
Journal of Information Systems Engineering and Management
2025, 10(34s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

954

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Evaluating Deep Learning Algorithms for Log-Based Anomaly

Detection: Insights from Public and Private Datasets

Mukesh Yadav1, Dhirendra S Mishra2
1PhD Research Scholar, Department of Computer Engineering, SVKM’s NMIMS Deemed to be University

Mukesh Patel School Of Technology Management & Engineering, Mumbai, India

yadav92mukesh@gmail.com

ORCID: 0000-0003-1782-2951
2 Professor, Department of Computer Engineering, SVKM’s NMIMS Deemed to be University

Mukesh Patel School Of Technology Management & Engineering, Mumbai, India

dhirendra.mishra@nmims.edu

ORCID: 0000-0002-2864-7354

ARTICLE INFO ABSTRACT

Received: 29 Dec 2024

Revised: 15 Feb 2025

Accepted: 24 Feb 2025

Anomaly detection in network logs is crucial for maintaining the security and efficiency of

modern IT systems. This paper evaluates several deep learning algorithms, including

Autoencoders, Variational Autoencoders (VAE), Recurrent Neural Networks (RNN), Long

Short-Term Memory networks (LSTM), Convolutional Neural Networks (CNN), and Generative

Adversarial Networks (GAN), for log-based anomaly detection using public datasets such as

UNSW, KDD99, and Kyoto, as well as a private dataset consisting of 300,000 log entries. Each

model is benchmarked using key performance metrics such as accuracy, precision, recall, F1-

score, anomaly detection rate, false alarm rate, and memory consumption. To address the

limitations of existing models, this paper proposes a novel hybrid framework—Adaptive Dual-

Attention Temporal Convolutional Network (ADATCN)—which integrates temporal and spatial

attention mechanisms with Temporal Convolutional Networks (TCNs). Experimental

evaluations show that ADATCN achieves an anomaly detection accuracy of 95.5% on the UNSW

dataset, outperforming LSTM (90.82%) and GAN (67.53%). It also reduces the false alarm rate

to 3.0%, compared to 4.27% for LSTM and 9.86% for GAN. On the private dataset, ADATCN

achieves a precision of 0.99, recall of 0.95, F1-score of 0.97, and FAR of 1.0%, confirming its

capability to detect threats with minimal false positives. Additionally, ADATCN demonstrates

improved memory efficiency, requiring significantly less computational overhead than RNN

and LSTM models, making it suitable for real-time deployment in resource-constrained

environments

Keywords: Cyber Security, Threat Detection, Anomaly Detection, Network Threats, Deep

Learning

I. INTRODUCTION

Anomaly detection in network logs is a crucial aspect of cybersecurity, aimed at identifying abnormal patterns

that may signify potential security breaches or malicious activities. Traditional methods for anomaly detection

rely on signature-based techniques, which require constant updates and are ineffective against novel attacks. In

contrast, deep learning algorithms offer promising capabilities to detect both known and unknown threats due to

their ability to learn complex patterns from data. In recent years, network log data has emerged as a vital source

for detecting anomalies, such as cyber-attacks, system malfunctions, and operational inefficiencies. Anomaly

detection in such logs is a challenging task due to the high volume, diversity, and variability in log entries.

Traditional machine learning approaches have been outpaced by deep learning algorithms, which can model

complex temporal and spatial patterns. Several deep learning models, such as Autoencoders, LSTMs, and GANs,

have been explored for anomaly detection in network logs, offering varying degrees of accuracy and efficiency

[1,8]. This paper systematically evaluates the performance of these models on benchmark datasets and a large-

scale private dataset, providing insights into their applicability for log-based anomaly detection. We also introduce

a new hybrid method that aims to address the limitations of existing models, improving detection rates while

minimizing false positives. The paper is structured as follows: Section I introduces the imperative for novel

https://orcid.org/0000-0003-1782-2951

Journal of Information Systems Engineering and Management
2025, 10(34s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

955

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

methodologies in safeguarding data. Section II delves into an extensive review of the existing literature. In Section

III, a meticulously crafted flowchart is presented, complete with detailed step-by-step explanations. Section IV

encompasses the examination of log processing and the execution of real-time tests. Finally, It also offers a

comprehensive array of diverse observations and outcomes. Section V shows applications of the model. Section

VI shows the conclusion of the entire paper followed by the list of references.

II. LITERATURE SURVEY

Anomaly detection plays a vital role in ensuring the security and reliability of networked systems. Traditional

machine learning techniques, such as Support Vector Machines (SVM), k-Nearest Neighbors (k-NN), and

Decision Trees, rely heavily on hand-engineered features and structured inputs [2]. These methods often struggle

with high-dimensional log data and are unable to model sequential dependencies effectively, resulting in poor

generalization and higher false-positive rates.

Deep learning (DL) has significantly advanced anomaly detection by enabling models to learn complex,

hierarchical patterns directly from raw log data. Various DL models have been proposed for log-based anomaly

detection, each offering strengths and limitations. Autoencoders (AEs) are effective for unsupervised

representation learning and dimensionality reduction but lack the ability to capture temporal features and often

underperform on imbalanced datasets [6, 9]. Variational Autoencoders (VAEs) provide robustness to noise and

can model data distributions more effectively, though they tend to be computationally intensive and require

precise tuning [7]. Recurrent Neural Networks (RNNs), known for handling sequences, often suffer from

vanishing gradients and demand large volumes of training data to perform well [3]. Long Short-Term Memory

(LSTM) networks address this by maintaining long-term dependencies and have achieved high detection

accuracies in log analysis, but they are resource-intensive and slow to train [5]. Convolutional Neural Networks

(CNNs), while efficient for spatial feature extraction, are not inherently designed for sequential data and often

require extensive pre-processing to be effective [4]. Generative Adversarial Networks (GANs) are useful in

detecting outliers but present challenges in stability and training convergence [7].

Despite showing improvement over traditional methods, existing DL models face several critical limitations. High

false-positive rates are commonly observed, particularly in models like VAEs and GANs, which struggle to balance

precision and recall [6, 7, 9]. Many models, especially autoencoders, also exhibit poor generalization to unseen

anomaly patterns [8]. Furthermore, most approaches are not well-suited to handle data imbalance—a

characteristic typical of real-world logs—resulting in reduced detection sensitivity [10].

Numerous studies illustrate these limitations. A convolutional autoencoder (CAE) applied to the NSL-KDD

dataset demonstrated better feature extraction than PCA but remained sensitive to noise and imbalance [6]. A

Bidirectional GAN (BiGAN) framework proposed in [7] improved training efficiency and anomaly differentiation

but required extensive parameter tuning. LSTM models achieved up to 99.6% accuracy on real-world datasets [5],

although they incurred high computational costs. CNN-based methods showed promise when integrated with

temporal modeling [4], and a comparative study in [11] highlighted the trade-offs among 1D-CNNs, RNNs, and

GANs in terms of speed and detection performance.

Overall, the literature points to a need for a more scalable, adaptable, and resource-efficient anomaly detection

framework that can effectively process high-dimensional, sequential, and imbalanced log data. These challenges

provide the foundation for the proposed ADATCN framework, which aims to overcome the limitations of prior

approaches through a hybrid architecture combining attention mechanisms and Temporal Convolutional

Networks.

III. PROPOSED METHOD FOR LOG-BASED ANOMALY DETECTION

Adaptive Dual-Attention Temporal Convolutional Network (ADATCN): A Novel Deep Learning

Framework for Log-Based Threat Detection

The Adaptive Dual-Attention Temporal Convolutional Network (ADATCN) is proposed to address the limitations

of existing deep learning-based anomaly detection models such as Autoencoders, LSTM, RNN, CNN, VAE, and

Journal of Information Systems Engineering and Management
2025, 10(34s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

956

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

GANs. This model integrates Temporal Convolutional Networks (TCNs) with dual-attention mechanisms (spatial

and temporal) to enhance the detection of complex temporal and spatial dependencies in network traffic data.

Proposed Architecture

Figure 1 ADATCN Architecture: Proposed Deep Learning Model for Anomaly Detection

3.1 Input Layer

The input layer accepts sequences of log data from UNSW, KDD99, Kyoto public datasets, , where is the

number of time steps, and f is the number of features. Where, y is the input sequence for the next layer as given

in equation 1.

3.2 Initial Convolutional Layer

This layer applies 1D convolutions to capture local temporal dependencies in the input data, given in equation 2.

3.3 Temporal Attention Layer

This layer computes attention scores across different time steps to focus on the most critical points in the

sequence, given in equations 3, 4, and 5. Equation 3 Attention Weight Calculation, applies the softmax function

to normalize attention scores across all time steps so they sum to 1, ensuring each step contributes proportionally.

Score Calculation for Each Time Step: Equation 4 computes attention relevance using tanh activation.Weighted

Summation to Generate New Sequence: Equation 4 creates a new feature representation by taking a weighted sum

of all time steps, ensuring that the most important time steps influence the final sequence more.

3.4 Spatial Attention Layer

This layer computes attention scores across different features to highlight the most significant features for

anomaly detection, given in equations 6, 7, and 8.

3.5 Temporal Convolutional Network (TCN) Block

This block applies several stacked dilated causal convolutions to capture long-range dependencies in the data,

given in equation 9. Equation 9 applies multiple dilated convolutions to capture long-range dependencies,

addressing issues like vanishing gradients in RNN-based models.

3.6 Fully Connected Layer

The fully connected layer aggregates the learned representations into a fixed-size vector, given in equation 10. It

provides a fully connected layer that compresses the high-dimensional learned representations into a fixed-size

vector suitable for classification.

Journal of Information Systems Engineering and Management
2025, 10(34s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

957

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

3.7 Output Layer (Classification Activation Function)

The output layer uses a sigmoid or softmax activation function for binary or multi-class classification given in

equations 11 and 12.

Attack Pattern Identification

In this step, log entries are analyzed to detect attack patterns by matching extracted features against predefined

attack signatures. This process is represented by Equation (13) (Attack Signature Matching), which computes the

similarity between log features and known attack patterns. If a match exceeds a threshold, an Attack Confidence

Score is calculated using Equation (14) to determine the likelihood of an attack. In Algorithm 1, Step (1) initializes

a dictionary of predefined attack signatures with key-value conditions. Step (2) creates an empty list A to store

detected attacks. In Step (3), the algorithm iterates through each log entry in the dataset. In Step (4), it compares

extracted features against attack signatures. If a log entry matches a known attack pattern beyond a threshold

(Equation 13, Step 5), a confidence score is computed (Equation 14, Step 6). If the confidence score exceeds 0.8,

the attack is added to the detected list. Finally, Step (7) returns the list of detected attacks with timestamps and

confidence scores for further analysis.

Algorithm 1: Attack Pattern Identification

Input: Log dataset log_data containing network activity logs (Filtered Features from Feature Selection

and Ranking using LaukiLogParser, Step 2d [12])

Output: Identified attack patterns with timestamps and confidence score

1: Define attack signatures 𝑺: ▶ Each attack is represented by key-value conditions 𝑆1 and

 𝑆2, For example: 𝑆1 = {SSH Scan: destination_port = 22}, 𝑆2 = {Port Scan: packet_size = 40, protocol =

TCP}

2: Initialize detected attack list 𝐴 = [] ▶ To store identified attacks

3: for each log entry 𝐿𝑖 in log_data do

4: for each attack signature 𝑆𝑗 in attack_signatures do

5: if 𝑆𝑎𝑡𝑡𝑎𝑐𝑘 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (Equation 13) then ▶ If log entry matches attack pattern, proceed to Step

6

6: Compute confidence score (Equation 14)

7: if 𝐶𝑎𝑡𝑡𝑎𝑐𝑘 > 0.8 then Append (𝐿𝑖['timestamp'], 𝑆𝑗, 𝐶𝑎𝑡𝑡𝑎𝑐𝑘) to 𝐴

8: return 𝐴 ▶ Final List of detected attacks with timestamps and confidence scores

3.8 Proposed ADATCN-Based Anomaly Score Calculation (Novel Contribution)

To overcome the limitations of static anomaly detection, Equation (15) is introduced as a hybrid scoring

mechanism, incorporating Temporal Convolutional Networks (TCNs) with temporal and spatial attention

weighting. ADATCN learns which log features are most important at different time intervals, dynamically

adjusting anomaly scores without relying on static rules. Algorithm 2 shows ADATCN based attack detection

algorithm.

Algorithm 2: ADATCN-Based Attack Detection

Input: Ranked feature set (Step 2d [12] Output), ADATCN model parameters

Output: Attack classification with anomaly scores

1: Preprocess extracted features

Journal of Information Systems Engineering and Management
2025, 10(34s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

958

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

▶ Apply log tokenization, normalization, and standardization). (Equation 1)

2: Pass preprocessed features through the Initial Convolutional Layer:

▶ Apply 1D convolutions to extract local temporal dependencies. (Equation 2)

3: Apply Temporal Attention Layer:

▶ Compute attention scores across different time steps to focus on the most critical events in logs

(Attention Weight Calculation Equation 3, Compute relevance scores per time step using

tanh activation Equation 4, Weighted Summation to Generate New Sequence Equation 5).

4: Apply Spatial Attention Layer:

▶ Assign weights to features based on their importance in attack classification (Attention Weight

Calculation for Features Equation 6, Compute feature relevance using tanh activation

Equation 7, Weighted Summation for Final Feature Representation Equation 8).

5: Process through Temporal Convolutional Network (TCN) Block:

▶ Use stacked dilated causal convolutions to capture long-range dependencies. (Equation 9)

6: Compute anomaly score using Proposed ADATCN-Based Anomaly Score Calculation (Novel

Contribution) (Equation 15)

7: Use Output Layer for attack classification:

▶ Apply Sigmoid Activation for binary anomaly detection. (Equation 11)

▶ Apply Softmax Activation for multi-class attack classification. (Equation 12)

8: Train model using Cross-Entropy Loss Function:

▶ Binary Classification Loss Function (Equation 16)

▶ Multi-Class Classification Loss Function (Equation 17)

 ▶ Adam Optimizer Weight Update (Equation 18)

9: Final Anomaly Score Thresholding and Classification.

 ▶ Compare computed anomaly score 𝑆 against a threshold 𝜏

 If 𝑆 > 𝜏, classify as an anomaly, otherwise, classify as normal traffic

10: Output Attack Detection Results

▶ Store the final attack classification results which include timestamps, classification scores, and attack

labels in the output.

3.9 ADATCN Training

The training process involves minimizing a suitable loss function, such as binary cross-entropy or categorical

cross-entropy, using an optimizer like Adam with adaptive learning rates, given in equations 16, and 17. This is

shown in Algorithm 3. In algorithm 3, Step (1), the ADATCN model is initialized with weight parameters and

optimizer settings. In Step (2), raw logs are preprocessed into structured feature vectors using Feature Extraction

and Feature Ranking. In Step (3), 1D Convolutional Layers process log sequences to learn local temporal

dependencies. In Step (4), Temporal Attention mechanisms focus on key time steps in log events. In Step (5),

Spatial Attention prioritizes high-impact log features for anomaly detection. In Step (6), the Temporal

Convolutional Network (TCN) refines learned representations to capture long-term log dependencies. In Step (7),

Journal of Information Systems Engineering and Management
2025, 10(34s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

959

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

the ADATCN-Based Anomaly Score Calculation (Equation 15) determines anomaly severity. In Step (8), model

weights are optimized using Cross-Entropy Loss (Equation 16, 17) and Adam Optimizer (Equation 18). In Step

(9), anomaly score thresholding is applied for classification. In Step (10), training runs until convergence, and the

final model is saved for deployment. This study uses Adam (Adaptive Moment Estimation) optimiser

because it combines momentum (helps the model move in the right direction faster), as it uses adaptive learning

rates for each parameter and adjusts step size dynamically to prevent overshooting or slow convergence. Equation

18 is the Adam optimizer that adjusts the learning rate dynamically using past gradient updates, preventing over-

shooting and slow convergence.

Algorithm 3 ADATCN Training Process

Input: Labeled log dataset 𝑫 (including structured logs from Algorithm 3.2), ADATCN model parameters

Output: Trained ADATCN model for anomaly detection

1. Initialize Model Parameters

▶ Set initial weights for 1D Convolution, Temporal Attention, Spatial Attention, and TCN

layers.

▶ Define learning rate 𝜂 and optimizer (Adam).

2. Data Preprocessing

▶ Normalize input log data and extract feature vectors using Feature Extraction[12].

▶ Apply feature selection and ranking from [12] to optimize input dimensions.

3. Pass Preprocessed Data to Convolutional Layers

▶ Apply 1D Convolution to extract local temporal dependencies (Equation 2).

▶ Generate feature representations for log sequences.

4. Compute Temporal Attention Weights

▶ Compute attention scores per time step using Equations 3-5.

▶ Identify important log events in the sequence.

5. Compute Spatial Attention Weights

▶ Assign attention weights to important log features using Equations 6-8.

▶ Enhance anomaly detection by prioritizing relevant features.

6. Process Through Temporal Convolutional Network (TCN) Block

▶ Capture long-range dependencies in logs using dilated convolutions (Equation 9).

▶ Generate refined feature representations for anomaly classification.

7. Compute Anomaly Score using ADATCN-Based Anomaly Scoring (Equation 15)

▶ Compute temporal and spatial anomaly scores.

▶ Aggregate them to derive final anomaly confidence.

8. Compute Loss and Optimize Model Parameters

▶ For binary classification, use Binary Cross-Entropy Loss (Equation 16).

▶ For multi-class classification, use Categorical Cross-Entropy Loss (Equation 17).

▶ Update model weights using Adam Optimizer (Equation 18).

9. Anomaly Score Thresholding and Classification

 ▶ Incorporate CVSS Score (Equation 19) and MITRE ATT&CK Confidence Score (Equation 20) to

prioritize

 based on severity and mapped threat behaviors. Where this study defines a confidence threshold 𝐶𝑡ℎ

= 0.8

Journal of Information Systems Engineering and Management
2025, 10(34s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

960

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 for anomaly validation. If 𝐶𝑀𝐼𝑇𝑅𝐸 > 0.8, prioritize for further analysis. If 𝐶𝑀𝐼𝑇𝑅𝐸 ≥ 𝐶𝑡ℎ AND CVSS >

7.0, mark

 the anomaly as a confirmed attack.

 ▶ Prioritize anomalies based on combined risk assessment:

● High CVSS + High MITRE ATT&CK Confidence → Urgent Threat

● Low CVSS + Low Confidence → Less Critical

▶ Determine appropriate actions:

● Critical anomalies → Escalate for further analysis.

● Low-risk anomalies → Store for monitoring but may not need immediate action.

10. Iterate Until Model Converges

▶ Train model across multiple epochs until convergence criteria (e.g., loss stabilizes).

▶ Save final trained ADATCN model for deployment.

Experimental Setup

Experiments were conducted on macOS Sonoma with an Apple M1 chip, 16 GB RAM, and 1 TB SSD. To reduce

randomness, each model was run multiple times and average results were reported. The implementation was done

in Python, using TensorFlow and Scikit-learn for training and evaluation. Log data was preprocessed using our

custom LaukiLogParser (as published in our previous research work [12]). Development and debugging were

carried out in Jupyter Notebook and Spyder.

Dataset

This paper uses these public datasets listed: UNSW-NB15, KDD99, Kyoto 2006+, and Private dataset

(NetLogFusion NLF) for testing.

Table 1: List of input datasets (public and private) used for Network Threat Identification

Dataset Total Logs Normal Logs Anomalous Logs

UNSW Dataset 2,540,043 2,218,760 321,283

KDD99 Dataset 494,021 97,278 396,743

Kyoto 2006+ Dataset 806,095,624

(806 million)

640618555

(640 million)

160873849

(160 million)

Private

Dataset:NetLogFusion

(NLF-DS)

3,00,000 1,50,000 1,50,000

IV. RESULTS AND OBSERVATIONS

This section presents a detailed evaluation of various deep learning models for log-based anomaly detection across

four datasets: UNSW-NB15, KDD99, Kyoto 2006+, and NetLogFusion (NLF). The performance of each model—

Autoencoder, VAE, RNN, LSTM, CNN, GAN, and the proposed ADATCN—is benchmarked using key metrics such

as accuracy, precision, recall, F1-score, specificity, ROC value, and false alarm rate (FAR). The results are

presented in two parts: i) Attack Identification Accuracy for each model across all datasets. ii) Evaluation Metrics

comparing performance and error rates. These findings support the hypothesis that the proposed ADATCN

Journal of Information Systems Engineering and Management
2025, 10(34s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

961

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

architecture, enhanced by the Lauki Log Parser, consistently outperforms existing methods in terms of both

detection accuracy and reduced false positives.

The evaluation is organized dataset-wise. For each dataset, we compare the detection performance of all

benchmarking models, followed by an analysis of classification metrics. Tables 2 to 9 present the results. Tables

2 & 3: UNSW-NB15 dataset. Tables 4 & 5: KDD99 dataset. Tables 6 & 7: Kyoto 2006+ dataset. Tables 8 & 9:

NetLogFusion private dataset. Each pair of tables shows both attack identification accuracy and metric-based

performance (precision, recall, F1-score, specificity, ROC, FAR, confusion matrix).

Table 2: Benchmarking on Public Datasets: UNSW Dataset

Sn
Benchmarking

Techniques

Types of Attacks

Considered

(318606)

Accuracy of Identification of Each Attack Type

Accuracy

Anomaly

Detection

(321283)

Avg Attack

Accuracy (%)

1.1 Autoencoder

Backdoor: 2329,

DoS: 16353,

Exploit: 44525,

Fuzzers: 24246,

Generic: 215481,

Reconnaissance:

13987,

Shellcode: 1511,

Worms: 174

Backdoor:50.00%, DoS: 6.28%, Exploit: 15.03%,

Fuzzers: 28.08%, Generic: 34.15%, Reconnaissance:

51.47%, Shellcode: 39.90%, Worms: 53.45%

56.17% 43.21%

1.

2
VAE

Backdoor: 39.92%, DoS: 6.33%, Exploit: 16.68%,

Fuzzers: 23.17%, Generic: 31.69%, Reconnaissance:

42.09%, Shellcode: 33.67%, Worms: 45.40%

46.75% 28.92%

1.

3
RNN

Backdoor: 88.88%, DoS: 93.57%, Exploit: 90.30%,

Fuzzers: 90.74%, Generic: 92.84%, Reconnaissance:

97.95%, Shellcode: 95.96%, Worms: 97.70%

77.79% 91.22%

1.

4
LSTM

Backdoor: 89.72%, DoS: 93.88%, Exploit: 89.83%,

Fuzzers: 94.85%, Generic: 94.22%, Reconnaissance:

96.52%, Shellcode: 98.61%, Worms: 98.27%

79.36% 90.82%

1.

5
CNN

Backdoor: 58.40%, DoS: 55.03%, Exploit: 56.15%,

Fuzzers: 66.00%, Generic: 74.25%, Reconnaissance:

78.63%, Shellcode: 66.16%, Worms: 91.95%

52.89% 60.20%

1.

6
GAN

Backdoor: 68.70%, DoS: 67.25%, Exploit: 67.35%,

Fuzzers: 61.87%, Generic: 83.52%, Reconnaissance:

65.56%, Shellcode: 72.79%, Worms: 100.00%

55.58% 67.53%

1.7
ADATCN

(Proposed)

Backdoor: 93.12%, DoS: 98.88%, Exploit: 96.40%,

Fuzzers: 98.50%, Generic: 99.32%, Reconnaissance:

99.89%, Shellcode: 99.17%, Worms: 100.00%

87.25% 95.50%

Table 3: Precision, Recall, F1 Score, Specificity, and ROC Value Table (UNSW dataset)

Sn

Benchmar

king

Technique

s

Precisio

n
Recall F1 Score

Specificit

y

ROC

Value

False

Alarm

Rate

(FAR)

Confusion Matrix

2.1
Autoencode

r
0.38 0.19 0.25 0.92 0.56 7.91

TN=369000, FP=31700, FN=81600,

TP=19300

2.

2
VAE 0.41 0.21 0.28 0.93 0.57 7.21

TN=373000, FP=29000, FN=72700,

TP=19800

2.

3
RNN 0.66 0.49 0.56 0.94 0.71 6.16

TN=396000, FP=26000, FN=51200,

TP=49500

Journal of Information Systems Engineering and Management
2025, 10(34s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

962

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

2.

4
LSTM 0.77 0.67 0.72 0.96 0.81 4.27

TN=404000, FP=18000, FN=29700,

TP=60400

2.5 CNN 0.24 0.15 0.19 0.89 0.52 11.17
TN=366000, FP=46000, FN=81800,

TP=14600

2.

6
GAN 0.41 0.32 0.36 0.9 0.61 9.86

TN=375000, FP=41000, FN=62600,

TP=29000

2.7
ADATCN

(Proposed)
0.84 0.71 0.77 0.98 0.87 3.0

TN=410000, FP=12000, FN=22000,

TP=78000

Table 4: Benchmarking on Public Datasets: KDD99 Dataset

Sn

Benchmarki

ng

Techniques

Types of Attacks Considered Accuracy of Identification of

Each Attack Type

Accuracy of

Attack

Detection

3.1

Autoencoder back (2203), buffer_overflow (30), ftp_write (8),

guess_passwd (53), imap (12), ipsweep (1247), land

(21), loadmodule (9), multihop (7), neptune

(107201), nmap (231), perl (3), phf (4), pod (264),

portsweep (1040), rootkit (10), satan (1589), smurf

(280790), spy (2), teardrop (979), warezclient

(1020), warezmaster (20)

back: 62%, , buffer_overflow: 54%,

ftp_write: 52%, guess_passwd: 60%,

imap: 56%, ipsweep: 68%, land: 70%,

loadmodule: 58%

55%

3.2

VAE multihop: 57%, neptune: 61%, nmap:

55%, perl: 63%, phf: 64%, pod:57%,

portsweep: 62%, rootkit: 68%

60%

3.3

RNN satan: 53%, smurf: 60%, spy: 50%,

teardrop: 63%, warezclient: 65%,

warezmaster: 70%

65%

3.4

LSTM back: 63%, buffer_overflow: 55%,

ftp_write: 53%, guess_passwd: 61%,

imap:57%, ipsweep: 69%, land: 71%,

loadmodule:59%

86%

3.5

CNN multihop: 57%, neptune: 62%, nmap:

56%, perl: 64%, phf: 65%, pod:58%,

portsweep: 63%, rootkit: 69%

75%

3.6

GAN satan: 54%, smurf: 61%, spy: 50%,

teardrop: 65%, warezclient: 66%,

warezmaster: 70%

70%

3.7

ADATCN

(Proposed)

back: 73%, buffer_overflow: 63%,

ftp_write: 60%, guess_passwd: 68%,

imap: 64%, ipsweep: 75%, land: 78%,

loadmodule: 65%

91%

Table 5: Precision, Recall, F1 Score, Specificity, and ROC Value Table (KDD99 dataset)

Sn

Benchmar

king

Technique

s

Precision Recall F1 Score Specificity
ROC

Value

False

Alarm

Rate

(FAR)

Confusion Matrix

4.1
Autoencode

r
0.787 0.552 0.646 0.974 0.77 0.0267

TN=48700, FP=1300, FN=3900,

TP=4800

4.2 VAE 0.862 0.575 0.69 0.984 0.8 0.016
TN=49200, FP=800, FN=3700,

TP=5000

4.3 RNN 0.928 0.598 0.728 0.992 0.83 0.008
TN=49600, FP=400, FN=3500,

TP=5200

4.4 LSTM 0.982 0.625 0.762 0.998 0.88 0.002
TN=49900, FP=100, FN=3300,

TP=5500

4.5 CNN 0.964 0.614 0.748 0.996 0.87 0.004 TN=49800, FP=200, FN=3400,

Journal of Information Systems Engineering and Management
2025, 10(34s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

963

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

TP=5400

4.6 GAN 0.875 0.563 0.686 0.986 0.79 0.014
TN=49300, FP=700, FN=3800,

TP=4900

4.7
ADATCN

(Proposed)
0.987 0.665 0.792 0.999 0.91 0.001

TN=50000, FP=50, FN=3000,

TP=5700

Table 6: Benchmarking on Public Datasets: Kyoto Dataset

Sn
Benchmarkin

g Techniques

Types of

Attacks

Considered

Accuracy of Identification of Each Attack

Type

Accuracy of

Anomaly

Detection

Avg Attack

Accuracy (%)

5.1 Autoencoder

DoS,

Probe,

R2L,

U2R

DoS: (520500/640618555) * 100 = 81%,

Probe: (320100/640618555) * 100 = 50%,

R2L: (24100/640618555) * 100 = 52%,

U2R: (35100/640618555) * 100 = 63%

70% 61.5%

5.2 VAE

DoS: (540800/640618555) * 100 = 84%,

Probe: (330200/640618555) * 100 = 51%,

R2L: (26000/640618555) * 100 = 54%,

U2R: (37100/640618555) * 100 = 66%

81% 63.75%

5.3 RNN

DoS: (552100/640618555) * 100 = 86%,

Probe: (350300/640618555) * 100 = 55%,

R2L: (28000/640618555) * 100 = 57%,

U2R: (39100/640618555) * 100 = 70%

65% 67%

5.4 LSTM

DoS: (583200/640618555) * 100 = 91%,

Probe: (372400/640618555) * 100 = 58%,

R2L: (31000/640618555) * 100 = 61%,

U2R: (42200/640618555) * 100 = 76%

89% 71.5%

5.5 CNN

DoS: (560900/640618555) * 100 = 87%,

Probe: (360300/640618555) * 100 = 56%,

R2L: (29000/640618555) * 100 = 60%,

U2R: (40200/640618555) * 100 = 72%

78% 68.75%

5.6 GAN

DoS: (549800/640618555) * 100 = 85%,

Probe: (342300/640618555) * 100 = 53%,

R2L: (27000/640618555) * 100 = 57%,

U2R: (38100/640618555) * 100 = 68%

77% 65.75%

5.7
ADATCN

(Proposed)
DoS: 96%, Probe: 65%, R2L: 68%, U2R: 81% 93% 76.5%

Table 7: Precision, Recall, F1 Score, Specificity, and ROC Value Table (Kyoto dataset)

Sn

Benchmarki

ng

Techniques

Precisi

on
Recall

F1

Score

Specifici

ty

ROC

Value

False

Alarm

Rate

(FAR)

Confusion Matrix

6.1 Autoencoder 0.14 0.55 0.22 0.97 0.76 0.03
TN=620500000, FP=18000000, FN=2500000,

TP=3000000

6.2 VAE 0.18 0.58 0.28 0.98 0.78 0.02
TN=625000000, FP=15000000, FN=2300000,

TP=3200000

6.3 RNN 0.26 0.62 0.37 0.98 0.8 0.02
TN=630000000, FP=10000000, FN=2100000,

TP=3500000

6.4 LSTM 0.43 0.67 0.52 0.99 0.83 0.01
TN=635000000, FP=5000000, FN=1900000,

TP=3800000

6.5 CNN 0.38 0.65 0.48 0.99 0.82 0.01
TN=634000000, FP=6000000, FN=2000000,

TP=3700000

Journal of Information Systems Engineering and Management
2025, 10(34s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

964

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

6.6 GAN 0.22 0.58 0.32 0.98 0.8 0.02
TN=628000000, FP=12000000, FN=2400000,

TP=3300000

6.7
ADATCN

(Proposed)
0.52 0.73 0.61 0.995 0.89 0.005

TN=636000000, FP=4000000, FN=1800000,

TP=3900000

Table 8: Benchmarking on Private Dataset: NetLogFusion (NLF-DS)

Sn

Benchmar

king

Technique

s

Types of

Attacks

Considered

Types of

Anomalies

Considered

Accuracy of Identification of Each Attack Type

Accuracy of

Anomaly

Detection

Avg Attack

Accuracy

(%)

7.1 Autoencoder

Backdoor

Access

(2000),

Denial of

Service

(15000),

Code Exploit

(20000),

Fuzz Testing

(5000),

Widespread

Impact

(30000),

Recon

Activity

(8000),

Executable

Code

Injection

(3000),

Network

Worms

(500)

Unauthorized

Access, Service

Disruption,

System

Breach, Stress

Testing,

Distributed

Attacks,

Surveillance,

Payload

Execution,

Propagation

Backdoor Access: 50%, Denial of Service: 55%, Code

Exploit: 60%, Fuzz Testing: 45%, Widespread Impact:

50%, Recon Activity: 52%, Executable Code Injection:

48%, Network Worms: 40%

65% 50%

7.2 VAE

ackdoor Access: 52%, Denial of Service: 57%, Code

Exploit: 62%, Fuzz Testing: 47%, Widespread Impact:

52%, Recon Activity: 54%, Executable Code Injection:

50%, Network Worms: 42%

80% 52%

7.3 RNN

Backdoor Access: 70%, Denial of Service: 75%, Code

Exploit: 80%, Fuzz Testing: 65%, Widespread Impact:

70%, Recon Activity: 72%, Executable Code Injection:

68%, Network Worms: 60%

85% 70%

7.4 LSTM

Backdoor Access: 72%, Denial of Service: 77%, Code

Exploit: 82%, Fuzz Testing: 67%, Widespread Impact:

72%, Recon Activity: 74%, Executable Code Injection:

70%, Network Worms: 62%

94% 71.75%

7.5 CNN

Backdoor Access: 55%, Denial of Service: 60%, Code

Exploit: 65%, Fuzz Testing: 50%, Widespread Impact:

55%, Recon Activity: 57%, Executable Code Injection:

53%, Network Worms: 45%

78% 55%

7.6 GAN

Backdoor Access: 58%, Denial of Service: 63%, Code

Exploit: 68%, Fuzz Testing: 53%, Widespread Impact:

58%, Recon Activity: 60%, Executable Code Injection:

55%, Network Worms: 47%

88% 57.75%

7.7
ADATCN

(Proposed)

Backdoor Access: 70% (1400/2000), Denial of

Service: 75% (11250/15000), Code Exploit: 80%

(16000/20000), Fuzz Testing: 65% (3250/5000),

Widespread Impact: 70% (21000/30000), Recon

Activity: 75% (6000/8000), Executable Code

Injection: 75% (2250/3000), Network Worms: 65%

(325/500)

95% 75%

Table 9: Precision, Recall, F1 Score, Specificity, and ROC Value Table (Private dataset - NetLogFusion)

Sn

Benchmarki

ng

Techniques

Precisio

n
Recall F1 Score

Specificit

y

ROC

Value

False

Alarm Rate

(FAR)

Confusion Matrix

8.1 Autoencoder 0.9 0.65 0.76 0.96 0.81 0.04
TN=193000, FP=7000, FN=35000,

TP=65000

Journal of Information Systems Engineering and Management
2025, 10(34s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

965

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

8.2 VAE 0.95 0.8 0.87 0.98 0.89 0.02
TN=196000, FP=3999, FN=20000,

TP=80000

8.3 RNN 0.97 0.85 0.9 0.98 0.92 0.02
TN=197000, FP=3000, FN=15000,

TP=85000

8.4 LSTM 0.99 0.94 0.96 0.99 0.97 0.01
TN=198800, FP=1200, FN=6000,

TP=94000

8.5 CNN 0.95 0.78 0.86 0.98 0.88 0.02
TN=195600, FP=4399, FN=22000,

TP=78000

8.6 GAN 0.97 0.88 0.92 0.99 0.93 0.01
TN=197600, FP=2400, FN=12000,

TP=88000

8.7
ADATCN

(Proposed)
0.99 0.95 0.97 1 0.99 0.01 TN=199500, FP=500, FN=5000, TP=95000

Table 10: Comparison of Attack Detection Accuracy (in percentage) of all Benchmarking Methods across all

datasets

Dataset Autoencoder

(%)

VAE (%) RNN (%) LSTM (%) CNN (%) GAN (%) ADATCN (Proposed)

(%)

UNSW 43.21 28.92 91.22 90.82 60.20 67.53 95.5

KDD99 55 60 65.0 86.0 75 70.0 91.0

Kyoto 61.5 63.75 67.0 71.5 68.75 65.75 76.5

NetLogFusio

n

50 52 70.0 71.75 55 57.75 75

While Table 10 presents the raw detection accuracy across datasets, Figure 2 visualizes the comparative average

Receiver Operating Characteristic (ROC) performance of each model across all datasets, highlighting the proposed

ADATCN's superior classification ability.

Figure 2 Average ROC Curve Analysis for Attack

Detection Methods Across all Datasets

Figure 3 Computational Efficiency Comparison

Across Models

Computational Efficiency and Scalability

In addition to accuracy, a practical anomaly detection system must perform efficiently under resource constraints.

Figure 3. compares the computational cost of each model. ADATCN outperforms all traditional methods with the

Journal of Information Systems Engineering and Management
2025, 10(34s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

966

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

lowest inference time (18.2 ms/batch) and memory consumption (210 MB), while also achieving high scalability,

making it suitable for large-scale, real-time log analysis.

Performance Comparison with Existing Deep Learning Models

This section evaluates the proposed ADATCN’s performance against existing state-of-the-art models across

multiple public and private datasets.

Performance Improvements:

1. Autoencoder and VAE

The proposed ADATCN architecture outperforms Autoencoders and VAE by capturing both local and global

dependencies in the data. The dual-attention mechanism allows for a better focus on significant features and time

steps, which is not possible with standard Autoencoders [6, 9]

2. RNN and LSTM

The TCN block in ADATCN handles long-range dependencies more effectively than RNNs and LSTMs, reducing

the vanishing gradient problem and achieving better performance [3, 5]

3. CNN and GAN

While CNNs are good at capturing local spatial dependencies, they fail to consider temporal aspects. The ADATCN

leverages TCNs with dual attention mechanisms to achieve better temporal and spatial understanding [4, 7]

UNSW Dataset

Existing Methods: RNNs [3] and LSTMs [5] demonstrated high anomaly detection accuracies of 91.22% and

90.82%, respectively.

ADATCN: Achieves an anomaly detection accuracy of 95.50% and an average attack accuracy of 87.25%,

surpassing traditional deep learning models. The integration of the Lauki Log parser [10] enhances feature

extraction and normalization, resulting in more robust and context-aware threat identification.

Precision, Recall, F1 Score (UNSW Dataset)

Existing Methods: LSTM [5] achieved high scores across precision (0.77), recall (0.67), and F1 (0.72).

ADATCN: Achieves top-tier scores with a precision of 0.84, recall of 0.71, and F1 score of 0.77. This improvement

is due to the enhanced parsing and learning algorithms that increase detection sensitivity and specificity, reducing

false positives and improving overall accuracy.

KDD99 Dataset

Existing Methods: LSTM [5] remains effective with an 86% average attack accuracy.

ADATCN: Significantly outperforms with an average attack accuracy of 91%, leveraging adaptive learning

mechanisms and real-time threat adjustments that better align with the dynamic threat landscape.

Precision, Recall, F1 Score (KDD99 Dataset)

Existing Methods: LSTM [5] showed a high ROC value of 0.88 and a low FAR, indicating strong performance.

ADATCN: Further improves the ROC value to 0.91, with a precision of 0.987, recall of 0.665, and F1 score of

0.792, demonstrating a balanced trade-off between sensitivity and specificity.

Kyoto Dataset

Existing Methods: LSTM [5] achieved the highest average attack accuracy of 71.5%.

ADATCN: Achieves a superior average attack accuracy of 76.5%, outperforming LSTM (71.5%). This increased

accuracy reflects its capacity for precise anomaly classification, thereby exceeding traditional models.

Journal of Information Systems Engineering and Management
2025, 10(34s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

967

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Precision, Recall, F1 Score (Kyoto Dataset)

Existing Methods: LSTM [5] shows robust performance with a precision of 0.43 and an F1 score of 0.52.

ADATCN: Achieves significantly higher metrics with precision of 0.52, recall of 0.73, and F1 score of 0.61,

ADATCN benefits from better log parsing and learning mechanisms to reduce false positives.

NetLogFusion Dataset

Existing Methods: LSTM [5] remains the most effective with an average attack accuracy of 71.75%.

ADATCN: Demonstrates exceptional performance, reaching an average attack accuracy of 75%. Supported by the

Lauki Log parser [10], it achieves a precision of 0.99, a recall of 0.95, and an F1 score of 0.97, indicating minimal

false positives and outstanding detection efficacy.

Precision, Recall, F1 Score (NetLogFusion Dataset)

ADATCN: With a precision of 0.99, recall of 0.95, F1 score of 0.97, specificity of 1.0, and an ROC value of 0.99,

ADATCN significantly outperforms other techniques. This performance corroborates its superior capability in

anomaly detection and attack identification across various datasets.

This research introduces two novel contributions—ADATCN and the LaukiLogParser—which collectively enhance

anomaly detection by improving feature extraction, contextual understanding, and classification precision. The

proposed framework demonstrates consistent and significant improvements over existing deep learning-based

anomaly detection models. Together, they address key limitations in log preprocessing, feature engineering, and

deep learning generalization. As shown in Figure 2, ADATCN achieves the highest average ROC scores across

multiple benchmark datasets, confirming its superior capability in distinguishing between normal and malicious

traffic. Furthermore, Figure 3 illustrates its computational efficiency, outperforming baseline models in terms of

inference time, memory usage, and scalability. These results establish ADATCN, supported by the

LaukiLogParser, as a powerful and efficient solution for real-time, log-based anomaly detection offering a well-

balanced trade-off between accuracy, performance, and practical deployability in dynamic cybersecurity

environments.

V. APPLICATIONS

Deep learning models play a critical role in log-based anomaly detection across industries. In network security,

they uncover intrusions, DDoS attacks, and unauthorized logins from real-time traffic analysis. In finance, these

models flag unusual transactions that may indicate fraud. Cloud platforms rely on them to spot insider activity

and persistent threats by parsing cloud-native logs. Sectors like energy, transport, and industrial control systems

use them to detect cyber-physical disruptions. These models also help enforce compliance by monitoring access

violations. Tools like RNNs, LSTMs, CNNs, Autoencoders, and GANs are essential for recognizing both familiar

and emerging threats, making them vital to modern security operations.

VI. CONCLUSION

The proposed ADATCN model, supported by our Lauki Log Parser [10], consistently outperforms traditional deep

learning techniques across four benchmark datasets—UNSW, KDD99, Kyoto, and NetLogFusion. It achieves up

to 0.99 in precision and ROC, while maintaining false alarm rates as low as 0.005 (Kyoto) and 0.01

(NetLogFusion), as shown in Tables 3, 5, 7, and 9, and illustrated in Figure 2. As shown in Tables 2, 4, 6, and 8,

ADATCN also achieves the highest anomaly detection accuracy, with 95.5% (UNSW), 91% (KDD99), 76.5%

(Kyoto), and 75% (NetLogFusion), clearly outperforming all benchmark models. Compared to baseline models

like RNN [3], LSTM [5], Autoencoder [6, 9], and GAN [7], ADATCN delivers stronger recall, F1 scores, and overall

detection accuracy. In addition to accuracy, ADATCN achieves the lowest inference time (18.2 ms) and memory

usage (210 MB) among all tested models (Figure 3), making it suitable for real-time anomaly detection in large-

scale environments. These results confirm that ADATCN offers a well-balanced solution accurate, scalable, and

efficient for modern cybersecurity applications that demand fast, reliable, and adaptive threat detection.

Journal of Information Systems Engineering and Management
2025, 10(34s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

968

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

VII. COMPLIANCE WITH ETHICAL STANDARDS

This research adheres to ethical guidelines ensuring integrity, transparency, and responsible conduct. Conflict of

Interest: The authors confirm that there are no financial or personal relationships that could have influenced the

work reported in this manuscript. Human and Animal Ethics: The study did not involve any human subjects or

animal testing, and no procedures with potential harm were conducted. Informed Consent: Since the data were

sourced from internal systems in a controlled lab setup, informed consent was not applicable or required.

VIII. CREDIT AUTHORSHIP CONTRIBUTION STATEMENT

Mukesh Yadav: Conceptualization, methodology, software, validation, analysis, writing – original draft &

review, visualization, supervision, and project administration.

Dr. Dhirendra S Mishra: Contributed to validation and provided academic supervision throughout the

research.

IX. FUNDING AND/OR COMPETING INTERESTS

The authors declare that they received no financial support or external funding for the completion of this work.

There are no competing interests, financial or otherwise, associated with this study.

X. ACKNOWLEDGEMENTS

I gratefully acknowledge SVKM's NMIMS, Mukesh Patel School of Technology Management and Engineering for

providing the resources and support for this research. I sincerely thank my guide, Dr. Dhirendra S Mishra, for his

valuable guidance, and my family for their constant support and encouragement.

REFERENCES

[1] Qian He, "Research on Network Traffic Anomaly Detection Based on Deep Learning", IEEE, 2021 International Conference on

Networking, Communications and Information Technology (NetCIT), https://doi.org/10.1109/NetCIT54147.2021.00017, Manchester,

United Kingdom, 26-27 December 2021

[2] David J. Miller, George Kesidi, Zhicong Qiu., "Unsupervised Parsimonious Cluster-Based Anomaly Detection (PCAD)", IEEE 2018 IEEE

28th International Workshop on Machine Learning for Signal Processing (MLSP), 17-20 September 2018,

https://doi.org/10.1109/MLSP.2018.8517014, Aalborg, Denmark

[3] Longy O. Anyanwu, Jared Keengwe, Gladys A. Arome, “Scalable Intrusion Detection with Recurrent Neural Networks”, 2010 Seventh

International Conference on Information Technology, https://doi.org/10.1109/ITNG.2010.45, pp. 919-923.
[4] Teng Li, “Optimization of Algorithm for Network Traffic Anomaly Detection Using Convolutional Neural Networks (CNN)”, IEEE, 2024

International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS),

https://doi.org/10.1109/IACIS61494.2024.10721912, Hassan, India, 23-24 August 2024

[5] R. Vinayakumar; K. P. Soman, Prabaharan Poornachandran, “Long Short-Term Memory based Operation Log Anomaly Detection”, 2017

International Conference on Advances in Computing, Communications and Informatics (ICACCI), 13-16 September 2017,

https://doi.org/10.1109/ICACCI.2017.8125846, Udupi, India, pp. 236-242
[6] Zhaomin Chen, Chai Kiat Yeo, Bu Sung Lee, Chiew Tong Lau, "Autoencoder-based Network Anomaly Detection," 2018 Wireless

Telecommunications Symposium (WTS), 17-20 April 2018, https://doi.org/10.1109/WTS.2018.8363930, IEEE, Phoenix, AZ, USA

[7] Tharindu Kumarage, Surangika Ranathunga, Chamal Kuruppu, Nadun De Silva, Malsha Ranawaka, "Generative Adversarial Networks

(GAN) based Anomaly Detection in Industrial Software Systems", IEEE, 2019 Moratuwa Engineering Research Conference (MERCon),

03-05 July 2019, https://doi.org/10.1109/MERCon.2019.8818750, Moratuwa, Sri Lanka, pp. 43-48

[8] Kamiya Pithode, Pushpinder Singh Patheja, "A Study on Log Anomaly Detection using Deep Learning Techniques" IEEE, 2022

International Conference on Applied Artificial Intelligence and Computing (ICAAIC),

https://doi.org/10.1109/ICAAIC53929.2022.9793238, Salem, India, 09-11 May 2022

[9] Jin Tang, Wei Shuang, "Research on Network Traffic Anomaly Detection Method Based on Autoencoders," IEEE, 2024 5th International

Seminar on Artificial Intelligence, Networking and Information Technology (AINIT),

https://doi.org/10.1109/AINIT61980.2024.10581422, Nanjing, China, 29-31 March 2024

[10] Mukesh Yadav, Dhirendra S Mishra, “Unique Log Parsing Framework for Enhanced Anomaly Detection in Network Security: Lauki Log

Parser”, International Journal of Communication Networks and Information Security (IJCNIS), 16(4), 890–905.

[11] Barry Siegel, “Industrial Anomaly Detection: A Comparison of Unsupervised Neural Network Architectures”, IEEE Sensors Letters,

Volume: 4 Issue: 8, https://doi.org/10.1109/LSENS.2020.3007880, August 2020

[12] Mukesh Yadav, Dr. Dhirendra S Mishra, “Identification Of Network Threats Using Live Log Stream Analysis”, Second International

Conference on the Paradigm shifts in Communication, Embedded Systems, Machine Learning and Signal Processing (PCEMS 2023),

Visvesvaraya National Institute of Technology, Nagpur, India, Date Added to IEEE Xplore: 02 June 2023, D.O.I:

10.1109/PCEMS58491.2023.10136070, 05th - 06th April 2023.

Journal of Information Systems Engineering and Management
2025, 10(34s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

969

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Mukesh Yadav received her B.E. degree in 2013 and M.E. degree

in 2016 in Computer Engineering from Pillai College of

Engineering, New Panvel, University of Mumbai, Maharashtra,

India. She is currently pursuing her Ph.D. degree (currently in her

third year) from MPSTME, Mumbai of SVKM's NMIMS

University, Mumbai, Maharashtra, India. Her research interests

include Machine Learning, Network Security, Security

Information and

 Event Management, and Big data analytics.

Dr. Dhirendra Mishra received his B.E.

degree in Computer Engineering from RAIT,

Mumbai, Maharashtra, India in 2002, M.E.

in Computer Engineering from TSEC,

Mumbai, Maharashtra, India in 2008 and

Ph.D. in Computer Engineering from

NMIMS, Mumbai, Maharashtra, India in

2012. He is currently working as a Professor

in the Department of Computer Engineering

with MPSTME, NMIMS University,

Mumbai, Maharashtra, India. His research

interests include Image Processing - Image

Database, Pattern matching, Image/Data

Mining, Biometrics, and Data Analytics.

Journal of Information Systems Engineering and Management
2025, 10(34s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

970

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Information Systems Engineering and Management
2025, 10(34s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

971

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Information Systems Engineering and Management
2025, 10(34s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

972

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

