0.0161 

2/2 ━━━━━━━━━━━━━━━━━━━━ 0s 175ms/step 

MODEL RESULTS 

After training, the model predicts the Perclos (%) value on the test data, and the expected value is returned to the 
original scale. The Mean Squared Error (MSE) and R-squared metrics evaluate the model's performance. 
 

LSTM Model Results   

First Prediction = 0.5567 

Actual First = 0.58 

Mean Squared Error (MSE) = 0.011796681997537337 

R-squared = 0.6027523855338464 

   

The model predicts that the Perclos (%) for the first test data example is around 0.5567. This value is already 
normalized to the range [0, 1] because we use a MinMaxScaler on the target. The actual Perclos value (%) (original 
target value) in the first test data was about 0.58. This value has also been normalized. Mean Squared Error (MSE) 
0.011796681997537337. A low MSE value indicates that the model did not make significant prediction errors, with 
several 0.0118 indicating that the model performed exceptionally well. The smaller the MSE, the better the model's 
predictions compare to the actual value. R-squared (R²) measures how well the model describes variations in the 
target data. The R² value ranges from 0 to 1. Your R² value is about 0.6027; the model explains about 60.27% of the 
variation in the Perclos (%). This shows that the model is pretty good at predicting Perclos (%), although there is 
room for improvement. 

Prediction and Actual Plotting to see how close the prediction is to the actual value can be seen in the following 
diagram: 

Figure 8. Plotting Prediction and Actual Perclose (%) 
 

Loss Curve during training to monitor whether the model is converging and to verify if overfitting occurs. The loss 
curve visualization can be seen as follows: 
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Figure 9. Loss Curve Training Vs. Validation  
 

CONCLUSION 

The prediction for the first test data is very close to the actual value (0.5567 vs 0.58), which indicates that the model 
can perform predictions quite well. A small MSE suggests that the model error is relatively low. An R² of about 
0.60 indicates that the model explains most of the variation in the data, but there are about 40% of the variations 
that the model cannot yet explain. This can mean that other factors affect Perclos (%) that are not accommodated 
by the features used in the model (such as HRV, number of blinks, and blink duration). In the subsequent 
assessment, a combination of road environmental conditions can be further investigated to assess the level of 
hypnosis and the performance of the road system. 
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