
Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

77

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Optimizing the Computational Offloading of Deep Neural

Networks for Human Activity Recognition

Mohammed Ali Ahmed1 , Mohsen Nickray2
1,2 Department of Computer and Information Technology, Faculty of Engineering, University of Qom

ARTICLE INFO ABSTRACT

Received: 28 Dec 2024

Revised: 18 Feb 2025

Accepted: 26 Feb 2025

Research Aim: Study the possibility of optimizing the computational offloading of deep neural

networks by reducing the volume of data sent to the cloud with a focus on the application of

human activity recognition with deep learning.

Research method: In this research, three proposed methods of reducing the number of data

samples, reducing the precision of data samples and compressing data samples are presented. In

the first method, the data samples are deleted one in between or more before sending them. Data

restoration in the cloud side is performed by interpolation estimates. In the precision reduction

method, floating-point data samples are converted to integers with fewer precision before

sending them. They are converted back on the cloud side by using the inverse conversion

function. In the third method, the data is compressed with low overhead compression

algorithms, either lossy or lossless, and is decompressed on the cloud side.

Findings: Among the two proposed methods of reducing the number of samples and reducing

the precision of data samples, both methods only slightly reduce the accuracy of activity

detection. The latter method is superior to the former method due to a more significant reduction

in data volume. Although the lossy compression method shows better results than the lossless

method, neither is as effective as the precision reduction method and the reduction in the

number of data samples.

Conclusion: Practical results show that although the methods of reducing the number of samples

and reducing their precision can decrease the volume of data sent without a significant effect on

accuracy, the precision reduction method is superior due to greater data volume reduction.

Furthermore, the delta compression method is not as effective as the other two methods.

Keywords: Computational Offloading, Deep Neural Networks, Human Activity Recognition

INTRODUCTION

Graves et al. explored the application of deep recurrent neural networks (RNNs) in speech recognition,

demonstrating their ability to process time-series data efficiently, which is crucial for tasks like human activity

recognition (HAR) where sequences of sensor data are involved [1]. In [2], Eshratifar and Pedram examined energy-

efficient computation offloading for deep neural networks (DNNs) in mobile cloud environments, showing that

selective offloading of certain DNN layers can significantly reduce energy consumption and improve performance, a

critical consideration for real-time HAR systems. Dey et al. identified key challenges in offloading deep learning

inference to edge devices, focusing on computational constraints and the need for efficient data transfer methods.

They proposed a hybrid execution model, improving resource efficiency and performance in HAR applications [3].

In [4], Huang et al. introduced DeePar, a framework that optimizes deep learning computations by dynamically

partitioning them across devices, edge, and cloud servers based on current network conditions, reducing latency in

mobile applications. Kemp et al. proposed Cuckoo, a framework for computation offloading on smartphones,

illustrating how mobile devices can benefit from offloading computation-intensive tasks like HAR to external servers,

reducing device strain and improving performance [5]. Ran et al. demonstrated the potential of mobile devices to

leverage cloud-based offloading for accelerating deep learning inference, showing significant performance gains,

especially for computationally heavy applications such as HAR [6]. In [7], Fadishei explored energy-efficient human

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

78

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

activity recognition on smartphones by using a test-cost sensitive algorithm, which reduces the volume of data

processed and sent to the cloud, thus conserving energy while maintaining performance. Mahmoodi et al. studied

joint scheduling and cloud offloading for mobile applications, focusing on optimizing latency and energy

consumption, which is highly relevant for mobile HAR systems that require low-latency real-time inference [8].

Messaoudi et al. proposed an approach to mobile gaming computation offloading, which has parallels to HAR, as

both involve transferring intensive computational tasks from mobile devices to external servers to improve

performance and reduce energy use [9]. In [10], Zhang et al. examined energy-efficient offloading strategies for real-

time video applications in mobile cloud environments, suggesting techniques that could similarly enhance HAR

systems by reducing the energy burden of real-time data processing. Deyannis et al. explored the use of edge servers

for GPU-assisted antivirus protection on Android devices, demonstrating the benefits of offloading computational

tasks to edge servers, which can also be applied to HAR to handle the large computational demands of deep learning

models [11]. Wang et al. proposed selective offloading for accelerating mobile web applications, which can be adapted

to HAR by dynamically determining which parts of the computational workload should be processed locally versus

offloaded to the cloud, based on network conditions and computational complexity [12]. In [13], Guo et al. reviewed

FPGA-based neural network inference accelerators, showing how hardware accelerators can be integrated into

mobile or edge devices to improve the efficiency of DNN computations, potentially benefiting HAR applications with

hardware-optimized inference. Jeong et al. discussed computation offloading for machine learning web applications,

focusing on the edge server environment, which provides an efficient way to offload complex tasks from mobile

devices, an approach that could be adopted in HAR to improve performance while reducing device strain [14].

Eshratifar et al. developed JointDNN, an efficient training and inference engine for mobile cloud services,

demonstrating how joint processing of data between mobile and cloud platforms can enhance the performance of

HAR systems by optimizing both energy and computational efficiency [15]. In [16], Karki et al. introduced Tango, a

deep neural network benchmark suite that evaluates various accelerators' performance, highlighting the importance

of optimizing DNN computations in HAR through hardware acceleration and efficient task offloading. Shi et al.

benchmarked state-of-the-art deep learning tools, providing insights into the efficiency of different platforms for

deep learning tasks like HAR, where computational offloading is essential to manage the high resource demands of

real-time inference [17]. In [18], Qin et al. proposed a novel combined prediction scheme using CNN and LSTM

models for urban PM 2.5 concentration prediction, showcasing how combining different types of deep learning

models can enhance prediction accuracy, a technique that could be applied to improve HAR systems' recognition

capabilities. Durstewitz et al. explored the use of deep neural networks in psychiatry, which, like HAR, requires the

processing of large amounts of data to identify patterns, showing the broader applicability of DNNs for complex data-

driven tasks [19]. Shah et al. introduced a system for distributing deep neural networks in fog networks, focusing on

minimizing system costs while offloading computations, a strategy that could improve HAR by ensuring that mobile

devices handle fewer intensive tasks while maintaining system efficiency [20]. Nazemi et al. developed a hardware-

friendly algorithm for scalable training and deployment of dimensionality reduction models on FPGAs, highlighting

the potential for improving the efficiency of HAR systems through hardware acceleration and optimized model

deployment [21]. In [22], Hirsa et al. applied supervised deep neural networks for pricing and calibration of options,

demonstrating how DNNs can be used for complex decision-making tasks, similar to how they are applied in HAR to

classify and predict human activities based on sensor data. Gordon et al. introduced COMET, a framework for

migrating code execution to offload computation transparently, which is relevant to HAR as it enables mobile devices

to handle only lightweight processing tasks while offloading intensive computations to external servers [23]. Li et al.

discussed learning in IoT environments with edge computing, emphasizing the benefits of offloading deep learning

tasks to edge devices to reduce network congestion and processing times, which can be highly beneficial in HAR

systems that rely on continuous real-time data processing [24]. Teerapittayanon et al. proposed a distributed DNN

framework that spans the cloud, edge, and end devices, optimizing the distribution of computations to ensure that

mobile devices are not overloaded with intensive tasks, a strategy that would enhance HAR applications by

distributing computational workloads effectively [25]. In [26], Eshratifar et al. introduced BottleNet, a DNN

architecture designed for intelligent mobile cloud computing services, which compresses data before offloading to

the cloud, reducing the volume of data transmitted and improving the energy efficiency of mobile HAR systems.

Jeong et al. proposed IONN, a framework for incrementally offloading neural network computations from mobile

devices to edge servers, highlighting an efficient way to handle the computational demands of DNN-based HAR

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

79

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

systems while maintaining energy efficiency [27]. Rosloniec provided an overview of fundamental numerical methods

for electrical engineering, offering insights into computational optimization techniques that could be applied to

improve the efficiency of DNN computations in HAR systems [28]. McClarren discussed the application of

computational methods in nuclear engineering, showing the relevance of these techniques for optimizing

computational models, which can similarly be applied in HAR to manage the computational complexity of deep

learning models [29]. In [30], TensorFlow, an open-source deep learning platform, provides tools for building and

deploying DNN models, including applications for mobile and edge devices, which are critical for implementing HAR

systems that require optimized offloading strategies. Weiss introduced the WISDM dataset for smartphone and

smartwatch activity and biometrics, providing a valuable resource for training and testing HAR models, particularly

for mobile applications where sensor data must be processed in real time [31]. The UCI Machine Learning Repository

provides a dataset for smartphone-based recognition of human activities and postural transitions, offering a

foundation for developing HAR systems that can benefit from computational offloading to reduce device strain

during real-time inference [32]. Huang et al. proposed a method for human activity recognition that integrates edge

computing with GRU networks, reducing computational costs and enhancing real-time performance, showing how

edge-based offloading can improve the efficiency of HAR systems [33]. Yao et al. introduced deep compressive

offloading, which speeds up neural network inference by trading edge computation for reduced network latency,

offering a promising strategy for enhancing the performance of mobile HAR systems [34]. Yang et al. explored

offloading optimization in edge computing for deep learning-enabled target tracking by UAVs, demonstrating

techniques that can be applied to HAR by optimizing the distribution of computational tasks between mobile devices

and edge servers [35]. Wang et al. introduced deep convolutional networks with a tunable speed–accuracy tradeoff

for HAR using wearables, providing a method to balance performance and energy consumption, crucial for

optimizing mobile HAR systems [36]. In [37], Sarkar and Kumar proposed a deep learning-based energy-efficient

offloading strategy in heterogeneous fog computing networks, showing how optimized offloading can improve both

energy efficiency and computational performance in HAR systems. Huang et al. applied deep reinforcement learning

to optimize computation offloading in mobile-edge computing networks, providing a dynamic approach to managing

offloading tasks based on network conditions and computational loads, which can enhance the performance of HAR

systems [38]. Aghapour et al. introduced a task offloading and resource allocation algorithm based on deep

reinforcement learning for distributed AI tasks in IoT edge environments, offering a scalable solution for HAR

systems that rely on continuous real-time data processing [39].

Here are the contributions of the paper, listed as titles:

1. Optimization of Computational Offloading for Deep Neural Networks

2. Proposing Three Methods for Data Reduction:

• Data Sample Reduction (Deleting samples and interpolating on the cloud side)

• Precision Reduction (Converting floating-point data to lower precision integers)

• Compression (Using low-overhead compression techniques: lossy and lossless)

3. Evaluation of Data Reduction Methods on WISDM and UCI Datasets

4. Comparison of Data Reduction Methods for Activity Recognition

5. Demonstrating the Superiority of Precision Reduction for Data Volume Reduction

6. Assessing the Effectiveness of Lossy and Lossless Compression

7. Practical Implications for Optimizing Data Transmission in Cloud-Based Human Activity Recognition

Problem statement and literature review

In recent years, we have witnessed a significant increase in research and development of mobile networks. With

advancements in mobile terminals and the rising popularity of smartphones, new mobile applications such as facial

recognition, image processing, interactive games, and augmented reality have gained considerable attention.

Consequently, the expectations for mobile devices to run more demanding applications are increasing [1]. Nowadays,

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

80

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

users utilize mobile phones for a wide range of daily activities, such as searching through music, playing video games,

recording, editing, and uploading videos, analyzing their photo collections, indexing content, and managing financial

affairs [2]. Despite the prominent role these devices play in individuals' lives, running complex applications on mobile

devices poses challenges due to their limited resources, such as memory capacity, graphical processing speed, and

battery power [3]. Mobile devices have relatively weak computational power, limited battery life, and hardware

resources. Additionally, mobile applications typically require intensive computations and high energy consumption.

Given the limitations of the computational resources available in mobile devices, these devices may not be able to run

applications efficiently [4]. Today, due to the increasing demand for high-processing-volume applications, there is a

need for powerful environments and resources capable of handling these heavy computations. One solution to this

problem is known as offloading, in which low-power devices, such as mobile phones and Internet of Things (IoT)

objects, offload their processing tasks to a cloud computing environment, delegating them to cloud servers [5].

Offloading can lead to energy savings and performance improvements, and it can also enhance the computational

capabilities of mobile systems [2]. The computational operations of deep neural networks (DNN) involve two phases:

training and inference, where the issue of offloading can be relevant in both phases. During the training phase, the

parameters of the DNNs (such as the weights of the edges) are determined using pre-labeled input data, enabling the

DNN to perform inference on previously unseen data during the inference phase. Each layer's processing can be

considered a vector operation, where the parameters are iteratively updated as the DNN is trained with labeled data.

Given that practical applications of smartphones are more prominent in the inference phase; most researchers focus

on offloading computations for inference. Conversely, the training phase, due to its extensive computational resource

requirements, is typically conducted on powerful servers [3]. Another reason for the limited offloading of the training

phase is that once this phase is completed, the parameters of each layer remain fixed. Therefore, as long as the

training data remains unchanged, the deep neural networks use the same parameters for inference on input data.

Some researchers have focused on offloading all or parts of the computations of deep neural networks, proposing

solutions to overcome obstacles such as battery usage limitations on mobile devices and their constrained

computational resources. Offloading deep neural networks usually involves a trade-off, where savings in execution

time and energy consumption come at the cost of reduced inference accuracy [6]. This trade-off is the focus of the

present research, which aims to reduce the volume of data sent to the cloud during the inference phase by optimizing

the first entry point of deep neural networks, thereby minimizing data size in various ways. The focus of this research

is on human activity recognition (HAR). Activity recognition is crucial for providing services in the Internet of Things

(IoT) world. Modern smartphones have become prominent devices for human activity recognition due to their

ubiquity, sensing capabilities, and processing power. However, limited battery capacity and resources of smartphones

hinder their full utilization for such sensing and processing capabilities [7]. Human activity recognition enables the

detection of various physical activities performed by a smartphone user (such as walking, running, etc.) based on

different inputs. This study aims to optimize communications in offloading the problem of human activity recognition

with smartphones by examining the trade-off between the volume of transmitted data and recognition accuracy.

Here, we have a comparison table about the previous methods in the literature and the current paper in Table 1.

Table 1: Comparative contributions from the references

Reference Method/Focus Contributions Comparison to Current

Paper

[1] Graves

et al., 2013

Recurrent Neural

Networks for Speech

Recognition

Introduces deep recurrent

neural networks (RNNs) for

speech recognition.

Not directly related to

offloading or activity recognition

but foundational for deep

learning methods applied in the

current paper.

[2]

Eshratifar &

Pedram, 2018

Mobile Cloud

Computing for DNNs

Optimizes offloading

computation for deep neural

networks in mobile

Focus on mobile-cloud

offloading like the current paper,

but doesn't specifically focus on

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

81

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

environments, considering

energy and performance.

reducing data volume, which is

the focus of the current paper.

[3] Dey et

al., 2019

Edge Computing for

Deep Learning

Challenges and insights on

offloading deep learning

execution to edge devices.

Relevant to the

computational offloading

context, but current paper looks

at optimizing data reduction in

transmission rather than edge

offloading.

[4] Huang

et al., 2019

Hybrid Device-Edge-

Cloud Execution

Proposes DeePar for hybrid

execution of mobile deep

learning apps.

Both papers address mobile

deep learning, but current paper

is focused on reducing data sent

to the cloud, while this paper

considers hybrid execution

strategies.

[5] Kemp et

al., 2010

Computation

Offloading Framework

Focus on computation

offloading for smartphones in

mobile computing.

Early work on offloading,

providing a framework that

might serve as a basis for the

current paper’s offloading

techniques, but with less focus

on data reduction.

[6] Ran et

al., 2017

Offloading Deep

Learning to Mobile

Investigates offloading

deep learning tasks to mobile

devices via offloading.

Similar offloading context,

but the current paper includes

more specific data reduction

methods.

[7]

Fadishei, 2018

Energy-Efficient

Activity Recognition

Focus on energy-efficient

activity recognition using

smartphones.

Related to activity

recognition but does not focus on

offloading or data reduction.

[8]

Mahmoodi et

al., 2016

Joint Scheduling and

Cloud Offloading

Focus on scheduling and

offloading decisions in cloud

mobile applications.

Similar offloading concept,

but current paper emphasizes

methods to reduce the volume of

data, not just scheduling.

[9]

Messaoudi et

al., 2018

Mobile Gaming

Computation Offloading

Focus on offloading

computation for mobile

gaming applications.

Focus on a specific use case

(gaming), while the current

paper focuses on human activity

recognition with data reduction

methods.

[10] Zhang

et al., 2016

Energy-Efficient

Offloading for Real-Time

Video

Examines energy-efficient

offloading for video

applications.

Different application (video

vs. activity recognition) but

similar offloading concerns; the

current paper adds more focus

on data reduction strategies.

[11]

Deyannis et

al., 2018

Edge Offloading for

Antivirus

Focus on edge-assisted

computation offloading for

antivirus protection.

Similar edge/offloading

context but focuses on a different

application (antivirus), while the

current paper addresses human

activity recognition.

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

82

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[12] Wang

et al., 2013

Mobile Web

Offloading

Selective offloading to

accelerate mobile web

performance.

Early work on selective

offloading; the current paper

builds on similar concepts but

focuses on optimizing data size

rather than computation

offloading itself.

[13] Guo et

al., 2019

FPGA-based Neural

Network Inference

Surveys FPGA-based

accelerators for deep learning

inference.

Focuses on hardware

accelerators for inference, while

the current paper focuses more

on optimizing cloud

communication for deep

learning tasks.

[14] Jeong

et al., 2018

Computation

Offloading for ML Web

Apps

Computation offloading for

machine learning web apps in

edge environments.

Similar concept of offloading

computations but the current

paper’s contribution is more

focused on reducing data size

rather than offloading execution.

[33] Huang

et al., 2023

Edge Computing for

Human Activity

Recognition

Proposes a deep learning

method for activity recognition

using edge computing.

Similar in application

(human activity recognition) and

edge context, but the current

paper focuses more on

transmission data reduction

techniques.

[34] Yao et

al., 2020

Deep Compressive

Offloading

Proposes a method to

reduce network latency by

offloading deep learning tasks.

Both explore offloading, but

the current paper emphasizes

data reduction methods to

improve offloading efficiency.

[35] Yang et

al., 2020

Target Tracking with

Deep Learning

Offloading optimization in

edge computing for target

tracking in IoT.

Offloading optimization in a

similar edge context but focused

on different application (target

tracking vs. activity recognition).

[36] Wang

et al., 2021

Deep Convolutional

Networks for Human

Activity Recognition

Focus on deep learning for

human activity recognition

using wearables.

More aligned with the

application of the current paper,

but the current paper focuses

more on reducing data volume

sent to the cloud.

[37] Sarkar

& Kumar, 2022

Energy-Efficient

Offloading in Fog

Networks

Proposes an energy-

efficient strategy for

computational offloading in

fog networks.

Both papers address

offloading, but the current paper

goes deeper into optimizing the

data sent rather than just energy.

[38] Huang

et al., 2019

Reinforcement

Learning for

Computation Offloading

Deep reinforcement

learning for offloading

decisions in mobile-edge

networks.

Focuses on decision-making

strategies for offloading, while

the current paper emphasizes

optimizing data for

transmission.

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

83

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Proposed Method

As we know, deep neural network models are large enough that even considering a portion of the model on a mobile

phone incurs significant overhead. Additionally, deep neural network models are typically dynamic, requiring

frequent updates to their parameters and weights, making sending part or all of the model to a mobile phone costly.

Therefore, this research focuses on the first entry point of deep neural networks, which is the data sent for inference,

aiming to reduce its volume through various means. To date, comprehensive research on the impact of approaches

to reducing the input data volume in offloading deep neural networks has not been conducted. In study [26],

compression approaches were used to optimize the traffic sent to the deep neural network. In contrast, the present

study investigates the effects of different approaches, where compression is one of them. Furthermore, unlike study

[26], there is no requirement to use a specific type of deep neural network that imposes limitations on its applicability.

The objective of this research is to optimize the offloading of computations in deep neural networks by reducing the

volume of data sent to the cloud. Various approaches exist that can reduce the volume of data sent to the cloud,

thereby improving the efficiency of offloading operations. Our proposed method includes three approaches: reducing

the number of data samples, reducing the precision of data samples, and compressing data sample instances.

However, it should be noted that each of these approaches creates a trade-off between accuracy and inference cost by

deep neural networks, with the aim in the current study being to find effective and optimal points in these trade-offs,

if available. The overall framework of the proposed method to achieve this objective is illustrated in Fig. 1 and consists

of explaining these three approaches in the following sections.

3-1. Reducing the Number of Data Samples

The first proposed approach in this study to optimize the offloading of computations in deep neural networks is

reducing the number of data samples sent to the cloud. Reducing the number of input data samples always decreases

the volume of data sent to the cloud, leading to reduced communication costs (time, price, and energy consumption).

Additionally, in some cases where input data is received from sensor sources (such as the case study of activity

recognition described later), it can lead to energy savings in data sampling. This is because the energy consumed by

the sensor layer in smartphones increases proportionally with the sampling rate. Therefore, reducing the number of

samples received per unit of time reduces energy consumption on the mobile side. However, reducing samples will

lower the accuracy of inference by deep neural networks. The aim of this research is to study the trade-off between

accuracy and communication costs and to find an optimal point in this trade-off, if possible. It remains to be seen

whether restoring some of the deleted samples can partially recover lost accuracy to some extent. For this purpose,

the authors have experimented with different deletion scenarios of intermediate data samples—preserving one

sample out of two, preserving one out of three, and preserving one out of four—and then recovering them using linear

and cubic interpolation methods.

 Fig. 1. General framework of the proposed method in this study

Interpolation is a well-established process for estimating values between specified data points. In this study, two

types of interpolation methods—linear and cubic—have been employed to determine values at points between given

data points. Assuming linearity in the variations, arithmetic mean interpolation can be performed according to

Equation (1):

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

84

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

𝑦 = 𝑦𝑎 + (𝑦𝑏 − 𝑦𝑎)
𝑥 − 𝑥𝑎
𝑥𝑏 − 𝑥𝑎

 (1)

where 𝑥𝑎 and 𝑥𝑏are two existing points, and x is the point of interest for interpolated value estimation [28].

Additionally, considering a higher number of data points, interpolation with polynomials of higher degrees can be

performed. For cubic interpolation, Equation (2) is used, where n represents the number of points, and x and y are

the knot points to find the interpolated value [29]:

𝑦𝑛+1 = 𝑎𝑎 + 𝑏𝑛𝑥𝑛+1 + 𝑐𝑛𝑥𝑛+1
2 + 𝑑𝑛𝑥𝑛+1

3 (2)

3-2. Reducing the Decimal Precision of Data Samples

The second proposed approach in this paper for optimizing the offloading of deep neural network computations

involves reducing the precision of the decimal (Precision) of the data samples sent to the cloud. To optimize

offloading, the decimal precision of data can be reduced so that the number of bits required for each data sample

decreases, reducing the volume of data sent to the cloud and saving energy consumption. It is evident that this

method, similar to the previous approach, involves a trade-off between precision and the volume of transmitted data.

Using the linear mapping relationship 2, where x is the initial variable and n is the number of bits, sensor data can

be encoded as 8-bit, 16-bit, etc., integers instead of floating-point representation (as shown in Fig. 3-2. a). For

example, as illustrated in Fig. 3-2. b, for 8-bit encoding, the smallest sensor reading is mapped to zero and the largest

to 255, with other values proportionally mapped within this range.

𝑓(𝑥. 𝑛) = 𝑟𝑜𝑢𝑛𝑑 (
(𝑥 −min(𝑥))

max(𝑥) − min⁡(𝑥)
× (2𝑛 − 1)) (3)

After receiving the reduced-precision data on the cloud side, they can be restored to values close to the original data

using the inverse mapping relationship 4, as depicted in Fig. 3-2.c:

g(𝑥̇. 𝑛) = min(𝑥) +
(min⁡(𝑥) − min⁡(𝑥)

(2𝑛 − 1))
× 𝑥̇

In this relationship, x is the initial variable, 𝑥̇ is the mapped variable after precision reduction, and n is the number

of bits allocated to each data sample.

3-3. Data Sample Compression

Another approach investigated in this study for optimizing the outsourcing of deep neural network computations is

the compression of data samples. Since most real-world data exhibit statistical redundancy, this method employs

compression algorithms that typically utilize statistical redundancy to represent the sender's information more

concisely, thus reducing the volume of data sent to the cloud. The aim of data compression is to reduce the data

volume without causing significant alterations to its content. This approach aims to balance the trade-off between

compression costs and communication costs, exploring whether imposing compression costs can substantially reduce

communication costs. It is essential to consider that, despite the availability of various high-compression-ratio

algorithms, a method with very low computational overhead must be chosen. One lightweight method for

compressing data streams is the delta method. This method, assuming that the variation ranges of each data sample

relative to the previous one is sufficiently small, transmits the differences with fewer bits instead of sending the full

samples. Evidently, if this assumption does not hold, the aforementioned algorithm cannot effectively compress the

data. In this research, both loss and lossless delta compression methods have been utilized.

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

85

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 Fig. 2. The Effect of Data Recovery on 8-bit Precision Reduction

3-3-1. Loss Delta Compression

In the lossless compression approach, data compression and decompression do not result in any data loss. As shown

in Fig. 3, this method operates under the assumption that the data samples are (n) bits (where (n = 32, 16, 8, 4)), the

delta is (m) bits (where (m = 16, 8, 4, 2)), and (m < n). For example, if (n = 32) and (m = 16), instead of transmitting

(n)-bit numbers to the cloud, their differences are transmitted in (m)-bit form. If the difference between data samples

exceeds (m) bits (the delta capacity), the original data sample must be sent, and to distinguish this case, a marker

(reserved data) is placed before the original data sample. The smallest negative number in the delta range is used as

the reserved marker. Consequently, due to the overhead of these markers, the final compressed data volume might

be larger than the initial data volume. This scenario occurs when the variation range between consecutive data

samples is large, necessitating frequent use of the marker.

 Fig. 3. Lossless Delta Compression of Data Samples

3-3-2. Compression with delta loss

The Compression with delta loss retains an approximate representation of the original data while sacrificing some of

the original data in favor of a higher compression ratio. As shown in Fig. 4, when the difference between data samples

exceeds (m) bits (in this figure, the specific case of (m = 8)), the maximum value representable in 8 bits is transmitted,

and subsequent samples are used to correct the approximation. Consequently, in Lossless compression, an increase

in data volume is not observed. However, due to the inherent data loss, the reduction in volume comes at the cost of

precision.

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

86

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 Fig. 4. Lossy delta compression of data samples

In the next chapter, experiments are conducted to evaluate the effectiveness of the proposed methods in this research

and to study the trade-off between inference accuracy and the volume of data sent to the cloud.

RESULTS AND ANALYSIS

 4-1. Implementation

Nearly every modern smartphone is equipped with a three-axis accelerometer that measures acceleration in all three

spatial dimensions. In this study, the authors used data collected from accelerometer sensors and trained a Long

Short-Term Memory (LSTM) neural network, implemented in Python using the TensorFlow library, as the reference

model for experiments to recognize human activities (HAR) from accelerometer data. The neural network model

comprises two fully connected layers and two LSTM layers with 64 units each.

4-2. Dataset

The proposed methods in this research were evaluated using data collected from accelerometer sensors, specifically

the WISDM [31] and UCI [32] datasets. The WISDM dataset contains raw accelerometer and gyroscope data collected

from smartphones and smartwatches at a rate of 10 Hz. It shows the distribution of values along the x, y, and z axes.

The sensor data were collected from 51 subjects performing 18 activities for 3 minutes each. The data are segmented

into 10-second intervals, with each sensor reading occurring every 100 milliseconds. For each axis, there are 100

consecutive readings for each activity, resulting in 300 decimal numbers per activity. The raw data in this dataset

contain 8 decimal places, and each sample includes 100 numbers. There is a total of 1,098,203 samples in this dataset,

which includes over two million samples across five activity classes: walking, running, stair activities, sitting, and

standing. Eighty percent of the data is used for training, and the remaining twenty percent is used for testing.

The UCI dataset contains raw data with three axes (x, y, and z) collected at a fixed rate of 50 Hz using an accelerometer

and gyroscope. The sensor signals (accelerometer and gyroscope) are divided into 2.56-second segments. Each

sample includes 128 numbers, and there are 2,947 samples in total. This dataset includes five activity classes: sitting,

standing, stair activities, walking, and lying down. Seventy percent of the data is used for training, and the remaining

thirty percent is used for testing.

4-3. Experiments

In this section, an effort is made to study the optimal trade-off between accuracy and communication cost based on

the proposed methods. To this end, the inference accuracy of the deep neural network for the original data samples

from the WISDM dataset was first tested without the proposed methods. Fig. 4-1 (a) details the accuracy of activity

recognition for this dataset, broken down by activity. The activities in this Fig. include Jogging (Jog), Sitting (Sit),

Stair climbing (Sta), Standing (Stan), and Walking (W). The overall recognition accuracy in this case (without data

transmission volume reduction) is 98.7%.

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

87

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Next, the inference accuracy of the deep neural network for the original data samples from the UCI dataset was tested

without the proposed methods. Fig. 5 (b) details the accuracy of activity recognition for this dataset, broken down by

activity. The activities in this Fig. include Lying (Lay), Sitting (Sit), Stair climbing (Sta), Standing (Stan), and Walking

(W). The overall recognition accuracy in this case (without data transmission volume reduction) is 87.8%.

Fig. 5. Activity Recognition Accuracy by Activity without Data Reduction

In the first experiment, the proposed method for reducing the volume of data sent to the cloud by decreasing the

number of samples was evaluated. To this end, a fraction of the data was reduced by removing intermediate samples

at various intervals (i.e., removing every other sample, every third sample, and every fourth sample) and then

recovered using interpolation methods, specifically linear and cubic interpolation. Both the learning and inference

steps were performed with the reduced data. Fig. 6 shows the effect of removing data samples before sending them

to the cloud on accuracy. Part (a) shows the effect of removing every other sample, every two samples, every three

samples, and every four samples with linear interpolation recovery for the WISDM dataset. Part (b) shows the effect

of various intermediate sample removal scenarios with linear interpolation recovery for the UCI dataset. Part (c)

shows the effect of removing every other sample, every third sample, and every fourth sample with cubic interpolation

recovery for the WISDM dataset. Part (d) demonstrates the effect of various intermediate sample removal scenarios

with cubic interpolation recovery for the UCI dataset. As shown in the figure, the sample removal approach can

generally be considered beneficial. For example, removing every other sample reduces the data transmission volume

by 50% while only negatively impacting prediction accuracy by 1%. Additionally, no significant difference is observed

between linear and cubic interpolation recovery methods.

(a) Linear Interpolation Recovery of the WISDM Dataset

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

88

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

(b) Linear Interpolation Recovery of the UCI Dataset

(c) Cubic Interpolation Recovery of the WISDM Dataset

(d) Cubic Interpolation Recovery of the UCI Dataset

Fig. 6: The impact of data point removal before transmission to the cloud on accuracy.

Fig. 7 shows the effect of data point removal on activity-specific detection accuracy for the WISDM dataset, while Fig.

8 displays the impact on the UCI dataset for linear and cubic interpolation recovery methods under different removal

scenarios. As observed in the figures, the primary negative impact on detection accuracy pertains to activities

involving ascending and descending stairs. Hence, detection accuracy is activity dependent.

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

89

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fig. 7. Impact of WISDM Data Point Removal on Activity-Specific Detection Accuracy for Linear Interpolation (left)

and Cubic Interpolation (right) with Removal of One in Between (top), Two in Between (middle), and Three in

Between (bottom).

Fig. 8. Impact of UCI Data Point Removal on Activity-Specific Detection Accuracy for Linear Interpolation (left)

and CubicInterpolation (right) with Removal of One in Between (top), Two in Between (middle), and Three in

Between (bottom).

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

90

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fig. 9 details the effect of reducing the number of data points on the acceleration signal along the x-axis for activity-

specific examples in the original data set in (a), removal of one in between in (b), removal of two in between in (c),

and removal of three in between with linear interpolation in (d) for the WISDM data set, illustrating how acceleration

changes over time in different activities.

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

91

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fig. 9. The Effect of Reducing the Number of Samples and Linear Interpolation on the X-axis Signal

Fig. 10 details the effect of reducing the number of data points on the acceleration signal along the x-axis for

activity-specific examples in the original data set in (a), removal of one in between in (b), removal of two in between

in (c), and removal of three in between with cubic interpolation in (d) for the WISDM data set.

Fig. 10. The Effect of Reducing the Number of Samples and Cubic Interpolation on the X-axis Signal.

One of the other methods for reducing the volume of data sent to the cloud is precision reduction. Before transmission

to the cloud, data are transformed into an integer number n-bit using a linear mapping function (n = 1, 2, 4, 8, 16,

32). After computational processing in the cloud, they are reverted to data close to the original using the inverse

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

92

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

relationship. Fig. 11 (a) illustrates the impact of reducing the precision of data samples from the WISDM dataset prior

to cloud transmission on accuracy for various linear mapping scenarios, while Fig. 11 (b) shows the impact on

accuracy of reducing data samples from the UCI dataset for different linear mapping scenarios. As expected, in both

datasets, reducing precision correlates with reduced recognition accuracy. However, this trade-off between accuracy

and volume reduction is beneficial. For instance, in the 8-bit scenario of the WISDM dataset, achieving an eightfold

reduction in transmitted volume (compared to 64-bit floating-point precision) results in only about a one percent

decrease in recognition accuracy. It is noteworthy that even with further reduction in precision and using 4-bit

precision, which reduces data volume by 16 times, recognition accuracy remains within an acceptable range.

However, reducing precision to less than 4 bits severely compromises recognition accuracy to an unacceptable level.

Fig. 11. The effect of reducing the precision of decimal data samples before transmission to the cloud on recognition

accuracy for various linear mapping scenarios.

Fig. 12 illustrates the details of the effect of reducing the precision of decimal data samples from the WISDM dataset,

while Fig. 13 details the effect of reducing the precision of decimal data samples from the UCI dataset on recognition

accuracy for different activity classifications. As observed in these figures, like the first method, the most significant

negative impact of reducing decimal precision occurs on the recognition of activities such as ascending and

descending stairs. Moreover, excessive reduction in decimal precision has led to decreased recognition accuracy

across various activities, particularly evident in the experiments with 1-bit precision

Fig. 12: The impact of reducing the precision of decimal points in the WISDM dataset on the accuracy of activity

recognition, for linear mappings of 32 bits (top left), 8 bits (top right), 16 bits (bottom left), and 1 bit (bottom right).

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

93

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fig. 14 details the effect of reducing the precision of decimal points on the acceleration signal along the x-axis for

activity-specific samples in the original dataset (a), with 8-bit precision (b), 4-bit precision (c), and 1-bit precision

(d) for the WISDM dataset. The 1-bit precision (d) exhibits the most significant negative impact on decimal point

accuracy reduction, resulting in decreased accuracy in activity recognition.

Fig. 13: The impact of reducing the precision of decimal points in the UCI dataset on the accuracy of activity

recognition, for linear mappings of 32 bits (top left), 8 bits (top right), 16 bits (bottom left), and 1 bit (bottom right).

In data compression approaches, instead of transmitting n-bit numbers directly, their differences are sent in the form

of m-bit deltas. Prior to this, data is converted from floating-point representation to fixed-point n-bit format. Both

lossless and Lossless compression effects have been tested. The measure of compression effectiveness is the

compression ratio defined by Equation (1).

Compression⁡ratio =
𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑⁡𝑑𝑎𝑡𝑎⁡𝑠𝑖𝑧𝑒

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑⁡𝑑𝑎𝑡𝑎⁡𝑠𝑖𝑧𝑒

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

94

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fig. 14. The effect of reducing the precision of decimal points on the x-axis signal.

While lossless compression does not affect accuracy, its effectiveness must be assessed through the compression ratio

measurement. On the other hand, proposed Lossless compression, despite offering a fixed compression ratio, should

be evaluated for its impact on recognition accuracy. In the lossless scenario, rather than transmitting 32-bit fixed-

point data directly, their differences are transmitted in 2, 4, 8, and 16-bit delta formats. If the data differences exceed

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

95

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

delta capacity, the original data sample is transmitted, and an indicator is placed before the original data to

distinguish this case. Despite compression, the final volume may exceed the initial volume. This process has been

tested for 4, 8, and 16-bit data with 2, 4, and 8-bit deltas, and data volume has been examined. As Fig. 15 shows, in

most cases, the final volume after compression exceeds the initial volume of the original data. Therefore, lossless

delta compression is not an appropriate method for reducing the volume of data sent to the cloud, except for the 4-

bit data case with 2-bit delta capacity.

Fig. 15. The effect of lossless delta compression on data sample volume

Delta compression with loss maintains an approximate estimation of the original data, like Lossless compression.

Instead of transmitting direct 32-bit fixed-point data, their differences are sent in the form of 2, 4, 8, and 16-bit deltas.

The key difference lies in utilizing the maximum delta capacity for significant differences and using subsequent

samples for correction. As a result, the compression ratio equals the ideal data size ratio to the delta size, but due to

the loss of part of the original data, recognition accuracy decreases. In cases where the difference between data size

and delta size is substantial, accuracy will significantly diminish. Therefore, experiments in this section were

conducted with 4, 8, and 16-bit data compression using 2, 4, and 8-bit deltas, respectively, with accuracy results

visible in Table 2.

Table 2. The impact of Lossless compression on data sample accuracy

Data sample

size

(bit)

delta size

(bit)

Accuracy without

compression

Accuracy with

compression

Data overflow

rate

8 6 96.7 94.7 0.27

4 3 97.0 95.4 0.09

4 2 97.0 95.0 0.29

Considering these results, Lossless delta compression performs better than lossless methods. For instance, in the

case of 8-bit data with a 2% reduction in accuracy, the size of the transmitted data is halved. Fig. 16 illustrates the

details of the impact of Lossless compression on the WISDM dataset's activity recognition accuracy for 8-bit data

with 6-bit delta and 4-bit data with 2-bit and 3-bit deltas.

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

96

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fig. 16. The effect of sample compression on the WISDM dataset's activity recognition accuracy. (a) 8-bit data with

a 6-bit delta, (b) 4-bit data with a 2-bit delta, and (c) 4-bit data with a 3-bit delta.

In [26], researchers converted data to 8 bits and achieved an 84-fold savings in transmitted data by applying

compression, losing only 2% accuracy. In contrast, this study experimented with different bit sizes and achieved up

to a 32-fold reduction in transmitted data with a 2% loss in accuracy. However, the delta compression method is

not as effective as the previous two methods in all cases.

 CONCLUSION

This study focuses on optimizing outsourcing computational tasks to cloud platforms by reducing the volume of

transmitted data, with an emphasis on human activity recognition using deep learning. Three methods for reducing

the number of data samples, reducing the precision of data samples, and compressing data samples have been

proposed and their efficacy tested on the WISDM and UCI datasets. In the first method, data samples are selectively

deleted before transmission and estimated recovery methods are employed at the cloud side. In the second method,

data samples are mapped to integer values with fewer bits using a linear mapping function before transmission, and

an inverse mapping estimation is performed at the cloud side. In the third method, data samples are compressed

using a low-overhead compression algorithm, either lossy or lossless, and recovered at the cloud side. Both proposed

methods for reducing the volume of data samples and reducing the precision of data samples result in only a slight

decrease in activity recognition accuracy. The method of reducing the precision of data samples demonstrates

superiority due to a more significant reduction in data volume compared to the first method. Using only 4 bits for

transmitting each data sample, which reduces the data volume by a factor of 16, incurs a limited accuracy loss of only

one percent. Although the Lossless compression method yields better results compared to the lossless method,

neither of these two methods matches the effectiveness of the precision reduction and data sample reduction

methods.

REFERENCES

[1] Graves, A., Mohamed, A.R. and Hinton, G., 2013, May. Speech recognition with deep recurrent neural networks.

In 2013 IEEE international conference on acoustics, speech and signal processing (pp. 6645-6649). Ieee

[2] Eshratifar, A.E. and Pedram, M., 2018, May. Energy and performance efficient computation offloading for deep

neural networks in a mobile cloud computing environment. In Proceedings of the 2018 on Great Lakes

Symposium on VLSI (pp. 111-116).

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

97

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[3] Dey, S., Mondal, J. and Mukherjee, A., 2019, March. Offloaded execution of deep learning inference at edge:

Challenges and insights. In 2019 IEEE International Conference on Pervasive Computing and Communications

Workshops (PerCom Workshops) (pp. 855-861). IEEE.

[4] Huang, Y., Wang, F., Wang, F. and Liu, J., 2019, April. DeePar: A hybrid device-edge-cloud execution framework

for mobile deep learning applications. In IEEE INFOCOM 2019-IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS) (pp. 892-897). IEEE.

[5] Kemp, R., Palmer, N., Kielmann, T. and Bal, H., 2010, October. Cuckoo: a computation offloading framework for

smartphones. In International Conference on Mobile Computing, Applications, and Services (pp. 59-79).

Springer, Berlin, Heidelberg.

[6] Ran, X., Chen, H., Liu, Z. and Chen, J., 2017, August. Delivering deep learning to mobile devices via offloading.

In Proceedings of the Workshop on Virtual Reality and Augmented Reality Network (pp. 42-47).

[7] Fadishei, H., 2018. Energy-Efficient Human Activity Recognition on Smartphones: A Test-Cost Sensitive

Approach. International Journal of Information & Communication Technology Research, 10(3), pp.42-49.

[8] Mahmoodi, S.E., Uma, R.N. and Subbalakshmi, K.P., 2016. Optimal joint scheduling and cloud offloading for

mobile applications. IEEE Transactions on Cloud Computing, 7(2), pp.301-313.

[9] Messaoudi, F., Ksentini, A. and Bertin, P., 2018, May. Toward a mobile gaming based-computation offloading. In

2018 IEEE International Conference on Communications (ICC) (pp. 1-7). IEEE.

[10] Zhang, L., Fu, D., Liu, J., Ngai, E.C.H. and Zhu, W., 2016. On energy-efficient offloading in mobile cloud for real-

time video applications. IEEE Transactions on Circuits and Systems for Video Technology, 27(1), pp.170-181.

[11] Deyannis, D., Tsirbas, R., Vasiliadis, G., Montella, R., Kosta, S. and Ioannidis, S., 2018, June. Enabling gpu-

assisted antivirus protection on android devices through edge offloading. In Proceedings of the 1st International

Workshop on Edge Systems, Analytics and Networking (pp. 13-18).

[12] Wang, X.S., Shen, H. and Wetherall, D., 2013, August. Accelerating the mobile web with selective offloading. In

Proceedings of the second ACM SIGCOMM workshop on Mobile cloud computing (pp. 45-50).

[13] Guo, K., Zeng, S., Yu, J., Wang, Y. and Yang, H., 2019. [DL] A survey of FPGA-based neural network inference

accelerators. ACM Transactions on Reconfigurable Technology and Systems (TRETS), 12(1), pp.1-26.

[14] Jeong, H.J., Jeong, I., Lee, H.J. and Moon, S.M., 2018, July. Computation offloading for machine learning web

apps in the edge server environment. In 2018 IEEE 38th International Conference on Distributed Computing

Systems (ICDCS) (pp. 1492-1499). IEEE.

[15] Eshratifar, A.E., Abrishami, M.S. and Pedram, M., 2019. JointDNN: An efficient training and inference engine

for intelligent mobile cloud computing services. IEEE Transactions on Mobile Computing.

[16] Karki, A., Keshava, C.P., Shivakumar, S.M., Skow, J., Hegde, G.M. and Jeon, H., 2019, March. Tango: A deep

neural network benchmark suite for various accelerators. In 2019 IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS) (pp. 137-138). IEEE.

[17] Shi, S., Wang, Q., Xu, P. and Chu, X., 2016, November. Benchmarking state-of-the-art deep learning software

tools. In 2016 7th International Conference on Cloud Computing and Big Data (CCBD) (pp. 99-104). IEEE.

[18] Qin, D., Yu, J., Zou, G., Yong, R., Zhao, Q. and Zhang, B., 2019. A novel combined prediction scheme based on

CNN and LSTM for urban PM 2.5 concentration. IEEE Access, 7, pp.20050-20059.

[19] Durstewitz, D., Koppe, G. and Meyer-Lindenberg, A., 2019. Deep neural networks in psychiatry. Molecular

psychiatry, 24(11), pp.1583-1598.

[20] Shah, S.D.A., Zhao, H.P. and Kim, H., 2018, October. Distributed deep neural networks with system cost

minimization in fog networks. In TENCON 2018-2018 IEEE Region 10 Conference (pp. 1193-1196). IEEE.

[21] Nazemi, M., Eshratifar, A.E. and Pedram, M., 2018, March. A hardware-friendly algorithm for scalable training

and deployment of dimensionality reduction models on FPGA. In 2018 19th International Symposium on

Quality Electronic Design (ISQED) (pp. 395-400). IEEE.

[22] Hirsa, A., Karatas, T. and Oskoui, A., 2019. Supervised deep neural networks (DNNS) for pricing/calibration of

vanilla/exotic options under various different processes. arXiv preprint arXiv:1902.05810.

[23] Gordon, M.S., Jamshidi, D.A., Mahlke, S., Mao, Z.M. and Chen, X., 2012. {COMET}: Code Offload by Migrating

Execution Transparently. In 10th {USENIX} Symposium on Operating Systems Design and Implementation

({OSDI} 12) (pp. 93-106).

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

98

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[24] Li, H., Ota, K. and Dong, M., 2018. Learning IoT in edge: Deep learning for the Internet of Things with edge

computing. IEEE network, 32(1), pp.96-101.

[25] Teerapittayanon, S., McDanel, B. and Kung, H.T., 2017, June. Distributed deep neural networks over the cloud,

the edge and end devices. In 2017 IEEE 37th International Conference on Distributed Computing Systems

(ICDCS) (pp. 328-339). IEEE.

[26] Eshratifar, A.E., Esmaili, A. and Pedram, M., 2019, July. Bottlenet: A deep learning architecture for intelligent

mobile cloud computing services. In 2019 IEEE/ACM International Symposium on Low Power Electronics and

Design (ISLPED) (pp. 1-6). IEEE.

[27] Jeong, H.J., Lee, H.J., Shin, C.H. and Moon, S.M., 2018, October. IONN: Incremental offloading of neural

network computations from mobile devices to edge servers. In Proceedings of the ACM Symposium on Cloud

Computing (pp. 401-411).

[28] Rosloniec, S., 2008. Fundamental numerical methods for electrical engineering (Vol. 18). Springer Science &

Business Media.

[29] McClarren, R., 2017. Computational nuclear engineering and radiological science using python. Academic

Press

[30] https://www.tensorflow.org/.

[31] Weiss, G.M., 2019. Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning

Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set.

[32] Data set: http://archive.ics.uci.edu/ml/datasets/(Smartphone Based Recognition of Human Activities and

Postural Transitions)

[33] Huang, Xiaocheng, Youwei Yuan, Chaoqi Chang, Yiming Gao, Chao Zheng, and Lamei Yan. "Human Activity

Recognition Method Based on Edge Computing-Assisted and GRU Deep Learning Network." Applied

Sciences 13, no. 16 (2023): 9059.

[34] Yao, Shuochao, Jinyang Li, Dongxin Liu, Tianshi Wang, Shengzhong Liu, Huajie Shao, and Tarek Abdelzaher.

"Deep compressive offloading: Speeding up neural network inference by trading edge computation for network

latency." In Proceedings of the 18th conference on embedded networked sensor systems, pp. 476-488. 2020.

[35] Yang, Bo, Xuelin Cao, Chau Yuen, and Lijun Qian. "Offloading optimization in edge computing for deep-

learning-enabled target tracking by internet of UAVs." IEEE Internet of Things Journal 8, no. 12 (2020): 9878-

9893.

[36] Wang, Xing, Lei Zhang, Wenbo Huang, Shuoyuan Wang, Hao Wu, Jun He, and Aiguo Song. "Deep convolutional

networks with tunable speed–accuracy tradeoff for human activity recognition using wearables." IEEE

Transactions on Instrumentation and Measurement 71 (2021): 1-12.

[37] Sarkar, Indranil, and Sanjay Kumar. "Deep learning-based energy-efficient computational offloading strategy in

heterogeneous fog computing networks." The Journal of Supercomputing 78, no. 13 (2022): 15089-15106.

[38] Huang, Liang, Suzhi Bi, and Ying-Jun Angela Zhang. "Deep reinforcement learning for online computation

offloading in wireless powered mobile-edge computing networks." IEEE Transactions on Mobile Computing 19,

no. 11 (2019): 2581-2593.

[39] Aghapour, Zahra, Saeed Sharifian, and Hassan Taheri. "Task offloading and resource allocation algorithm based

on deep reinforcement learning for distributed AI execution tasks in IoT edge computing

environments." Computer Networks 223 (2023): 109577.

https://www.tensorflow.org/
http://archive.ics.uci.edu/ml/datasets/%20(Smartphone

