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Predictive maintenance, or PdM for short, has emerged as a significant approach across sectors, 

employing data-driven methods like artificial intelligence (AI), data mining (ML), and the Web 

of Things (IoT ) to improve asset performance, decrease downtime, and save maintenance costs.  

This review paper explores the significance of predictive maintenance through a bibliometric 

analysis using VOSviewer, identifying key research trends, influential publications, and thematic 

clusters in the field. The study synthesizes industry-specific applications, including 

manufacturing, aerospace, energy, healthcare, and transportation, highlighting successful 

implementations and their outcomes. Despite significant advancements, research gaps persist in 

terms of real-world adoption challenges, cost-benefit analyses, and cross-industry 

standardization. The findings indicate a strong research focus on predictive analytics and 

condition monitoring but reveal limited studies on implementation barriers, data security, and 

SME adoption. This review contributes to the existing literature by mapping the intellectual 

structure of PdM research, identifying emerging themes, and proposing future research 

directions to enhance scalability and effectiveness. By addressing the existing gaps, this study 

provides valuable insights for researchers, industry practitioners, and policymakers seeking to 

advance predictive maintenance strategies. 

Keywords: Predictive Maintenance, VOSviewer, Bibliometric Analysis, Machine Learning, 

Industry Applications, Condition Monitoring, IoT, AI, Maintenance Optimization 

INTRODUCTION 

Predictive Maintenance (PM) is a cutting-edge maintenance technique that employs data analytics, machine learning, 

and ongoing surveillance to predict equipment issues. Unlike traditional reactive maintenance (repairs once the 

equipment fails) and preventive maintenance (maintenance performed on a defined time schedule), predictive 

maintenance improves the efficiency of maintenance schedules, reduces downtime, and maximizes the performance 

of an asset. Predictive maintenance relies on information collected from sensors, anomaly detection, a failure 

prediction model, and/or decision support systems. Predictive maintenance gives organisations the ability to identify 

trends that will lead to failures, by continuously evaluating historical data and offering operational information in 

real time, so appropriate corrective action can be taken and resources allocated most effectively. 

The progress of maintenance strategies has undergone significant changes throughout the years. Initially, industries 

utilized reactive maintenance, which involved repairing machinery only when it failed. The downside of this approach 

is that machines failure led to downtime and loss of production, which was very costly to an operation. As industries 

expanded, they transitioned to preventive maintenance as a modern philosophy. This was characterized as an 

approach that involved the scheduled inspection and part replacement to prevent failure. However, the core challenge 

of preventive maintenance is a significant amount of work may be performed when it is not necessary. Thus, costs 

were incurred without the benefit of reliability improvement. The move into the late twentieth and early 21st century 

illustrated perhaps the most substantial revolution in maintenance philosophies: the conversion to digital technology. 

The integration of instruments, artificially intelligent (AI), and the Industrial Web of Things (IIoT) opened up a 

revolution in real-time monitoring of machine status, enabling organisations to take on proactive maintenance 

strategies. Essentially, this paradigm shift enabled organisations to move from scheduled maintenance based on time, 
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to condition-based and predictive strategies that would experience significant automatic efficiency improvements 

and improved asset life. 

Over the years, predictive maintenance has moved from human-based inspections and reactive responses to data-

driven, proactive strategies. Past maintenance programs depended on scheduled service or responding to equipment 

failure, which often caused unplanned downtime and increasing operational costs. Human predictive maintenance 

methodologies relied on the skills and expertise of human inspections, vibration analysis, and thermographic image 

analysis. With the application of Industry 4.0 technology, maintenance planning is more meaningful, targeted, 

efficient, and data-driven. Trustworthy IoT sensors in combination with AI and machine learning create a continuous 

monitoring methodology of information concerning equipment health and possible flaws before they ever occur. This 

anticipatory methodology reduces or eliminates downtime, improves maintenance planning, and creates additional 

savings. With the use of analytics provided from cloud-based platforms and digital twins, accurate forecasting can 

create data-driven decisions for businesses while extending the useful life of an asset. Chiller equipment is an 

important part of HVAC systems in all industries and proper maintenance is crucial for its performance. Historically, 

chiller maintenance involved simply reconditioning the equipment—technicians would inspect and maintain the 

equipment on an established schedule and time period. A breakdown in performance of the chiller equipment often 

was not identified until it had already occurred, leading to energy waste and costly repairs.  

Advertising recent developments, predictive maintenance for chiller equipment has emerged leveraging IoT sensors 

and artificial intelligence (AI) algorithms to monitor performance indicators such as temperature, pressure, and 

vibration in real time. More elaborate algorithms take this data and previous performance history to identify 

anomalies and anticipate potential breakdowns. This enables for rapid interventions, which reduces unanticipated 

downtime and extends the chiller's lifetime. Additionally, remote monitoring capabilities enable facility managers to 

track performance and optimize energy efficiency, making modern predictive maintenance a cost-effective and 

reliable solution. 

In today's businesses, proactive upkeep is critical for increasing operating efficiency, lowering maintenance costs, 

and eliminating unexpected downtime. Unexpected equipment failures in industries like manufacturing, 

transportation, energy, and health may result in significant financial losses, safety risks, and production delays. 

Organisations that use predictive maintenance may enhance asset performance, prolong equipment lifetime, and 

increase overall productivity. Furthermore, PM promotes sustainability by decreasing energy consumption, waste, 

and carbon footprints via optimal resource utilisation. The adoption of AI-powered prediction models also allows 

firms to make data-driven choices, which improves dependability and competition. As enterprises embrace digital 

transformation, proactive upkeep has become an essential part of smart manufacturing and Industry 4.0, which is 

enabling continuous process improvement and long-term operations. 

1.1 Chiller HVAC Equipment predictive maintenance 

Chiller HVAC (Heating, Ventilation, and Air Conditioning) equipment is essential for maintaining temperature 

control in industrial, commercial, and residential settings. Predictive maintenance for chiller systems is a proactive 

approach that use analysis of data, Internet of Things (IoT) detectors, and artificial intelligence (AI) to monitor asset 

health and anticipate potential defects before they occur. This approach enhances efficiency and reduces downtime, 

extending the equipment lifespan of chillers. Instead of scheduled maintenance based on pre-determined intervals, 

predictive maintenance utilizes real-time data sourced from critical components of the chiller, including air 

compressors, condensers, evaporators, and the coolant circuit, by way of sensors. These sensory inputs can include 

temperature, pressure, vibration, oil level, and energy usage.  

These collected data will then be analyzed and interpreted using predictive analytics, such that any degraded 

equipment levels and pattern of trends may suggest a potential failure in the equipment. For example, excessive 

vibration in the compressor may indicate a bearing failure, while a deviation in temperature or pressure readings 

found within the coolant circuit likewise may indicate missing refrigerants or poor heat exchange efficiency. An 

additional advantage of predictive maintenance in chilled HVAC systems includes cost savings. Reactive 

maintenance, as relationships break down, leads to failures that cannot be anticipated, expensive emergency repairs 

caused by failure breakdown, or safety causes or people being put in harm way. Implementing predictive maintenance 
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alleviates preemptively, reduces excess costs, and improves energy efficiency of the HVAC system. Predictive 

maintenance improves performance by improving time for chiller assessments and correcting problems before they 

derate chiller performance to excessive power consumption. Studies have shown predictive maintenance can reduce 

energy consumption between 10% and 20% and maintenance costs between 15% and 30%! Predictive maintenance 

improves reliability and mitigates potential liability from industry regulations and specifications for HVAC 

performance, reliability, and Commodity and Environmental Assurance and compliance. Further predictive 

maintenance supports sustainability by reusing existing refrigerants to eliminate greenhouse gasses from escaping 

into the environment where they are not acceptable. Organizations implementing predictive maintenance 

quantifiable benefits in improved asset management, reduced disruption of operations, and improvements to 

satisfaction levels in controlled environments operated by HVAC systems and equipment. To summarize predictive 

maintenance is revolutionary to chiller HVAC systems and eliminates the variability of reactive maintenance to 

convert to proactive maintenance that elevates operation performance and provided documented savings for 

operating cost, efficiency improvements, and comfort. 

Purpose and Scope of the Paper 

This literature review will examine how predictive maintenance can enhance operational efficiency, reduce 

downtime, and improve asset management in diverse industries. This review evaluates current studies focusing on 

the influence of recent advancements, such as artificial intelligence (AI), machine learning (ML), the Internet of 

Things (IoT), and large amounts of data in predictive maintenance procedures. This research covers a range of 

industrial applications from manufacturing, transportation, energy, and infrastructure contexts, and demonstrates 

how predictive maintenance works to reduce unplanned failure, prolong equipment life, and increase cost-efficiency. 

It also outlines critical barriers, best practice, and future research to further promote predictive maintenance 

programs. 

LITERATURE REVIEW 

Predictive Maintenance (PM) is an advanced strategy that leverages technology to anticipate equipment failure and 

conduct preventive repair measures before repairs are necessary. PM utilises IoT, sensors, AI, and data analytics to 

help schedule maintenance, minimise downtime, and enhance effectiveness (Lee et al., 2014). One technology, that 

is leading the way in PM, is IoT which enables real-time data collection with embedded devices. Through IoT, 

embedded sensors in industrial equipment can continuously monitor characteristics such as vibration, humidity, 

pressure, and temperature (Zhang et al. 2019). The sensors collect data to be aggregate for analysis and is reported 

to a cloud or centralised housing. Furthermore, data analysis is supported with AI and machine learning (ML) which 

can detect patterns and anomalies that signify potential breakdown. ML algorithms such as the neural networks and 

tree decision computing can be utilized to predict the degradation of equipment by detecting abnormal operating 

conditions (Jardine et al., 2006). In addition, data analysis can enable a PM system to classify large amounts of 

aggregate data into action strategies using statistical models and big data techniques (Kumar et al., 2020). 

 A Another approach is Reliability-Centered Maintenance (RCM), which prioritizes maintenance tasks based on 

equipment criticality and failure consequences (Nowlan & Heap, 1978). RCM optimizes resource allocation by 

focusing on high-risk components. Failure Prediction Models, including regression analysis, time-series forecasting, 

and deep learning methods, help predict failure probabilities based on historical data trends (Susto et al., 2015). 

Furthermore, the concept of digital twins (a virtual version of a physical object) has developed as a game-changing 

notion in project management. Digital twins forecast performance deterioration and optimise maintenance plans 

using real-time sensor information as well as AI-driven simulations (Tao et al., 2018). Combining these strategies 

allows enterprises to change from reactive maintenance to an active, data-driven strategy, resulting in cost savings, 

enhanced dependability, and improved operational efficiency. As more industries adopt the concepts of smart 

manufacturing and Industry 4.0, predictive maintenance adapts with advancements, such as edge computing, 

blockchain security, and federated learning, to improve prediction performance and data security (Xu et al., 2021). 

These advances will ensure predictive maintenance remains a key component of effective asset management in the 

modern industrial context. Predictive maintenance (PdM) presents significant value to organizations by utilizing 

analytics and machine learning to predict equipment failures before they happen. The most recognized value of PdM 
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is lower costs and better return-on-investment (ROI). By forecasting potential breakdowns, organizations can lower 

their repair costs and extend the usable life of their equipment while avoiding high capital costs of replacement (see 

Lee et al., 2020). Research indicates that PdM can lower maintenance costs by 10-40% compared to reactive 

maintenance, making it a financially viable strategy (Mobley, 2002). Another critical advantage is the minimization 

of unplanned downtime and resource optimization. Unexpected equipment failures may cause large production 

losses, particularly in areas like manufacturing, power, and transportation. Predictive maintenance may save 

unexpected downtime by up to 50%, assuring continuous operation and optimising staff allocation (Jardine et al., 

2006). Furthermore, it helps organisations to transition from an reactive to a proactive maintenance approach, 

resulting in improved inventory management by acquiring replacement parts only when needed. 

 

Figure 1. Classifications of maintenance strategies 

Despite its advantages, predictive maintenance poses significant problems. One significant barrier is the expensive 

initial installation cost. Setting up a PdM network requires the purchase of sensors, data storage, and sophisticated 

analytics platforms, which may be costly for small and medium-sized businesses (SMEs) (Grall et al., 2016). 

Furthermore, the complexity of integrating PdM with current systems and operational processes may be challenging, 

necessitating specialised individuals and change management plans. Another problem is assuring data quality and 

accuracy, since successful predictive maintenance requires a vast amount of high-quality data. Inaccurate or 

inadequate data might result in incorrect forecasts, lowering the efficacy of the maintenance plan (Schmidt et al., 

2018). 

Thus, while predictive maintenance provides substantial cost and operational benefits, addressing the challenges of 

implementation cost, complexity, and data quality is essential for maximizing its effectiveness. 

Table 1: Industry-Specific Applications, Outcomes, and Success Stories of Predictive Maintenance 

Industry 
Application of Predictive 

Maintenance 
Outcomes/Benefits Success Stories/Case Studies 

Manufactur

ing 

Machine learning for 

equipment failure prediction 

20–30% reduction in downtime, 

25% increase in equipment lifespan 

General Motors reduced 

maintenance costs by 20% using 

AI-driven predictive analytics 

Aerospace 
Sensor-based monitoring of 

aircraft components 

Enhanced safety, optimized aircraft 

utilization, reduced unexpected 

failures 

Airbus’ Skywise platform uses 

predictive analytics to reduce 

operational disruptions 
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Industry 
Application of Predictive 

Maintenance 
Outcomes/Benefits Success Stories/Case Studies 

Energy 

(Power 

Plants, Oil 

& Gas) 

IoT-based predictive 

maintenance for turbines, 

pipelines, and generators 

Increased efficiency, prevention of 

catastrophic failures, 15–20% 

reduction in maintenance costs 

BP and Shell use predictive 

maintenance to monitor offshore 

drilling equipment, reducing 

failures by 40% 

Automotive 
AI-driven diagnostics for 

predictive vehicle maintenance 

Fewer breakdowns, optimized fleet 

performance, increased vehicle 

longevity 

Tesla’s remote diagnostics reduce 

unscheduled service visits by 30% 

Healthcare 

(Medical 

Equipment) 

Predictive analytics for MRI 

and CT scanners 

Minimized equipment downtime, 

improved patient care, cost savings 

GE Healthcare’s AI-powered 

monitoring system reduces MRI 

machine failures by 20% 

Railways & 

Transportat

ion 

Real-time monitoring of 

locomotives and tracks 

Fewer service disruptions, cost 

savings on repairs, increased 

operational efficiency 

Indian Railways implemented IoT 

sensors for predictive 

maintenance, reducing failures by 

26% 

Constructio

n 

Predictive maintenance for 

heavy machinery and 

equipment 

Lower repair costs, improved project 

timelines, reduced downtime 

Caterpillar integrates IoT in 

construction machinery to predict 

failures and reduce unplanned 

maintenance 

Research Gap  

Although predictive maintenance is being increasingly implemented in industry, research has some gaps; much of 

the work we see is at the technical levels such as algorithms or even IoT (Internet of things) based monitoring 

applications, however, a number of previous researchers do not discuss accurately the challenges associated with 

real-life implementations of PdM (Predictive maintenance). E.g.  (As an example of a real-life difficulty that has been 

acknowledged within the engineering community, although a lot of work has been done in error, diagnosing machine 

algorithms, hardly a discussion has occurred within the engineering community, if the algorithm is integrated, how 

workforces might adapt or even how costly it may be to convert an existing diagnostic workflow to PdM). As already 

mentioned, while PdM is being used more frequently in multiple contexts, many gaps exist in the research currently 

defined as the literature. Much of the existing research concerning predictive maintenance revolves around machine 

learning and sensor-centric approaches, lacking a framework that22 integrates analytics in real-time, cost-benefit 

analysis, and industry-based challenges. In addition, there is little concerning whether PdM techniques apply in 

various operational contexts, particularly small and medium enterprises, which may limit infrastructure and 

expertise. Even further yet, little attention has been given to understanding the impact of predictive maintenance on 

workforce transformation, regulatory compliance and sustainability. Addressing some of these gaps will facilitate an 

increase in the scalability, efficiency, and general implementation of predictive maintenance activities. Additionally, 

industry-specific case studies are often fragmented, making it difficult to compare outcomes across different sectors. 

Moreover, while predictive maintenance has definitive advantages for decreasing machine downtime and maximizing 

assets performance, there is very little inspection research measuring any long term economic benefits in SMEs. In 

addition, the lack of universal assessments or frameworks for measuring predictive maintenance effectiveness limits 

scalability and incorporation into organizational culture. Future research should investigate a combination of 

assessments, such as cross-comparison across industries and cost-benefit analysis, which identify implications of 

predictive maintenance, and consider strategies for eliminating common implementation obstacles. 

RESEARCH METHODOLOGY 

The research methodology for this review paper utilizes a bibliometric analysis performed with VOSviewer to map 

the intellectual landscape of predictive maintenance (PdM) research. This research employs a systematic approach, 

beginning with the identification of scholarly literature from databases such as Scopus and Web of Science, search 
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terms like predictive maintenance, condition monitoring, machine learning, IoT, and AI in maintenance. A structured 

data extraction approach is then employed to examine trends in publication, citation networks, and co-occurrence of 

keywords in published literature, which aids in identifying both dominant themes of research and emerging areas of 

concern. VOSviewer is utilized for the visualization map generated to highlight influential authors and journals, as 

well as institutions contributing to PdM literature. Lastly, a qualitative content analysis is performed to categorize 

applications in the field as demonstrated in the literature, provide success stories in applying PdM in industry, and 

reveal gaps in research from industry. The literature results are synthesized to shed light on the evolution of PdM 

scholarship, consider current opportunities and challenges to the field of PdM, and outline areas of future research. 

This methodology enables a comprehensive and objective appraisal of the scholarly significance of PdM research 

while providing useful recommendations for both researchers and those who practice PdM in industry. 

ANALYSIS OF RESULTS 

The analysis of data in this study is performed using VOSviewer to visualize bibliometric networks on predictive 

maintenance (PdM). The data source is comprised of combined research papers (i.e., research articles, conference 

papers, and reviews) found on Scopus and WoS in the last two decades. The analysis includes publication trends, co-

occurrence of keywords, citation networks, and a research collaboration network map, to determine key research 

topics and most significant contributions to the field. VOSviewer’s clustering tools were then used to create clusters 

on prominent topics such as AI-enabled predictive maintenance, IoT-based condition monitoring, and cost-benefit 

analysis of PdM, along with an analysis of case studies specific to particular industries for a practical comparison of 

data. The Figure 2. Displays a line graph of the numbers of papers related to predictive maintenance published from 

2014 to 2024 inclusive using scant of the Scopus and Web of Science (WoS) data sets. The trend indicates a significant 

rise in research interest, with both databases showing an upward trajectory in publication numbers. Scopus exhibits 

a more substantial growth rate, increasing from 13 publications in 2014 to a peak of 451 in 2021, before experiencing 

a dip in 2022 (359) and recovering to 420 publications in 2024. WoS follows a similar pattern but with consistently 

lower numbers, starting with 3 publications in 2014 and reaching 252 in 2021, before stabilizing around 250 

publications in 2024. The gap between Scopus and WoS publications widens post-2018, indicating that Scopus hosts 

a significantly higher volume of research in predictive maintenance. The fluctuations observed after 2021 may suggest 

market saturation, shifts in research focus, or evolving technological trends. However, the overall increase in 

publications underscores the growing importance of predictive maintenance in industries such as manufacturing, 

energy, healthcare, and transportation, making it a vital area of study for optimizing asset performance and reducing 

operational risks. 

 

Figure 2. Trend Analysis of Predictive Maintenance Research Publications (2014–2024) 

The Figure 3. represents a VOSviewer network visualization of keyword co-occurrences in research related to 

predictive maintenance. The clusters, depicted in different colors, indicate thematic groupings of research areas. The 

central term, "Industry 4.0" (blue cluster), is a major focal point, highlighting its close association with predictive 

maintenance, digital transformation, and smart manufacturing. The red cluster focuses on machine learning, fault 

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Scopus 13 17 61 96 187 322 403 451 359 400 420

WoS 3 13 52 68 148 222 142 252 212 230 250
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diagnosis, and artificial intelligence, emphasizing the role of AI-driven models in predictive maintenance 

applications.  

The green cluster covers optimization, maintenance management, reliability, and decision-making, showcasing 

studies that integrate predictive maintenance into broader industrial and managerial frameworks. The yellow cluster 

connects big data, cloud computing, and the IoT, representing the technological enablers of predictive maintenance 

in Industry 4.0 environments. The blue cluster spans augmented reality, virtual reality, and simulation, indicating 

how immersive technologies can advance predictive maintenance strategies. The dense connections also suggest a 

high degree of research convergence, meaning that research from different fields’ overlaps together on predictive 

maintenance topics. The figure provides insights into emerging research topics, usage in more interdisciplinary 

applications, and utilizing more advanced technologies in predictive maintenance. This illustrates the role of 

predictive maintenance in increasing industrial efficiency, reducing downtime, and optimizing asset performance. 

The visualization represents a growing interest in research while demonstrating how key themes in predictive 

maintenance are intertwined. Figure 4 presents a network visualization of research trends related to Industry 4.0 and 

predictive maintenance. The visualization consists of interconnected nodes representing key topics and concepts, 

with larger nodes indicating more frequently occurring terms in the research domain. The network is color-coded 

into different clusters, highlighting major themes within Industry 4.0, predictive maintenance, machine learning, 

digital transformation, and emerging technologies. 

The main node in the network is "Industry 4.0", which is also appears to link other themes like "maintenance", 

"management", "design" and "augmented reality." It seems that the research stream related to Industry 4.0 is 

centered on applying digital tools and technologies and intelligent manufacturing practices to improve efficiency. The 

blue cluster highlights digital technologies, featuring "virtual reality," "digital twin," and "smart factory," all of which 

are important to the future of manufacturing and industrial automation. 

The red cluster, located on the left, displays "predictive maintenance" and "machine learning," indicating the 

increasing significance of AI-centric methods of maintenance in industry. Words such as "fault diagnosis," "anomaly 

detection," "deep learning," and "condition monitoring" represent the application of data-driven methods as a means 

to enhance reliability and minimize downtime. The overall linkages between predictive maintenance and Industry 

4.0 show the assimilation of AI, big data analytics, and IoT without constraint to optimize the manufacturing process. 

 

Figure 3. Keyword Co-occurrence Network in Predictive Maintenance Research 
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Figure 4. Network Visualization of Industry 4.0 and Predictive Maintenance Research Trends 

The green cluster covers areas of "maintenance systems" and "optimization," involving aspects of "decision-making," 

"preventive maintenance," and "prognostics." This cluster indicates that structured maintenance strategies can help 

improve industrial resilience. The yellow cluster is composed of "big data" and "Internet of Things," which indicates 

the high significance of data-driven decision-making within Industry 4.0. This diagram shows approximately how 

predictive maintenance, AI, and digital transformation intersect in the context of Industry 4.0, and also displays 

directions for existing and future research opportunities relative to smart manufacturing and industrial innovation. 

Quality Analysis of Predictive Maintenance: TPM, MTTR, and Other Key Metrics 

Predictive maintenance (PdM) is a form of maintenance management that uses analytics, sensors, and machine 

learning to make predictions of equipment failure. This preventative strategy allows organizations to minimize 

equipment downtime, reduce maintenance costs, and maximize overall equipment effectiveness (OEE). There are 

several performance measures that are used to assess the effectiveness of predictive maintenance, including total 

productive maintenance (TPM), mean time to repair (MTTR) and mean time between failures (MTBF) overall 

equipment effectiveness (OEE), and failure rates. 

1. Total Productive Maintenance (TPM) 

TPM is a holistic approach that combines maintenance and production for greater asset reliability and efficiency. 

When utilizing TPM, there are eight pillars: autonomous maintenance, planned maintenance, quality management, 

and education. The underlying goal of TPM is to eliminate all problems, defects, and accidents. 

2. Mean Time to Repair (MTTR) 

The MTTR is the average time required to repair a broken part of technology and restore it to full operational 

capability. A reduced MTTR indicates an efficient maintenance operation with little downtime. It's calculated as: 

MTTR =
∑𝑅𝑒𝑝𝑎𝑖𝑟 𝑇𝑖𝑚𝑒

𝑁𝑜.𝑜𝑓 𝑅𝑒𝑝𝑎𝑖𝑟
 

3. Mean Time Between Failures (MTBF) 

MTBF evaluates equipment dependability by evaluating the average time between failures. A greater MTBF suggests 

improved dependability and lower failure rates. It's computed as: 

MTBF=
∑𝑈𝑝𝑡𝑖𝑚𝑒  𝑇𝑖𝑚𝑒

𝑁𝑜.𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠
 

4. Overall Equipment Effectiveness (OEE) 
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OEE is an important indicator in predictive maintenance for assessing the overall efficiency of industrial activities. It 

derives from three factors: 

● Availability (%) = (Operating Time / Planned Production Time) × 100 

● Performance (%) = (Actual Output / Theoretical Maximum Output) × 100 

● Quality (%) = (Good Output / Total Output) × 100 

OEE=Availability × Performance × Quality 

An OEE score above 85% is considered world-class, indicating excellent maintenance and production efficiency. 

5. Failure Rate 

Failure rate determines the frequency at which a system or component fails. It is calculated as: 

Failure rate =
𝑛𝑜.𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒
 

A lower failure rate signifies a well-maintained and reliable system. 

Table 2. Predictive Maintenance Metrics Comparison 

Metric Definition Ideal Value Impact on Maintenance 

TPM Total productive maintenance High adoption Enhances reliability and efficiency 

MTTR Mean time to repair 
Low (≤ 2-3 

hours) 
Reduces downtime 

MTBF Mean time between failures 
High (≥ 500 

hours) 
Indicates better equipment reliability 

OEE Overall equipment effectiveness ≥ 85% Maximizes operational efficiency 

Failure 

Rate 
Number of failures per unit time Low Improves system reliability 

By reviewing these key performance indicators (KPIs), organizations can evaluate the success of their predictive 

maintenance strategies, maximize maintenance schedules, and decrease unplanned failures. In general, predictive 

maintenance utilized a variety of quality analysis techniques to improve operational efficiency and reduce downtime 

in industrial companies. Total Productive Maintenance (TPM) emphasizes proactive and preventative approaches 

and involves individuals from all levels to build sustainability around the reliability and performance of equipment. 

Mean Time to Repair (MTTR) is a key metric which calculates the average time it takes to restore a machine back to 

full functionality following a failure, allowing the organization to make refinements to its maintenance program; 

Mean Time Between Failures (MTBF) is also an important metric which measures the reliability of equipment by 

calculating the average time between failures. Condition-Based Monitoring (CBM) and Reliability-Centered 

Maintenance (RCM) an enhancement to predictive maintenance tools by collecting data in real-time through sensors 

and to assess risk in order to appropriately plan interventions. The deployment of Industry 4.0 (IoT) sensors and AI 

(artificial intelligence) analytics improves accuracy of inferences to predict failures, prevents unplanned or 

unanticipated failures, and extends the lifespan of equipment. By taking advantage of these tools, organizations can 

improve equipment reliability, limit maintenance costs, and improve productivity. 

CONCLUSION 

Through bibliometric analysis with VOSviewer, the results of this study highlight the increasing importance of 

predictive maintenance (PdM), made evident by the general introduction of predictive maintenance and bibliometric 

analysis. The investigation of research trends from the Scopus and Web of Science databases indicate a marked 

increase in PdM publications over the last ten years, supporting the growing popularity of condition monitoring 

designed with artificial intelligence, Internet-of-Things-based maintenance strategies, and affordable asset 

management solutions. The patterns in publications following 2021 point to a potential pivot in research effort or 

market maturity, which shows that PdM is still relevant in many industries. The keyword co-occurrence further 

represents PdM research as interdisciplinary by blending environments such as artificial intelligence, machine 
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learning, digital transformation, and big data analytics. The close linkage of PdM research to Industry 4.0 

demonstrates the potential for predictive maintenance to reshape industrial maintenance through limitation in down 

time, greater efficiency, and enhancing asset performance. Clustering the literature further indicates the active 

research themes of fault diagnosis, anomaly detection, and overall maintenance optimization, as well cloud-based 

solutions to monitor performance, emphasizing the evolution of PdM driven by technological setups. 

Further, the understanding of Industry 4.0 and trends in predictive maintenance within a network visualisation 

displays a convergence of digital tools, smart manufacturing and predictive analytics. The enactment of digital twins, 

augmented reality and IoT-based solutions into the PdM framework, demonstrates its potential capability to increase 

the resilience of the industrial sector and to support decision-making. The multi-disciplinary connections and high 

degree of research convergence within this area, represents a strong basis for future developments in the area of 

predictive maintenance. In conclusion, predictive maintenance can reshuffle thoughts on industrial automation and 

asset management. As research progresses, the combination of AI empowered predictions, analytics on real-time 

data, and maintenance systems integrated in to the cloud will see PdM's displacement and impact grow into other 

areas. Behavioral studies highlight that persistent technological advances and industry-specific implementations, are 

they key consequence, in promoting the full benefits of predictive maintenance while achieving sustainable and 

efficient operations and surging towards the dynamically evolving Industry 4.0. 
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