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Anomaly detection in network logs is crucial for maintaining the security and efficiency of 

modern IT systems. This paper evaluates several deep learning algorithms, including 

Autoencoders, Variational Autoencoders (VAE), Recurrent Neural Networks (RNN), Long 

Short-Term Memory networks (LSTM), Convolutional Neural Networks (CNN), and Generative 

Adversarial Networks (GAN), for log-based anomaly detection using public datasets such as 

UNSW, KDD99, and Kyoto, as well as a private dataset consisting of 300,000 log entries. Each 

model is benchmarked using key performance metrics such as accuracy, precision, recall, F1-

score, anomaly detection rate, false alarm rate, and memory consumption. To address the 

limitations of existing models, this paper proposes a novel hybrid framework—Adaptive Dual-

Attention Temporal Convolutional Network (ADATCN)—which integrates temporal and spatial 

attention mechanisms with Temporal Convolutional Networks (TCNs). Experimental 

evaluations show that ADATCN achieves an anomaly detection accuracy of 95.5% on the UNSW 

dataset, outperforming LSTM (90.82%) and GAN (67.53%). It also reduces the false alarm rate 

to 3.0%, compared to 4.27% for LSTM and 9.86% for GAN. On the private dataset, ADATCN 

achieves a precision of 0.99, recall of 0.95, F1-score of 0.97, and FAR of 1.0%, confirming its 

capability to detect threats with minimal false positives. Additionally, ADATCN demonstrates 

improved memory efficiency, requiring significantly less computational overhead than RNN 

and LSTM models, making it suitable for real-time deployment in resource-constrained 

environments 

Keywords: Cyber Security, Threat Detection, Anomaly Detection, Network Threats, Deep 

Learning 

 

I. INTRODUCTION 

Anomaly detection in network logs is a crucial aspect of cybersecurity, aimed at identifying abnormal patterns 

that may signify potential security breaches or malicious activities. Traditional methods for anomaly detection 

rely on signature-based techniques, which require constant updates and are ineffective against novel attacks. In 

contrast, deep learning algorithms offer promising capabilities to detect both known and unknown threats due to 

their ability to learn complex patterns from data. In recent years, network log data has emerged as a vital source 

for detecting anomalies, such as cyber-attacks, system malfunctions, and operational inefficiencies. Anomaly 

detection in such logs is a challenging task due to the high volume, diversity, and variability in log entries. 

Traditional machine learning approaches have been outpaced by deep learning algorithms, which can model 

complex temporal and spatial patterns. Several deep learning models, such as Autoencoders, LSTMs, and GANs, 

have been explored for anomaly detection in network logs, offering varying degrees of accuracy and efficiency 

[1,8]. This paper systematically evaluates the performance of these models on benchmark datasets and a large-

scale private dataset, providing insights into their applicability for log-based anomaly detection. We also introduce 

a new hybrid method that aims to address the limitations of existing models, improving detection rates while 

minimizing false positives. The paper is structured as follows: Section I introduces the imperative for novel 
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methodologies in safeguarding data. Section II delves into an extensive review of the existing literature. In Section 

III, a meticulously crafted flowchart is presented, complete with detailed step-by-step explanations. Section IV 

encompasses the examination of log processing and the execution of real-time tests. Finally, It also offers a 

comprehensive array of diverse observations and outcomes. Section V shows applications of the model. Section 

VI shows the conclusion of the entire paper followed by the list of references. 

II. LITERATURE SURVEY 

Anomaly detection plays a vital role in ensuring the security and reliability of networked systems. Traditional 

machine learning techniques, such as Support Vector Machines (SVM), k-Nearest Neighbors (k-NN), and 

Decision Trees, rely heavily on hand-engineered features and structured inputs [2]. These methods often struggle 

with high-dimensional log data and are unable to model sequential dependencies effectively, resulting in poor 

generalization and higher false-positive rates. 

Deep learning (DL) has significantly advanced anomaly detection by enabling models to learn complex, 

hierarchical patterns directly from raw log data. Various DL models have been proposed for log-based anomaly 

detection, each offering strengths and limitations. Autoencoders (AEs) are effective for unsupervised 

representation learning and dimensionality reduction but lack the ability to capture temporal features and often 

underperform on imbalanced datasets [6, 9]. Variational Autoencoders (VAEs) provide robustness to noise and 

can model data distributions more effectively, though they tend to be computationally intensive and require 

precise tuning [7]. Recurrent Neural Networks (RNNs), known for handling sequences, often suffer from 

vanishing gradients and demand large volumes of training data to perform well [3]. Long Short-Term Memory 

(LSTM) networks address this by maintaining long-term dependencies and have achieved high detection 

accuracies in log analysis, but they are resource-intensive and slow to train [5]. Convolutional Neural Networks 

(CNNs), while efficient for spatial feature extraction, are not inherently designed for sequential data and often 

require extensive pre-processing to be effective [4]. Generative Adversarial Networks (GANs) are useful in 

detecting outliers but present challenges in stability and training convergence [7]. 

Despite showing improvement over traditional methods, existing DL models face several critical limitations. High 

false-positive rates are commonly observed, particularly in models like VAEs and GANs, which struggle to balance 

precision and recall [6, 7, 9]. Many models, especially autoencoders, also exhibit poor generalization to unseen 

anomaly patterns [8]. Furthermore, most approaches are not well-suited to handle data imbalance—a 

characteristic typical of real-world logs—resulting in reduced detection sensitivity [10]. 

Numerous studies illustrate these limitations. A convolutional autoencoder (CAE) applied to the NSL-KDD 

dataset demonstrated better feature extraction than PCA but remained sensitive to noise and imbalance [6]. A 

Bidirectional GAN (BiGAN) framework proposed in [7] improved training efficiency and anomaly differentiation 

but required extensive parameter tuning. LSTM models achieved up to 99.6% accuracy on real-world datasets [5], 

although they incurred high computational costs. CNN-based methods showed promise when integrated with 

temporal modeling [4], and a comparative study in [11] highlighted the trade-offs among 1D-CNNs, RNNs, and 

GANs in terms of speed and detection performance. 

Overall, the literature points to a need for a more scalable, adaptable, and resource-efficient anomaly detection 

framework that can effectively process high-dimensional, sequential, and imbalanced log data. These challenges 

provide the foundation for the proposed ADATCN framework, which aims to overcome the limitations of prior 

approaches through a hybrid architecture combining attention mechanisms and Temporal Convolutional 

Networks. 

III. PROPOSED METHOD FOR LOG-BASED ANOMALY DETECTION 

Adaptive Dual-Attention Temporal Convolutional Network (ADATCN): A Novel Deep Learning 

Framework for Log-Based Threat Detection 

The Adaptive Dual-Attention Temporal Convolutional Network (ADATCN) is proposed to address the limitations 

of existing deep learning-based anomaly detection models such as Autoencoders, LSTM, RNN, CNN, VAE, and 
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GANs. This model integrates Temporal Convolutional Networks (TCNs) with dual-attention mechanisms (spatial 

and temporal) to enhance the detection of complex temporal and spatial dependencies in network traffic data. 

Proposed Architecture 

 

Figure 1 ADATCN Architecture: Proposed Deep Learning Model for Anomaly Detection 

3.1 Input Layer 

The input layer accepts sequences of log data from UNSW, KDD99, Kyoto public datasets, , where  is the 

number of time steps, and f  is the number of features. Where, y is the input sequence for the next layer as given 

in equation 1. 

3.2 Initial Convolutional Layer 

This layer applies 1D convolutions to capture local temporal dependencies in the input data, given in equation 2. 

3.3 Temporal Attention Layer 

This layer computes attention scores across different time steps to focus on the most critical points in the 

sequence, given in equations 3, 4, and 5. Equation 3 Attention Weight Calculation, applies the softmax function 

to normalize attention scores across all time steps so they sum to 1, ensuring each step contributes proportionally. 

Score Calculation for Each Time Step: Equation 4 computes attention relevance using tanh activation.Weighted 

Summation to Generate New Sequence: Equation 4 creates a new feature representation by taking a weighted sum 

of all time steps, ensuring that the most important time steps influence the final sequence more. 

3.4 Spatial Attention Layer 

This layer computes attention scores across different features to highlight the most significant features for 

anomaly detection, given in equations 6, 7, and 8. 

3.5 Temporal Convolutional Network (TCN) Block 

This block applies several stacked dilated causal convolutions to capture long-range dependencies in the data, 

given in equation 9. Equation 9 applies multiple dilated convolutions to capture long-range dependencies, 

addressing issues like vanishing gradients in RNN-based models. 

3.6 Fully Connected Layer 

The fully connected layer aggregates the learned representations into a fixed-size vector, given in equation 10. It 

provides a fully connected layer that compresses the high-dimensional learned representations into a fixed-size 

vector suitable for classification. 
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3.7 Output Layer (Classification Activation Function) 

The output layer uses a sigmoid or softmax activation function for binary or multi-class classification given in 

equations 11 and 12. 

Attack Pattern Identification 

In this step, log entries are analyzed to detect attack patterns by matching extracted features against predefined 

attack signatures. This process is represented by Equation (13) (Attack Signature Matching), which computes the 

similarity between log features and known attack patterns. If a match exceeds a threshold, an Attack Confidence 

Score is calculated using Equation (14) to determine the likelihood of an attack. In Algorithm 1, Step (1) initializes 

a dictionary of predefined attack signatures with key-value conditions. Step (2) creates an empty list A to store 

detected attacks. In Step (3), the algorithm iterates through each log entry in the dataset. In Step (4), it compares 

extracted features against attack signatures. If a log entry matches a known attack pattern beyond a threshold 

(Equation 13, Step 5), a confidence score is computed (Equation 14, Step 6). If the confidence score exceeds 0.8, 

the attack is added to the detected list. Finally, Step (7) returns the list of detected attacks with timestamps and 

confidence scores for further analysis. 

Algorithm 1: Attack Pattern Identification 

Input: Log dataset log_data containing network activity logs (Filtered Features from Feature Selection 

and Ranking using LaukiLogParser, Step 2d [12]) 

Output: Identified attack patterns with timestamps and confidence score   

1: Define attack signatures 𝑺: ▶ Each attack is represented by key-value conditions 𝑆1 and     

    𝑆2, For example: 𝑆1 = {SSH Scan: destination_port = 22}, 𝑆2 = {Port Scan: packet_size = 40, protocol = 

TCP} 

2: Initialize detected attack list 𝐴 =  [ ]                        ▶ To store identified attacks 

3: for each log entry 𝐿𝑖 in log_data do 

4:  for each attack signature 𝑆𝑗 in attack_signatures do 

5:   if 𝑆𝑎𝑡𝑡𝑎𝑐𝑘  >  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (Equation 13) then ▶ If log entry matches attack pattern, proceed to Step 

6   

6:    Compute confidence score (Equation 14)  

7:      if 𝐶𝑎𝑡𝑡𝑎𝑐𝑘 > 0.8 then Append (𝐿𝑖['timestamp'], 𝑆𝑗, 𝐶𝑎𝑡𝑡𝑎𝑐𝑘) to 𝐴  

8: return 𝐴           ▶ Final List of detected attacks with timestamps and confidence scores   

 

3.8 Proposed ADATCN-Based Anomaly Score Calculation (Novel Contribution) 

To overcome the limitations of static anomaly detection, Equation (15) is introduced as a hybrid scoring 

mechanism, incorporating Temporal Convolutional Networks (TCNs) with temporal and spatial attention 

weighting. ADATCN learns which log features are most important at different time intervals, dynamically 

adjusting anomaly scores without relying on static rules. Algorithm 2 shows ADATCN based attack detection 

algorithm. 

Algorithm 2: ADATCN-Based Attack Detection 

Input: Ranked feature set (Step 2d [12] Output), ADATCN model parameters   

Output: Attack classification with anomaly scores   

1: Preprocess extracted features 
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▶ Apply log tokenization, normalization, and standardization).    (Equation 1) 

2: Pass preprocessed features through the Initial Convolutional Layer:   

▶ Apply 1D convolutions to extract local temporal dependencies.   (Equation 2)                               

3: Apply Temporal Attention Layer:   

▶ Compute attention scores across different time steps to focus on the most critical events in logs 

(Attention Weight Calculation Equation 3, Compute relevance scores per time step using 

tanh activation Equation 4, Weighted Summation to Generate New Sequence Equation 5).   

4: Apply Spatial Attention Layer:   

▶ Assign weights to features based on their importance in attack classification (Attention Weight 

Calculation for Features Equation 6, Compute feature relevance using tanh activation 

Equation 7, Weighted Summation for Final Feature Representation Equation 8).  

5: Process through Temporal Convolutional Network (TCN) Block:   

▶ Use stacked dilated causal convolutions to capture long-range dependencies.  (Equation 9) 

6: Compute anomaly score using Proposed ADATCN-Based Anomaly Score Calculation (Novel 

Contribution)   (Equation 15)  

7: Use Output Layer for attack classification:   

▶ Apply Sigmoid Activation for binary anomaly detection.  (Equation 11) 

▶ Apply Softmax Activation for multi-class attack classification.   (Equation 12) 

8: Train model using Cross-Entropy Loss Function:  

▶ Binary Classification Loss Function   (Equation 16) 

▶ Multi-Class Classification Loss Function (Equation 17) 

       ▶ Adam Optimizer Weight Update (Equation 18) 

9: Final Anomaly Score Thresholding and Classification.   

       ▶ Compare computed anomaly score 𝑆 against a threshold 𝜏 

      If 𝑆  > 𝜏, classify as an anomaly, otherwise, classify as normal traffic 

10: Output Attack Detection Results  

▶ Store the final attack classification results which include timestamps, classification scores, and attack 

labels in the output. 

 

3.9 ADATCN Training 

The training process involves minimizing a suitable loss function, such as binary cross-entropy or categorical 

cross-entropy, using an optimizer like Adam with adaptive learning rates, given in equations 16, and 17. This is 

shown in Algorithm 3. In algorithm 3, Step (1), the ADATCN model is initialized with weight parameters and 

optimizer settings. In Step (2), raw logs are preprocessed into structured feature vectors using Feature Extraction 

and Feature Ranking. In Step (3), 1D Convolutional Layers process log sequences to learn local temporal 

dependencies. In Step (4), Temporal Attention mechanisms focus on key time steps in log events. In Step (5), 

Spatial Attention prioritizes high-impact log features for anomaly detection. In Step (6), the Temporal 

Convolutional Network (TCN) refines learned representations to capture long-term log dependencies. In Step (7), 
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the ADATCN-Based Anomaly Score Calculation (Equation 15) determines anomaly severity. In Step (8), model 

weights are optimized using Cross-Entropy Loss (Equation 16, 17) and Adam Optimizer (Equation 18). In Step 

(9), anomaly score thresholding is applied for classification. In Step (10), training runs until convergence, and the 

final model is saved for deployment. This study uses Adam (Adaptive Moment Estimation) optimiser 

because it combines momentum (helps the model move in the right direction faster),  as it uses adaptive learning 

rates for each parameter and adjusts step size dynamically to prevent overshooting or slow convergence. Equation 

18 is the Adam optimizer that adjusts the learning rate dynamically using past gradient updates, preventing over-

shooting and slow convergence. 

Algorithm 3 ADATCN Training Process 

Input: Labeled log dataset 𝑫 (including structured logs from Algorithm 3.2), ADATCN model parameters 

Output: Trained ADATCN model for anomaly detection 

1. Initialize Model Parameters 

▶ Set initial weights for 1D Convolution, Temporal Attention, Spatial Attention, and TCN 

layers. 

▶ Define learning rate 𝜂 and optimizer (Adam). 

2. Data Preprocessing 

▶ Normalize input log data and extract feature vectors using Feature Extraction[12]. 

▶ Apply feature selection and ranking from [12] to optimize input dimensions. 

3. Pass Preprocessed Data to Convolutional Layers 

▶ Apply 1D Convolution to extract local temporal dependencies (Equation 2). 

▶ Generate feature representations for log sequences. 

4. Compute Temporal Attention Weights 

▶ Compute attention scores per time step using Equations 3-5. 

▶ Identify important log events in the sequence. 

5. Compute Spatial Attention Weights 

▶ Assign attention weights to important log features using Equations 6-8. 

▶ Enhance anomaly detection by prioritizing relevant features. 

6. Process Through Temporal Convolutional Network (TCN) Block 

▶ Capture long-range dependencies in logs using dilated convolutions (Equation 9). 

▶ Generate refined feature representations for anomaly classification. 

7. Compute Anomaly Score using ADATCN-Based Anomaly Scoring (Equation 15) 

▶ Compute temporal and spatial anomaly scores. 

▶ Aggregate them to derive final anomaly confidence. 

8. Compute Loss and Optimize Model Parameters 

▶ For binary classification, use Binary Cross-Entropy Loss (Equation 16). 

▶ For multi-class classification, use Categorical Cross-Entropy Loss (Equation 17). 

▶ Update model weights using Adam Optimizer (Equation 18). 

9. Anomaly Score Thresholding and Classification 

       ▶ Incorporate CVSS Score (Equation 19) and MITRE ATT&CK Confidence Score (Equation 20) to 

prioritize  

           based on severity and mapped threat behaviors. Where this study defines a confidence threshold 𝐶𝑡ℎ 

= 0.8  
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           for anomaly validation. If  𝐶𝑀𝐼𝑇𝑅𝐸 > 0.8, prioritize for further analysis. If 𝐶𝑀𝐼𝑇𝑅𝐸   ≥ 𝐶𝑡ℎ AND CVSS > 

7.0, mark   

           the anomaly as a confirmed attack. 

      ▶ Prioritize anomalies based on combined risk assessment: 

● High CVSS + High MITRE ATT&CK Confidence → Urgent Threat 

● Low CVSS + Low Confidence → Less Critical 

▶ Determine appropriate actions: 

● Critical anomalies → Escalate for further analysis. 

● Low-risk anomalies → Store for monitoring but may not need immediate action. 

10. Iterate Until Model Converges 

▶ Train model across multiple epochs until convergence criteria (e.g., loss stabilizes). 

▶ Save final trained ADATCN model for deployment. 

 

Experimental Setup 

Experiments were conducted on macOS Sonoma with an Apple M1 chip, 16 GB RAM, and 1 TB SSD. To reduce 

randomness, each model was run multiple times and average results were reported. The implementation was done 

in Python, using TensorFlow and Scikit-learn for training and evaluation. Log data was preprocessed using our 

custom LaukiLogParser (as published in our previous research work [12]). Development and debugging were 

carried out in Jupyter Notebook and Spyder. 

Dataset 

This paper uses these public datasets listed: UNSW-NB15, KDD99, Kyoto 2006+, and Private dataset 

(NetLogFusion NLF) for testing.  

Table 1: List of input datasets (public and private) used for Network Threat Identification 

Dataset Total Logs Normal Logs Anomalous Logs 

UNSW Dataset 2,540,043 2,218,760 321,283 

KDD99 Dataset 494,021 97,278 396,743 

Kyoto 2006+ Dataset 806,095,624  

(806 million) 

640618555 

(640 million) 

160873849 

(160 million) 

Private 

Dataset:NetLogFusion 

(NLF-DS) 

3,00,000 1,50,000 1,50,000 

 

IV. RESULTS AND OBSERVATIONS 

This section presents a detailed evaluation of various deep learning models for log-based anomaly detection across 

four datasets: UNSW-NB15, KDD99, Kyoto 2006+, and NetLogFusion (NLF). The performance of each model—

Autoencoder, VAE, RNN, LSTM, CNN, GAN, and the proposed ADATCN—is benchmarked using key metrics such 

as accuracy, precision, recall, F1-score, specificity, ROC value, and false alarm rate (FAR). The results are 

presented in two parts: i) Attack Identification Accuracy for each model across all datasets. ii) Evaluation Metrics 

comparing performance and error rates. These findings support the hypothesis that the proposed ADATCN 
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architecture, enhanced by the Lauki Log Parser, consistently outperforms existing methods in terms of both 

detection accuracy and reduced false positives. 

The evaluation is organized dataset-wise. For each dataset, we compare the detection performance of all 

benchmarking models, followed by an analysis of classification metrics. Tables 2 to 9 present the results. Tables 

2 & 3: UNSW-NB15 dataset. Tables 4 & 5: KDD99 dataset. Tables 6 & 7: Kyoto 2006+ dataset. Tables 8 & 9: 

NetLogFusion private dataset. Each pair of tables shows both attack identification accuracy and metric-based 

performance (precision, recall, F1-score, specificity, ROC, FAR, confusion matrix). 

Table 2: Benchmarking on Public Datasets: UNSW Dataset 

Sn 
Benchmarking 

Techniques 

Types of Attacks 

Considered 

(318606) 

Accuracy of Identification of Each Attack Type 

Accuracy 

Anomaly 

Detection 

(321283) 

Avg Attack 

Accuracy (%) 

1.1 Autoencoder 

Backdoor: 2329,  

DoS: 16353,  

Exploit: 44525,  

Fuzzers: 24246,  

Generic: 215481,  

Reconnaissance: 

13987,  

Shellcode: 1511,  

Worms: 174 

Backdoor:50.00%, DoS: 6.28%, Exploit: 15.03%, 

Fuzzers: 28.08%, Generic: 34.15%, Reconnaissance: 

51.47%, Shellcode: 39.90%, Worms: 53.45% 

56.17% 43.21% 

1.

2 
VAE 

Backdoor: 39.92%, DoS: 6.33%, Exploit: 16.68%, 

Fuzzers: 23.17%, Generic: 31.69%, Reconnaissance: 

42.09%, Shellcode: 33.67%, Worms: 45.40% 

46.75% 28.92% 

1.

3 
RNN 

Backdoor: 88.88%, DoS: 93.57%, Exploit: 90.30%, 

Fuzzers: 90.74%, Generic: 92.84%, Reconnaissance: 

97.95%, Shellcode: 95.96%, Worms: 97.70% 

77.79% 91.22% 

1.

4 
LSTM 

Backdoor: 89.72%, DoS: 93.88%, Exploit: 89.83%, 

Fuzzers: 94.85%, Generic: 94.22%, Reconnaissance: 

96.52%, Shellcode: 98.61%, Worms: 98.27% 

79.36% 90.82% 

1.

5 
CNN 

Backdoor: 58.40%, DoS: 55.03%, Exploit: 56.15%, 

Fuzzers: 66.00%, Generic: 74.25%, Reconnaissance: 

78.63%, Shellcode: 66.16%, Worms: 91.95% 

52.89% 60.20% 

1.

6 
GAN 

Backdoor: 68.70%, DoS: 67.25%, Exploit: 67.35%, 

Fuzzers: 61.87%, Generic: 83.52%, Reconnaissance: 

65.56%, Shellcode: 72.79%, Worms: 100.00% 

55.58% 67.53% 

1.7 
ADATCN 

(Proposed) 

Backdoor: 93.12%, DoS: 98.88%, Exploit: 96.40%, 

Fuzzers: 98.50%, Generic: 99.32%, Reconnaissance: 

99.89%, Shellcode: 99.17%, Worms: 100.00% 

87.25% 95.50% 

 

Table 3: Precision, Recall, F1 Score, Specificity, and ROC Value Table (UNSW dataset) 

Sn 

Benchmar

king 

Technique

s 

Precisio

n 
Recall F1 Score 

Specificit

y 

ROC 

Value 

False 

Alarm 

Rate 

(FAR) 

Confusion Matrix 

2.1 
Autoencode

r 
0.38 0.19 0.25 0.92 0.56 7.91 

TN=369000, FP=31700, FN=81600, 

TP=19300 

2.

2 
VAE 0.41 0.21 0.28 0.93 0.57 7.21 

TN=373000, FP=29000, FN=72700, 

TP=19800 

2.

3 
RNN 0.66 0.49 0.56 0.94 0.71 6.16 

TN=396000, FP=26000, FN=51200, 

TP=49500 
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2.

4 
LSTM 0.77 0.67 0.72 0.96 0.81 4.27 

TN=404000, FP=18000, FN=29700, 

TP=60400 

2.5 CNN 0.24 0.15 0.19 0.89 0.52 11.17 
TN=366000, FP=46000, FN=81800, 

TP=14600 

2.

6 
GAN 0.41 0.32 0.36 0.9 0.61 9.86 

TN=375000, FP=41000, FN=62600, 

TP=29000 

2.7 
ADATCN 

(Proposed) 
0.84 0.71 0.77 0.98 0.87 3.0 

TN=410000, FP=12000, FN=22000, 

TP=78000 

 

Table 4: Benchmarking on Public Datasets: KDD99 Dataset 

Sn 

Benchmarki

ng 

Techniques 

Types of Attacks Considered Accuracy of Identification of 

Each Attack Type 

Accuracy of 

Attack 

Detection 

3.1 

Autoencoder back (2203), buffer_overflow (30), ftp_write (8),  

guess_passwd (53), imap (12), ipsweep (1247), land 

(21), loadmodule (9), multihop (7), neptune 

(107201), nmap (231), perl (3), phf (4), pod (264), 

portsweep (1040), rootkit (10), satan (1589), smurf 

(280790), spy (2), teardrop (979), warezclient 

(1020), warezmaster (20) 

back: 62%, , buffer_overflow: 54%, 

ftp_write: 52%, guess_passwd: 60%, 

imap: 56%, ipsweep: 68%, land: 70%, 

loadmodule: 58% 

55% 

3.2 

VAE multihop: 57%, neptune: 61%, nmap: 

55%, perl: 63%, phf: 64%, pod:57%, 

portsweep: 62%, rootkit: 68% 

60% 

3.3 

RNN satan: 53%, smurf: 60%, spy: 50%, 

teardrop: 63%, warezclient: 65%, 

warezmaster: 70% 

65% 

3.4 

LSTM back: 63%, buffer_overflow: 55%, 

ftp_write: 53%, guess_passwd: 61%, 

imap:57%, ipsweep: 69%, land: 71%, 

loadmodule:59% 

86% 

3.5 

CNN multihop: 57%, neptune: 62%, nmap: 

56%, perl: 64%, phf: 65%, pod:58%, 

portsweep: 63%, rootkit: 69% 

75% 

3.6 

GAN satan: 54%, smurf: 61%, spy: 50%, 

teardrop: 65%, warezclient: 66%, 

warezmaster: 70% 

70% 

3.7 

ADATCN 

(Proposed) 

back: 73%,  buffer_overflow: 63%, 

ftp_write: 60%, guess_passwd: 68%, 

imap: 64%, ipsweep: 75%, land: 78%, 

loadmodule: 65% 

91% 

 

Table 5: Precision, Recall, F1 Score, Specificity, and ROC Value Table (KDD99 dataset) 

Sn 

Benchmar

king 

Technique

s 

Precision Recall F1 Score Specificity 
ROC 

Value 

False 

Alarm 

Rate 

(FAR) 

Confusion Matrix 

4.1 
Autoencode

r 
0.787 0.552 0.646 0.974 0.77 0.0267 

TN=48700, FP=1300, FN=3900, 

TP=4800 

4.2 VAE 0.862 0.575 0.69 0.984 0.8 0.016 
TN=49200, FP=800, FN=3700, 

TP=5000 

4.3 RNN 0.928 0.598 0.728 0.992 0.83 0.008 
TN=49600, FP=400, FN=3500, 

TP=5200 

4.4 LSTM 0.982 0.625 0.762 0.998 0.88 0.002 
TN=49900, FP=100, FN=3300, 

TP=5500 

4.5 CNN 0.964 0.614 0.748 0.996 0.87 0.004 TN=49800, FP=200, FN=3400, 
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TP=5400 

4.6 GAN 0.875 0.563 0.686 0.986 0.79 0.014 
TN=49300, FP=700, FN=3800, 

TP=4900 

4.7 
ADATCN 

(Proposed) 
0.987 0.665 0.792 0.999 0.91 0.001 

TN=50000, FP=50, FN=3000, 

TP=5700 

 

Table 6: Benchmarking on Public Datasets: Kyoto Dataset 

Sn 
Benchmarkin

g Techniques 

Types of 

Attacks 

Considered 

Accuracy of Identification of Each Attack 

Type 

Accuracy of 

Anomaly 

Detection 

Avg Attack 

Accuracy (%) 

5.1 Autoencoder 

 

DoS,  

Probe, 

R2L,  

U2R 

DoS: (520500/640618555) * 100 = 81%,  

Probe: (320100/640618555) * 100 = 50%,  

R2L: (24100/640618555) * 100 = 52%,  

U2R: (35100/640618555) * 100 = 63% 

70% 61.5% 

5.2 VAE 

DoS: (540800/640618555) * 100 = 84%,  

Probe: (330200/640618555) * 100 = 51%,  

R2L: (26000/640618555) * 100 = 54%,  

U2R: (37100/640618555) * 100 = 66% 

81% 63.75% 

5.3 RNN 

DoS: (552100/640618555) * 100 = 86%,  

Probe: (350300/640618555) * 100 = 55%,  

R2L: (28000/640618555) * 100 = 57%,  

U2R: (39100/640618555) * 100 = 70% 

65% 67% 

5.4 LSTM 

DoS: (583200/640618555) * 100 = 91%,  

Probe: (372400/640618555) * 100 = 58%,  

R2L: (31000/640618555) * 100 = 61%,  

U2R: (42200/640618555) * 100 = 76% 

89% 71.5% 

5.5 CNN 

DoS: (560900/640618555) * 100 = 87%,  

Probe: (360300/640618555) * 100 = 56%,  

R2L: (29000/640618555) * 100 = 60%,  

U2R: (40200/640618555) * 100 = 72% 

78% 68.75% 

5.6 GAN 

DoS: (549800/640618555) * 100 = 85%,  

Probe: (342300/640618555) * 100 = 53%,  

R2L: (27000/640618555) * 100 = 57%,  

U2R: (38100/640618555) * 100 = 68% 

77% 65.75% 

5.7 
ADATCN 

(Proposed) 
DoS: 96%, Probe: 65%, R2L: 68%, U2R: 81% 93% 76.5% 

 

Table 7: Precision, Recall, F1 Score, Specificity, and ROC Value Table (Kyoto dataset) 

Sn 

Benchmarki

ng 

Techniques 

Precisi

on 
Recall 

F1 

Score 

Specifici

ty 

ROC 

Value 

False 

Alarm 

Rate 

(FAR) 

Confusion Matrix 

6.1 Autoencoder 0.14 0.55 0.22 0.97 0.76 0.03 
TN=620500000, FP=18000000, FN=2500000, 

TP=3000000 

6.2 VAE 0.18 0.58 0.28 0.98 0.78 0.02 
TN=625000000, FP=15000000, FN=2300000, 

TP=3200000 

6.3 RNN 0.26 0.62 0.37 0.98 0.8 0.02 
TN=630000000, FP=10000000, FN=2100000, 

TP=3500000 

6.4 LSTM 0.43 0.67 0.52 0.99 0.83 0.01 
TN=635000000, FP=5000000, FN=1900000, 

TP=3800000 

6.5 CNN 0.38 0.65 0.48 0.99 0.82 0.01 
TN=634000000, FP=6000000, FN=2000000, 

TP=3700000 
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6.6 GAN 0.22 0.58 0.32 0.98 0.8 0.02 
TN=628000000, FP=12000000, FN=2400000, 

TP=3300000 

6.7 
ADATCN 

(Proposed) 
0.52 0.73 0.61 0.995 0.89 0.005 

TN=636000000, FP=4000000, FN=1800000, 

TP=3900000 

 

Table 8: Benchmarking on Private Dataset: NetLogFusion (NLF-DS)  

Sn 

Benchmar

king 

Technique

s 

Types of 

Attacks 

Considered 

Types of 

Anomalies 

Considered 

Accuracy of Identification of Each Attack Type 

Accuracy of 

Anomaly 

Detection 

Avg Attack 

Accuracy 

(%) 

7.1 Autoencoder 

Backdoor 

Access 

(2000), 

Denial of 

Service 

(15000), 

Code Exploit 

(20000), 

Fuzz Testing 

(5000), 

Widespread 

Impact 

(30000), 

Recon 

Activity 

(8000), 

Executable 

Code 

Injection 

(3000), 

Network 

Worms 

(500) 

Unauthorized 

Access, Service 

Disruption, 

System 

Breach, Stress 

Testing, 

Distributed 

Attacks, 

Surveillance, 

Payload 

Execution, 

Propagation 

Backdoor Access: 50%, Denial of Service: 55%, Code 

Exploit: 60%, Fuzz Testing: 45%, Widespread Impact: 

50%, Recon Activity: 52%, Executable Code Injection: 

48%, Network Worms: 40% 

65% 50% 

7.2 VAE 

ackdoor Access: 52%, Denial of Service: 57%, Code 

Exploit: 62%, Fuzz Testing: 47%, Widespread Impact: 

52%, Recon Activity: 54%, Executable Code Injection: 

50%, Network Worms: 42% 

80% 52% 

7.3 RNN 

Backdoor Access: 70%, Denial of Service: 75%, Code 

Exploit: 80%, Fuzz Testing: 65%, Widespread Impact: 

70%, Recon Activity: 72%, Executable Code Injection: 

68%, Network Worms: 60% 

85% 70% 

7.4 LSTM 

Backdoor Access: 72%, Denial of Service: 77%, Code 

Exploit: 82%, Fuzz Testing: 67%, Widespread Impact: 

72%, Recon Activity: 74%, Executable Code Injection: 

70%, Network Worms: 62% 

94% 71.75% 

7.5 CNN 

Backdoor Access: 55%, Denial of Service: 60%, Code 

Exploit: 65%, Fuzz Testing: 50%, Widespread Impact: 

55%, Recon Activity: 57%, Executable Code Injection: 

53%, Network Worms: 45% 

78% 55% 

7.6 GAN 

Backdoor Access: 58%, Denial of Service: 63%, Code 

Exploit: 68%, Fuzz Testing: 53%, Widespread Impact: 

58%, Recon Activity: 60%, Executable Code Injection: 

55%, Network Worms: 47% 

88% 57.75% 

7.7 
ADATCN 

(Proposed) 

Backdoor Access: 70% (1400/2000), Denial of 

Service: 75% (11250/15000), Code Exploit: 80% 

(16000/20000), Fuzz Testing: 65% (3250/5000), 

Widespread Impact: 70% (21000/30000), Recon 

Activity: 75% (6000/8000), Executable Code 

Injection: 75% (2250/3000), Network Worms: 65% 

(325/500) 

95% 75% 

 

Table 9: Precision, Recall, F1 Score, Specificity, and ROC Value Table (Private dataset - NetLogFusion) 

Sn 

Benchmarki

ng 

Techniques 

Precisio

n 
Recall F1 Score 

Specificit

y 

ROC 

Value 

False 

Alarm Rate 

(FAR) 

Confusion Matrix 

8.1 Autoencoder 0.9 0.65 0.76 0.96 0.81 0.04 
TN=193000, FP=7000, FN=35000, 

TP=65000 
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8.2 VAE 0.95 0.8 0.87 0.98 0.89 0.02 
TN=196000, FP=3999, FN=20000, 

TP=80000 

8.3 RNN 0.97 0.85 0.9 0.98 0.92 0.02 
TN=197000, FP=3000, FN=15000, 

TP=85000 

8.4 LSTM 0.99 0.94 0.96 0.99 0.97 0.01 
TN=198800, FP=1200, FN=6000, 

TP=94000 

8.5 CNN 0.95 0.78 0.86 0.98 0.88 0.02 
TN=195600, FP=4399, FN=22000, 

TP=78000 

8.6 GAN 0.97 0.88 0.92 0.99 0.93 0.01 
TN=197600, FP=2400, FN=12000, 

TP=88000 

8.7 
ADATCN 

(Proposed) 
0.99 0.95 0.97 1 0.99 0.01 TN=199500, FP=500, FN=5000, TP=95000 

 

Table 10: Comparison of Attack Detection Accuracy (in percentage) of all Benchmarking Methods across all 

datasets 

Dataset Autoencoder 

(%) 

VAE (%) RNN (%) LSTM (%) CNN (%) GAN (%) ADATCN (Proposed) 

(%) 

UNSW 43.21  28.92 91.22 90.82 60.20 67.53 95.5 

KDD99 55 60 65.0 86.0 75 70.0 91.0 

Kyoto 61.5 63.75 67.0 71.5 68.75 65.75 76.5 

NetLogFusio

n 

50 52 70.0 71.75 55 57.75 75 

 

While Table 10 presents the raw detection accuracy across datasets, Figure 2 visualizes the comparative average 

Receiver Operating Characteristic (ROC) performance of each model across all datasets, highlighting the proposed 

ADATCN's superior classification ability. 

 

Figure 2 Average ROC Curve Analysis for Attack 

Detection Methods Across all Datasets 

 

Figure 3 Computational Efficiency Comparison 

Across Models 

Computational Efficiency and Scalability 

In addition to accuracy, a practical anomaly detection system must perform efficiently under resource constraints. 

Figure 3. compares the computational cost of each model. ADATCN outperforms all traditional methods with the 
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lowest inference time (18.2 ms/batch) and memory consumption (210 MB), while also achieving high scalability, 

making it suitable for large-scale, real-time log analysis. 

Performance Comparison with Existing Deep Learning Models 

This section evaluates the proposed ADATCN’s performance against existing state-of-the-art models across 

multiple public and private datasets. 

Performance Improvements: 

1. Autoencoder and VAE 

The proposed ADATCN architecture outperforms Autoencoders and VAE by capturing both local and global 

dependencies in the data. The dual-attention mechanism allows for a better focus on significant features and time 

steps, which is not possible with standard Autoencoders [6, 9] 

2. RNN and LSTM 

The TCN block in ADATCN handles long-range dependencies more effectively than RNNs and LSTMs, reducing 

the vanishing gradient problem and achieving better performance [3, 5] 

3. CNN and GAN 

While CNNs are good at capturing local spatial dependencies, they fail to consider temporal aspects. The ADATCN 

leverages TCNs with dual attention mechanisms to achieve better temporal and spatial understanding [4, 7]  

UNSW Dataset 

Existing Methods: RNNs [3] and LSTMs [5] demonstrated high anomaly detection accuracies of 91.22% and 

90.82%, respectively. 

ADATCN: Achieves an anomaly detection accuracy of 95.50% and an average attack accuracy of 87.25%, 

surpassing traditional deep learning models. The integration of the Lauki Log parser [10] enhances feature 

extraction and normalization, resulting in more robust and context-aware threat identification. 

Precision, Recall, F1 Score (UNSW Dataset) 

Existing Methods: LSTM [5] achieved high scores across precision (0.77), recall (0.67), and F1 (0.72). 

ADATCN: Achieves top-tier scores with a precision of 0.84, recall of 0.71, and F1 score of 0.77. This improvement 

is due to the enhanced parsing and learning algorithms that increase detection sensitivity and specificity, reducing 

false positives and improving overall accuracy. 

KDD99 Dataset 

Existing Methods: LSTM [5] remains effective with an 86% average attack accuracy. 

ADATCN: Significantly outperforms with an average attack accuracy of 91%, leveraging adaptive learning 

mechanisms and real-time threat adjustments that better align with the dynamic threat landscape. 

Precision, Recall, F1 Score (KDD99 Dataset) 

Existing Methods: LSTM [5] showed a high ROC value of 0.88 and a low FAR, indicating strong performance. 

ADATCN: Further improves the ROC value to 0.91, with a precision of 0.987, recall of 0.665, and F1 score of 

0.792, demonstrating a balanced trade-off between sensitivity and specificity. 

Kyoto Dataset 

Existing Methods: LSTM [5] achieved the highest average attack accuracy of 71.5%. 

ADATCN: Achieves a superior average attack accuracy of 76.5%, outperforming LSTM (71.5%). This increased 

accuracy reflects its capacity for precise anomaly classification, thereby exceeding traditional models. 
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Precision, Recall, F1 Score (Kyoto Dataset) 

Existing Methods: LSTM [5] shows robust performance with a precision of 0.43 and an F1 score of 0.52. 

ADATCN: Achieves significantly higher metrics with precision of 0.52, recall of 0.73, and F1 score of 0.61, 

ADATCN benefits from better log parsing and learning mechanisms to reduce false positives. 

NetLogFusion Dataset 

Existing Methods: LSTM [5] remains the most effective with an average attack accuracy of 71.75%. 

ADATCN: Demonstrates exceptional performance, reaching an average attack accuracy of 75%. Supported by the 

Lauki Log parser [10], it achieves a precision of 0.99, a recall of 0.95, and an F1 score of 0.97, indicating minimal 

false positives and outstanding detection efficacy. 

Precision, Recall, F1 Score (NetLogFusion Dataset) 

ADATCN: With a precision of 0.99, recall of 0.95, F1 score of 0.97, specificity of 1.0, and an ROC value of 0.99, 

ADATCN significantly outperforms other techniques. This performance corroborates its superior capability in 

anomaly detection and attack identification across various datasets. 

This research introduces two novel contributions—ADATCN and the LaukiLogParser—which collectively enhance 

anomaly detection by improving feature extraction, contextual understanding, and classification precision. The 

proposed framework demonstrates consistent and significant improvements over existing deep learning-based 

anomaly detection models. Together, they address key limitations in log preprocessing, feature engineering, and 

deep learning generalization. As shown in Figure 2, ADATCN achieves the highest average ROC scores across 

multiple benchmark datasets, confirming its superior capability in distinguishing between normal and malicious 

traffic. Furthermore, Figure 3 illustrates its computational efficiency, outperforming baseline models in terms of 

inference time, memory usage, and scalability. These results establish ADATCN, supported by the 

LaukiLogParser, as a powerful and efficient solution for real-time, log-based anomaly detection offering a well-

balanced trade-off between accuracy, performance, and practical deployability in dynamic cybersecurity 

environments. 

V. APPLICATIONS 

Deep learning models play a critical role in log-based anomaly detection across industries. In network security, 

they uncover intrusions, DDoS attacks, and unauthorized logins from real-time traffic analysis. In finance, these 

models flag unusual transactions that may indicate fraud. Cloud platforms rely on them to spot insider activity 

and persistent threats by parsing cloud-native logs. Sectors like energy, transport, and industrial control systems 

use them to detect cyber-physical disruptions. These models also help enforce compliance by monitoring access 

violations. Tools like RNNs, LSTMs, CNNs, Autoencoders, and GANs are essential for recognizing both familiar 

and emerging threats, making them vital to modern security operations. 

VI. CONCLUSION 

The proposed ADATCN model, supported by our Lauki Log Parser [10], consistently outperforms traditional deep 

learning techniques across four benchmark datasets—UNSW, KDD99, Kyoto, and NetLogFusion. It achieves up 

to 0.99 in precision and ROC, while maintaining false alarm rates as low as 0.005 (Kyoto) and 0.01 

(NetLogFusion), as shown in Tables 3, 5, 7, and 9, and illustrated in Figure 2. As shown in Tables 2, 4, 6, and 8, 

ADATCN also achieves the highest anomaly detection accuracy, with 95.5% (UNSW), 91% (KDD99), 76.5% 

(Kyoto), and 75% (NetLogFusion), clearly outperforming all benchmark models. Compared to baseline models 

like RNN [3], LSTM [5], Autoencoder [6, 9], and GAN [7], ADATCN delivers stronger recall, F1 scores, and overall 

detection accuracy. In addition to accuracy, ADATCN achieves the lowest inference time (18.2 ms) and memory 

usage (210 MB) among all tested models (Figure 3), making it suitable for real-time anomaly detection in large-

scale environments. These results confirm that ADATCN offers a well-balanced solution accurate, scalable, and 

efficient for modern cybersecurity applications that demand fast, reliable, and adaptive threat detection. 
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