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Research Aim: Study the possibility of optimizing the computational offloading of deep neural 

networks by reducing the volume of data sent to the cloud with a focus on the application of 

human activity recognition with deep learning. 

Research method: In this research, three proposed methods of reducing the number of data 

samples, reducing the precision of data samples and compressing data samples are presented. In 

the first method, the data samples are deleted one in between or more before sending them. Data 

restoration in the cloud side is performed by interpolation estimates. In the precision reduction 

method, floating-point data samples are converted to integers with fewer precision before 

sending them. They are converted back on the cloud side by using the inverse conversion 

function. In the third method, the data is compressed with low overhead compression 

algorithms, either lossy or lossless, and is decompressed on the cloud side. 

Findings: Among the two proposed methods of reducing the number of samples and reducing 

the precision of data samples, both methods only slightly reduce the accuracy of activity 

detection. The latter method is superior to the former method due to a more significant reduction 

in data volume. Although the lossy compression method shows better results than the lossless 

method, neither is as effective as the precision reduction method and the reduction in the 

number of data samples. 

Conclusion: Practical results show that although the methods of reducing the number of samples 

and reducing their precision can decrease the volume of data sent without a significant effect on 

accuracy, the precision reduction method is superior due to greater data volume reduction. 

Furthermore, the delta compression method is not as effective as the other two methods. 

Keywords: Computational Offloading, Deep Neural Networks, Human Activity Recognition 

 

INTRODUCTION 

Graves et al. explored the application of deep recurrent neural networks (RNNs) in speech recognition, 

demonstrating their ability to process time-series data efficiently, which is crucial for tasks like human activity 

recognition (HAR) where sequences of sensor data are involved [1]. In [2], Eshratifar and Pedram examined energy-

efficient computation offloading for deep neural networks (DNNs) in mobile cloud environments, showing that 

selective offloading of certain DNN layers can significantly reduce energy consumption and improve performance, a 

critical consideration for real-time HAR systems. Dey et al. identified key challenges in offloading deep learning 

inference to edge devices, focusing on computational constraints and the need for efficient data transfer methods. 

They proposed a hybrid execution model, improving resource efficiency and performance in HAR applications [3]. 

In [4], Huang et al. introduced DeePar, a framework that optimizes deep learning computations by dynamically 

partitioning them across devices, edge, and cloud servers based on current network conditions, reducing latency in 

mobile applications. Kemp et al. proposed Cuckoo, a framework for computation offloading on smartphones, 

illustrating how mobile devices can benefit from offloading computation-intensive tasks like HAR to external servers, 

reducing device strain and improving performance [5]. Ran et al. demonstrated the potential of mobile devices to 

leverage cloud-based offloading for accelerating deep learning inference, showing significant performance gains, 

especially for computationally heavy applications such as HAR [6]. In [7], Fadishei explored energy-efficient human 
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activity recognition on smartphones by using a test-cost sensitive algorithm, which reduces the volume of data 

processed and sent to the cloud, thus conserving energy while maintaining performance. Mahmoodi et al. studied 

joint scheduling and cloud offloading for mobile applications, focusing on optimizing latency and energy 

consumption, which is highly relevant for mobile HAR systems that require low-latency real-time inference [8]. 

Messaoudi et al. proposed an approach to mobile gaming computation offloading, which has parallels to HAR, as 

both involve transferring intensive computational tasks from mobile devices to external servers to improve 

performance and reduce energy use [9]. In [10], Zhang et al. examined energy-efficient offloading strategies for real-

time video applications in mobile cloud environments, suggesting techniques that could similarly enhance HAR 

systems by reducing the energy burden of real-time data processing. Deyannis et al. explored the use of edge servers 

for GPU-assisted antivirus protection on Android devices, demonstrating the benefits of offloading computational 

tasks to edge servers, which can also be applied to HAR to handle the large computational demands of deep learning 

models [11]. Wang et al. proposed selective offloading for accelerating mobile web applications, which can be adapted 

to HAR by dynamically determining which parts of the computational workload should be processed locally versus 

offloaded to the cloud, based on network conditions and computational complexity [12]. In [13], Guo et al. reviewed 

FPGA-based neural network inference accelerators, showing how hardware accelerators can be integrated into 

mobile or edge devices to improve the efficiency of DNN computations, potentially benefiting HAR applications with 

hardware-optimized inference. Jeong et al. discussed computation offloading for machine learning web applications, 

focusing on the edge server environment, which provides an efficient way to offload complex tasks from mobile 

devices, an approach that could be adopted in HAR to improve performance while reducing device strain [14]. 

Eshratifar et al. developed JointDNN, an efficient training and inference engine for mobile cloud services, 

demonstrating how joint processing of data between mobile and cloud platforms can enhance the performance of 

HAR systems by optimizing both energy and computational efficiency [15]. In [16], Karki et al. introduced Tango, a 

deep neural network benchmark suite that evaluates various accelerators' performance, highlighting the importance 

of optimizing DNN computations in HAR through hardware acceleration and efficient task offloading. Shi et al. 

benchmarked state-of-the-art deep learning tools, providing insights into the efficiency of different platforms for 

deep learning tasks like HAR, where computational offloading is essential to manage the high resource demands of 

real-time inference [17]. In [18], Qin et al. proposed a novel combined prediction scheme using CNN and LSTM 

models for urban PM 2.5 concentration prediction, showcasing how combining different types of deep learning 

models can enhance prediction accuracy, a technique that could be applied to improve HAR systems' recognition 

capabilities. Durstewitz et al. explored the use of deep neural networks in psychiatry, which, like HAR, requires the 

processing of large amounts of data to identify patterns, showing the broader applicability of DNNs for complex data-

driven tasks [19]. Shah et al. introduced a system for distributing deep neural networks in fog networks, focusing on 

minimizing system costs while offloading computations, a strategy that could improve HAR by ensuring that mobile 

devices handle fewer intensive tasks while maintaining system efficiency [20]. Nazemi et al. developed a hardware-

friendly algorithm for scalable training and deployment of dimensionality reduction models on FPGAs, highlighting 

the potential for improving the efficiency of HAR systems through hardware acceleration and optimized model 

deployment [21]. In [22], Hirsa et al. applied supervised deep neural networks for pricing and calibration of options, 

demonstrating how DNNs can be used for complex decision-making tasks, similar to how they are applied in HAR to 

classify and predict human activities based on sensor data. Gordon et al. introduced COMET, a framework for 

migrating code execution to offload computation transparently, which is relevant to HAR as it enables mobile devices 

to handle only lightweight processing tasks while offloading intensive computations to external servers [23]. Li et al. 

discussed learning in IoT environments with edge computing, emphasizing the benefits of offloading deep learning 

tasks to edge devices to reduce network congestion and processing times, which can be highly beneficial in HAR 

systems that rely on continuous real-time data processing [24]. Teerapittayanon et al. proposed a distributed DNN 

framework that spans the cloud, edge, and end devices, optimizing the distribution of computations to ensure that 

mobile devices are not overloaded with intensive tasks, a strategy that would enhance HAR applications by 

distributing computational workloads effectively [25]. In [26], Eshratifar et al. introduced BottleNet, a DNN 

architecture designed for intelligent mobile cloud computing services, which compresses data before offloading to 

the cloud, reducing the volume of data transmitted and improving the energy efficiency of mobile HAR systems. 

Jeong et al. proposed IONN, a framework for incrementally offloading neural network computations from mobile 

devices to edge servers, highlighting an efficient way to handle the computational demands of DNN-based HAR 
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systems while maintaining energy efficiency [27]. Rosloniec provided an overview of fundamental numerical methods 

for electrical engineering, offering insights into computational optimization techniques that could be applied to 

improve the efficiency of DNN computations in HAR systems [28]. McClarren discussed the application of 

computational methods in nuclear engineering, showing the relevance of these techniques for optimizing 

computational models, which can similarly be applied in HAR to manage the computational complexity of deep 

learning models [29]. In [30], TensorFlow, an open-source deep learning platform, provides tools for building and 

deploying DNN models, including applications for mobile and edge devices, which are critical for implementing HAR 

systems that require optimized offloading strategies. Weiss introduced the WISDM dataset for smartphone and 

smartwatch activity and biometrics, providing a valuable resource for training and testing HAR models, particularly 

for mobile applications where sensor data must be processed in real time [31]. The UCI Machine Learning Repository 

provides a dataset for smartphone-based recognition of human activities and postural transitions, offering a 

foundation for developing HAR systems that can benefit from computational offloading to reduce device strain 

during real-time inference [32]. Huang et al. proposed a method for human activity recognition that integrates edge 

computing with GRU networks, reducing computational costs and enhancing real-time performance, showing how 

edge-based offloading can improve the efficiency of HAR systems [33]. Yao et al. introduced deep compressive 

offloading, which speeds up neural network inference by trading edge computation for reduced network latency, 

offering a promising strategy for enhancing the performance of mobile HAR systems [34]. Yang et al. explored 

offloading optimization in edge computing for deep learning-enabled target tracking by UAVs, demonstrating 

techniques that can be applied to HAR by optimizing the distribution of computational tasks between mobile devices 

and edge servers [35]. Wang et al. introduced deep convolutional networks with a tunable speed–accuracy tradeoff 

for HAR using wearables, providing a method to balance performance and energy consumption, crucial for 

optimizing mobile HAR systems [36]. In [37], Sarkar and Kumar proposed a deep learning-based energy-efficient 

offloading strategy in heterogeneous fog computing networks, showing how optimized offloading can improve both 

energy efficiency and computational performance in HAR systems. Huang et al. applied deep reinforcement learning 

to optimize computation offloading in mobile-edge computing networks, providing a dynamic approach to managing 

offloading tasks based on network conditions and computational loads, which can enhance the performance of HAR 

systems [38]. Aghapour et al. introduced a task offloading and resource allocation algorithm based on deep 

reinforcement learning for distributed AI tasks in IoT edge environments, offering a scalable solution for HAR 

systems that rely on continuous real-time data processing [39].  

Here are the contributions of the paper, listed as titles: 

1. Optimization of Computational Offloading for Deep Neural Networks 

2. Proposing Three Methods for Data Reduction: 

• Data Sample Reduction (Deleting samples and interpolating on the cloud side) 

• Precision Reduction (Converting floating-point data to lower precision integers) 

• Compression (Using low-overhead compression techniques: lossy and lossless) 

3. Evaluation of Data Reduction Methods on WISDM and UCI Datasets 

4. Comparison of Data Reduction Methods for Activity Recognition 

5. Demonstrating the Superiority of Precision Reduction for Data Volume Reduction 

6. Assessing the Effectiveness of Lossy and Lossless Compression 

7. Practical Implications for Optimizing Data Transmission in Cloud-Based Human Activity Recognition 

Problem statement and literature review 

In recent years, we have witnessed a significant increase in research and development of mobile networks. With 

advancements in mobile terminals and the rising popularity of smartphones, new mobile applications such as facial 

recognition, image processing, interactive games, and augmented reality have gained considerable attention. 

Consequently, the expectations for mobile devices to run more demanding applications are increasing [1]. Nowadays, 
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users utilize mobile phones for a wide range of daily activities, such as searching through music, playing video games, 

recording, editing, and uploading videos, analyzing their photo collections, indexing content, and managing financial 

affairs [2]. Despite the prominent role these devices play in individuals' lives, running complex applications on mobile 

devices poses challenges due to their limited resources, such as memory capacity, graphical processing speed, and 

battery power [3]. Mobile devices have relatively weak computational power, limited battery life, and hardware 

resources. Additionally, mobile applications typically require intensive computations and high energy consumption. 

Given the limitations of the computational resources available in mobile devices, these devices may not be able to run 

applications efficiently [4]. Today, due to the increasing demand for high-processing-volume applications, there is a 

need for powerful environments and resources capable of handling these heavy computations. One solution to this 

problem is known as offloading, in which low-power devices, such as mobile phones and Internet of Things (IoT) 

objects, offload their processing tasks to a cloud computing environment, delegating them to cloud servers [5]. 

Offloading can lead to energy savings and performance improvements, and it can also enhance the computational 

capabilities of mobile systems [2]. The computational operations of deep neural networks (DNN) involve two phases: 

training and inference, where the issue of offloading can be relevant in both phases. During the training phase, the 

parameters of the DNNs (such as the weights of the edges) are determined using pre-labeled input data, enabling the 

DNN to perform inference on previously unseen data during the inference phase. Each layer's processing can be 

considered a vector operation, where the parameters are iteratively updated as the DNN is trained with labeled data. 

Given that practical applications of smartphones are more prominent in the inference phase; most researchers focus 

on offloading computations for inference. Conversely, the training phase, due to its extensive computational resource 

requirements, is typically conducted on powerful servers [3]. Another reason for the limited offloading of the training 

phase is that once this phase is completed, the parameters of each layer remain fixed. Therefore, as long as the 

training data remains unchanged, the deep neural networks use the same parameters for inference on input data. 

Some researchers have focused on offloading all or parts of the computations of deep neural networks, proposing 

solutions to overcome obstacles such as battery usage limitations on mobile devices and their constrained 

computational resources. Offloading deep neural networks usually involves a trade-off, where savings in execution 

time and energy consumption come at the cost of reduced inference accuracy [6]. This trade-off is the focus of the 

present research, which aims to reduce the volume of data sent to the cloud during the inference phase by optimizing 

the first entry point of deep neural networks, thereby minimizing data size in various ways. The focus of this research 

is on human activity recognition (HAR). Activity recognition is crucial for providing services in the Internet of Things 

(IoT) world. Modern smartphones have become prominent devices for human activity recognition due to their 

ubiquity, sensing capabilities, and processing power. However, limited battery capacity and resources of smartphones 

hinder their full utilization for such sensing and processing capabilities [7]. Human activity recognition enables the 

detection of various physical activities performed by a smartphone user (such as walking, running, etc.) based on 

different inputs. This study aims to optimize communications in offloading the problem of human activity recognition 

with smartphones by examining the trade-off between the volume of transmitted data and recognition accuracy. 

Here, we have a comparison table about the previous methods in the literature and the current paper in Table 1. 

Table 1: Comparative contributions from the references 

Reference Method/Focus Contributions Comparison to Current 

Paper 

[1] Graves 

et al., 2013 

Recurrent Neural 

Networks for Speech 

Recognition 

Introduces deep recurrent 

neural networks (RNNs) for 

speech recognition. 

Not directly related to 

offloading or activity recognition 

but foundational for deep 

learning methods applied in the 

current paper. 

[2] 

Eshratifar & 

Pedram, 2018 

Mobile Cloud 

Computing for DNNs 

Optimizes offloading 

computation for deep neural 

networks in mobile 

Focus on mobile-cloud 

offloading like the current paper, 

but doesn't specifically focus on 
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environments, considering 

energy and performance. 

reducing data volume, which is 

the focus of the current paper. 

[3] Dey et 

al., 2019 

Edge Computing for 

Deep Learning 

Challenges and insights on 

offloading deep learning 

execution to edge devices. 

Relevant to the 

computational offloading 

context, but current paper looks 

at optimizing data reduction in 

transmission rather than edge 

offloading. 

[4] Huang 

et al., 2019 

Hybrid Device-Edge-

Cloud Execution 

Proposes DeePar for hybrid 

execution of mobile deep 

learning apps. 

Both papers address mobile 

deep learning, but current paper 

is focused on reducing data sent 

to the cloud, while this paper 

considers hybrid execution 

strategies. 

[5] Kemp et 

al., 2010 

Computation 

Offloading Framework 

Focus on computation 

offloading for smartphones in 

mobile computing. 

Early work on offloading, 

providing a framework that 

might serve as a basis for the 

current paper’s offloading 

techniques, but with less focus 

on data reduction. 

[6] Ran et 

al., 2017 

Offloading Deep 

Learning to Mobile 

Investigates offloading 

deep learning tasks to mobile 

devices via offloading. 

Similar offloading context, 

but the current paper includes 

more specific data reduction 

methods. 

[7] 

Fadishei, 2018 

Energy-Efficient 

Activity Recognition 

Focus on energy-efficient 

activity recognition using 

smartphones. 

Related to activity 

recognition but does not focus on 

offloading or data reduction. 

[8] 

Mahmoodi et 

al., 2016 

Joint Scheduling and 

Cloud Offloading 

Focus on scheduling and 

offloading decisions in cloud 

mobile applications. 

Similar offloading concept, 

but current paper emphasizes 

methods to reduce the volume of 

data, not just scheduling. 

[9] 

Messaoudi et 

al., 2018 

Mobile Gaming 

Computation Offloading 

Focus on offloading 

computation for mobile 

gaming applications. 

Focus on a specific use case 

(gaming), while the current 

paper focuses on human activity 

recognition with data reduction 

methods. 

[10] Zhang 

et al., 2016 

Energy-Efficient 

Offloading for Real-Time 

Video 

Examines energy-efficient 

offloading for video 

applications. 

Different application (video 

vs. activity recognition) but 

similar offloading concerns; the 

current paper adds more focus 

on data reduction strategies. 

[11] 

Deyannis et 

al., 2018 

Edge Offloading for 

Antivirus 

Focus on edge-assisted 

computation offloading for 

antivirus protection. 

Similar edge/offloading 

context but focuses on a different 

application (antivirus), while the 

current paper addresses human 

activity recognition. 
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[12] Wang 

et al., 2013 

Mobile Web 

Offloading 

Selective offloading to 

accelerate mobile web 

performance. 

Early work on selective 

offloading; the current paper 

builds on similar concepts but 

focuses on optimizing data size 

rather than computation 

offloading itself. 

[13] Guo et 

al., 2019 

FPGA-based Neural 

Network Inference 

Surveys FPGA-based 

accelerators for deep learning 

inference. 

Focuses on hardware 

accelerators for inference, while 

the current paper focuses more 

on optimizing cloud 

communication for deep 

learning tasks. 

[14] Jeong 

et al., 2018 

Computation 

Offloading for ML Web 

Apps 

Computation offloading for 

machine learning web apps in 

edge environments. 

Similar concept of offloading 

computations but the current 

paper’s contribution is more 

focused on reducing data size 

rather than offloading execution. 

[33] Huang 

et al., 2023 

Edge Computing for 

Human Activity 

Recognition 

Proposes a deep learning 

method for activity recognition 

using edge computing. 

Similar in application 

(human activity recognition) and 

edge context, but the current 

paper focuses more on 

transmission data reduction 

techniques. 

[34] Yao et 

al., 2020 

Deep Compressive 

Offloading 

Proposes a method to 

reduce network latency by 

offloading deep learning tasks. 

Both explore offloading, but 

the current paper emphasizes 

data reduction methods to 

improve offloading efficiency. 

[35] Yang et 

al., 2020 

Target Tracking with 

Deep Learning 

Offloading optimization in 

edge computing for target 

tracking in IoT. 

Offloading optimization in a 

similar edge context but focused 

on different application (target 

tracking vs. activity recognition). 

[36] Wang 

et al., 2021 

Deep Convolutional 

Networks for Human 

Activity Recognition 

Focus on deep learning for 

human activity recognition 

using wearables. 

More aligned with the 

application of the current paper, 

but the current paper focuses 

more on reducing data volume 

sent to the cloud. 

[37] Sarkar 

& Kumar, 2022 

Energy-Efficient 

Offloading in Fog 

Networks 

Proposes an energy-

efficient strategy for 

computational offloading in 

fog networks. 

Both papers address 

offloading, but the current paper 

goes deeper into optimizing the 

data sent rather than just energy. 

[38] Huang 

et al., 2019 

Reinforcement 

Learning for 

Computation Offloading 

Deep reinforcement 

learning for offloading 

decisions in mobile-edge 

networks. 

Focuses on decision-making 

strategies for offloading, while 

the current paper emphasizes 

optimizing data for 

transmission. 
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Proposed Method 

As we know, deep neural network models are large enough that even considering a portion of the model on a mobile 

phone incurs significant overhead. Additionally, deep neural network models are typically dynamic, requiring 

frequent updates to their parameters and weights, making sending part or all of the model to a mobile phone costly. 

Therefore, this research focuses on the first entry point of deep neural networks, which is the data sent for inference, 

aiming to reduce its volume through various means. To date, comprehensive research on the impact of approaches 

to reducing the input data volume in offloading deep neural networks has not been conducted. In study [26], 

compression approaches were used to optimize the traffic sent to the deep neural network. In contrast, the present 

study investigates the effects of different approaches, where compression is one of them. Furthermore, unlike study 

[26], there is no requirement to use a specific type of deep neural network that imposes limitations on its applicability. 

The objective of this research is to optimize the offloading of computations in deep neural networks by reducing the 

volume of data sent to the cloud. Various approaches exist that can reduce the volume of data sent to the cloud, 

thereby improving the efficiency of offloading operations. Our proposed method includes three approaches: reducing 

the number of data samples, reducing the precision of data samples, and compressing data sample instances. 

However, it should be noted that each of these approaches creates a trade-off between accuracy and inference cost by 

deep neural networks, with the aim in the current study being to find effective and optimal points in these trade-offs, 

if available. The overall framework of the proposed method to achieve this objective is illustrated in Fig. 1 and consists 

of explaining these three approaches in the following sections. 

3-1. Reducing the Number of Data Samples 

The first proposed approach in this study to optimize the offloading of computations in deep neural networks is 

reducing the number of data samples sent to the cloud. Reducing the number of input data samples always decreases 

the volume of data sent to the cloud, leading to reduced communication costs (time, price, and energy consumption). 

Additionally, in some cases where input data is received from sensor sources (such as the case study of activity 

recognition described later), it can lead to energy savings in data sampling. This is because the energy consumed by 

the sensor layer in smartphones increases proportionally with the sampling rate. Therefore, reducing the number of 

samples received per unit of time reduces energy consumption on the mobile side. However, reducing samples will 

lower the accuracy of inference by deep neural networks. The aim of this research is to study the trade-off between 

accuracy and communication costs and to find an optimal point in this trade-off, if possible. It remains to be seen 

whether restoring some of the deleted samples can partially recover lost accuracy to some extent. For this purpose, 

the authors have experimented with different deletion scenarios of intermediate data samples—preserving one 

sample out of two, preserving one out of three, and preserving one out of four—and then recovering them using linear 

and cubic interpolation methods. 

 

 

 

 

 

 

 

                                      Fig. 1. General framework of the proposed method in this study 

Interpolation is a well-established process for estimating values between specified data points. In this study, two 

types of interpolation methods—linear and cubic—have been employed to determine values at points between given 

data points. Assuming linearity in the variations, arithmetic mean interpolation can be performed according to 

Equation (1): 
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𝑦 = 𝑦𝑎 + (𝑦𝑏 − 𝑦𝑎)
𝑥 − 𝑥𝑎
𝑥𝑏 − 𝑥𝑎

 (1) 

where  𝑥𝑎 and  𝑥𝑏are two existing points, and x is the point of interest for interpolated value estimation [28]. 

Additionally, considering a higher number of data points, interpolation with polynomials of higher degrees can be 

performed. For cubic interpolation, Equation (2) is used, where n represents the number of points, and x and y are 

the knot points to find the interpolated value [29]: 

𝑦𝑛+1 = 𝑎𝑎 + 𝑏𝑛𝑥𝑛+1 + 𝑐𝑛𝑥𝑛+1
2 + 𝑑𝑛𝑥𝑛+1

3  (2) 

3-2. Reducing the Decimal Precision of Data Samples 

The second proposed approach in this paper for optimizing the offloading of deep neural network computations 

involves reducing the precision of the decimal (Precision) of the data samples sent to the cloud. To optimize 

offloading, the decimal precision of data can be reduced so that the number of bits required for each data sample 

decreases, reducing the volume of data sent to the cloud and saving energy consumption. It is evident that this 

method, similar to the previous approach, involves a trade-off between precision and the volume of transmitted data. 

Using the linear mapping relationship 2, where x is the initial variable and n is the number of bits, sensor data can 

be encoded as 8-bit, 16-bit, etc., integers instead of floating-point representation (as shown in Fig. 3-2. a). For 

example, as illustrated in Fig. 3-2. b, for 8-bit encoding, the smallest sensor reading is mapped to zero and the largest 

to 255, with other values proportionally mapped within this range. 

𝑓(𝑥. 𝑛) = 𝑟𝑜𝑢𝑛𝑑 (
(𝑥 −min(𝑥))

max(𝑥) − min⁡(𝑥)
× (2𝑛 − 1)) (3) 

After receiving the reduced-precision data on the cloud side, they can be restored to values close to the original data 

using the inverse mapping relationship 4, as depicted in Fig. 3-2.c: 

g(𝑥̇. 𝑛) = min(𝑥) +
(min⁡(𝑥) − min⁡(𝑥)

(2𝑛 − 1))
× 𝑥̇ 

In this relationship, x is the initial variable, 𝑥̇ is the mapped variable after precision reduction, and n is the number 

of bits allocated to each data sample. 

3-3. Data Sample Compression 

Another approach investigated in this study for optimizing the outsourcing of deep neural network computations is 

the compression of data samples. Since most real-world data exhibit statistical redundancy, this method employs 

compression algorithms that typically utilize statistical redundancy to represent the sender's information more 

concisely, thus reducing the volume of data sent to the cloud. The aim of data compression is to reduce the data 

volume without causing significant alterations to its content. This approach aims to balance the trade-off between 

compression costs and communication costs, exploring whether imposing compression costs can substantially reduce 

communication costs. It is essential to consider that, despite the availability of various high-compression-ratio 

algorithms, a method with very low computational overhead must be chosen. One lightweight method for 

compressing data streams is the delta method. This method, assuming that the variation ranges of each data sample 

relative to the previous one is sufficiently small, transmits the differences with fewer bits instead of sending the full 

samples. Evidently, if this assumption does not hold, the aforementioned algorithm cannot effectively compress the 

data. In this research, both loss and lossless delta compression methods have been utilized. 



Journal of Information Systems Engineering and Management 
2025, 10(35s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

85 

 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 

                                            Fig. 2. The Effect of Data Recovery on 8-bit Precision Reduction 

3-3-1. Loss Delta Compression 

In the lossless compression approach, data compression and decompression do not result in any data loss. As shown 

in Fig. 3, this method operates under the assumption that the data samples are (n) bits (where (n = 32, 16, 8, 4)), the 

delta is (m) bits (where (m = 16, 8, 4, 2)), and (m < n). For example, if (n = 32) and (m = 16), instead of transmitting 

(n)-bit numbers to the cloud, their differences are transmitted in (m)-bit form. If the difference between data samples 

exceeds (m) bits (the delta capacity), the original data sample must be sent, and to distinguish this case, a marker 

(reserved data) is placed before the original data sample. The smallest negative number in the delta range is used as 

the reserved marker. Consequently, due to the overhead of these markers, the final compressed data volume might 

be larger than the initial data volume. This scenario occurs when the variation range between consecutive data 

samples is large, necessitating frequent use of the marker. 

 

                                                    Fig. 3. Lossless Delta Compression of Data Samples 

3-3-2. Compression with delta loss 

The Compression with delta loss retains an approximate representation of the original data while sacrificing some of 

the original data in favor of a higher compression ratio. As shown in Fig. 4, when the difference between data samples 

exceeds (m) bits (in this figure, the specific case of (m = 8)), the maximum value representable in 8 bits is transmitted, 

and subsequent samples are used to correct the approximation. Consequently, in Lossless compression, an increase 

in data volume is not observed. However, due to the inherent data loss, the reduction in volume comes at the cost of 

precision. 
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                                                         Fig. 4. Lossy delta compression of data samples 

 

In the next chapter, experiments are conducted to evaluate the effectiveness of the proposed methods in this research 

and to study the trade-off between inference accuracy and the volume of data sent to the cloud. 

RESULTS AND ANALYSIS 

 4-1. Implementation 

Nearly every modern smartphone is equipped with a three-axis accelerometer that measures acceleration in all three 

spatial dimensions. In this study, the authors used data collected from accelerometer sensors and trained a Long 

Short-Term Memory (LSTM) neural network, implemented in Python using the TensorFlow library, as the reference 

model for experiments to recognize human activities (HAR) from accelerometer data. The neural network model 

comprises two fully connected layers and two LSTM layers with 64 units each. 

4-2. Dataset 

The proposed methods in this research were evaluated using data collected from accelerometer sensors, specifically 

the WISDM [31] and UCI [32] datasets. The WISDM dataset contains raw accelerometer and gyroscope data collected 

from smartphones and smartwatches at a rate of 10 Hz. It shows the distribution of values along the x, y, and z axes. 

The sensor data were collected from 51 subjects performing 18 activities for 3 minutes each. The data are segmented 

into 10-second intervals, with each sensor reading occurring every 100 milliseconds. For each axis, there are 100 

consecutive readings for each activity, resulting in 300 decimal numbers per activity. The raw data in this dataset 

contain 8 decimal places, and each sample includes 100 numbers. There is a total of 1,098,203 samples in this dataset, 

which includes over two million samples across five activity classes: walking, running, stair activities, sitting, and 

standing. Eighty percent of the data is used for training, and the remaining twenty percent is used for testing. 

The UCI dataset contains raw data with three axes (x, y, and z) collected at a fixed rate of 50 Hz using an accelerometer 

and gyroscope. The sensor signals (accelerometer and gyroscope) are divided into 2.56-second segments. Each 

sample includes 128 numbers, and there are 2,947 samples in total. This dataset includes five activity classes: sitting, 

standing, stair activities, walking, and lying down. Seventy percent of the data is used for training, and the remaining 

thirty percent is used for testing. 

4-3. Experiments 

In this section, an effort is made to study the optimal trade-off between accuracy and communication cost based on 

the proposed methods. To this end, the inference accuracy of the deep neural network for the original data samples 

from the WISDM dataset was first tested without the proposed methods. Fig. 4-1 (a) details the accuracy of activity 

recognition for this dataset, broken down by activity. The activities in this Fig. include Jogging (Jog), Sitting (Sit), 

Stair climbing (Sta), Standing (Stan), and Walking (W). The overall recognition accuracy in this case (without data 

transmission volume reduction) is 98.7%. 



Journal of Information Systems Engineering and Management 
2025, 10(35s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

87 

 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Next, the inference accuracy of the deep neural network for the original data samples from the UCI dataset was tested 

without the proposed methods. Fig. 5 (b) details the accuracy of activity recognition for this dataset, broken down by 

activity. The activities in this Fig. include Lying (Lay), Sitting (Sit), Stair climbing (Sta), Standing (Stan), and Walking 

(W). The overall recognition accuracy in this case (without data transmission volume reduction) is 87.8%.  

 

Fig. 5. Activity Recognition Accuracy by Activity without Data Reduction 

In the first experiment, the proposed method for reducing the volume of data sent to the cloud by decreasing the 

number of samples was evaluated. To this end, a fraction of the data was reduced by removing intermediate samples 

at various intervals (i.e., removing every other sample, every third sample, and every fourth sample) and then 

recovered using interpolation methods, specifically linear and cubic interpolation. Both the learning and inference 

steps were performed with the reduced data. Fig. 6 shows the effect of removing data samples before sending them 

to the cloud on accuracy. Part (a) shows the effect of removing every other sample, every two samples, every three 

samples, and every four samples with linear interpolation recovery for the WISDM dataset. Part (b) shows the effect 

of various intermediate sample removal scenarios with linear interpolation recovery for the UCI dataset. Part (c) 

shows the effect of removing every other sample, every third sample, and every fourth sample with cubic interpolation 

recovery for the WISDM dataset. Part (d) demonstrates the effect of various intermediate sample removal scenarios 

with cubic interpolation recovery for the UCI dataset. As shown in the figure, the sample removal approach can 

generally be considered beneficial. For example, removing every other sample reduces the data transmission volume 

by 50% while only negatively impacting prediction accuracy by 1%. Additionally, no significant difference is observed 

between linear and cubic interpolation recovery methods. 

 

(a) Linear Interpolation Recovery of the WISDM Dataset 
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(b) Linear Interpolation Recovery of the UCI Dataset 

 

(c) Cubic Interpolation Recovery of the WISDM Dataset 

 

(d) Cubic Interpolation Recovery of the UCI Dataset 

Fig. 6: The impact of data point removal before transmission to the cloud on accuracy. 

Fig. 7 shows the effect of data point removal on activity-specific detection accuracy for the WISDM dataset, while Fig. 

8 displays the impact on the UCI dataset for linear and cubic interpolation recovery methods under different removal 

scenarios. As observed in the figures, the primary negative impact on detection accuracy pertains to activities 

involving ascending and descending stairs. Hence, detection accuracy is activity dependent. 
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Fig. 7. Impact of WISDM Data Point Removal on Activity-Specific Detection Accuracy for Linear Interpolation (left) 

and Cubic Interpolation (right) with Removal of One in Between (top), Two in Between (middle), and Three in 

Between (bottom). 

 

Fig. 8. Impact of UCI Data Point Removal on Activity-Specific Detection Accuracy for Linear Interpolation (left) 

and CubicInterpolation (right) with Removal of One in Between (top), Two in Between (middle), and Three in 

Between (bottom). 
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Fig. 9 details the effect of reducing the number of data points on the acceleration signal along the x-axis for activity-

specific examples in the original data set in (a), removal of one in between in (b), removal of two in between in (c), 

and removal of three in between with linear interpolation in (d) for the WISDM data set, illustrating how acceleration 

changes over time in different activities. 
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Fig. 9. The Effect of Reducing the Number of Samples and Linear Interpolation on the X-axis Signal 

Fig. 10 details the effect of reducing the number of data points on the acceleration signal along the x-axis for 

activity-specific examples in the original data set in (a), removal of one in between in (b), removal of two in between 

in (c), and removal of three in between with cubic interpolation in (d) for the WISDM data set. 

 

 

 

Fig. 10. The Effect of Reducing the Number of Samples and Cubic Interpolation on the X-axis Signal. 

One of the other methods for reducing the volume of data sent to the cloud is precision reduction. Before transmission 

to the cloud, data are transformed into an integer number n-bit using a linear mapping function (n = 1, 2, 4, 8, 16, 

32). After computational processing in the cloud, they are reverted to data close to the original using the inverse 
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relationship. Fig. 11 (a) illustrates the impact of reducing the precision of data samples from the WISDM dataset prior 

to cloud transmission on accuracy for various linear mapping scenarios, while Fig. 11 (b) shows the impact on 

accuracy of reducing data samples from the UCI dataset for different linear mapping scenarios. As expected, in both 

datasets, reducing precision correlates with reduced recognition accuracy. However, this trade-off between accuracy 

and volume reduction is beneficial. For instance, in the 8-bit scenario of the WISDM dataset, achieving an eightfold 

reduction in transmitted volume (compared to 64-bit floating-point precision) results in only about a one percent 

decrease in recognition accuracy. It is noteworthy that even with further reduction in precision and using 4-bit 

precision, which reduces data volume by 16 times, recognition accuracy remains within an acceptable range. 

However, reducing precision to less than 4 bits severely compromises recognition accuracy to an unacceptable level. 

 

Fig. 11. The effect of reducing the precision of decimal data samples before transmission to the cloud on recognition 

accuracy for various linear mapping scenarios. 

Fig. 12 illustrates the details of the effect of reducing the precision of decimal data samples from the WISDM dataset, 

while Fig. 13 details the effect of reducing the precision of decimal data samples from the UCI dataset on recognition 

accuracy for different activity classifications. As observed in these figures, like the first method, the most significant 

negative impact of reducing decimal precision occurs on the recognition of activities such as ascending and 

descending stairs. Moreover, excessive reduction in decimal precision has led to decreased recognition accuracy 

across various activities, particularly evident in the experiments with 1-bit precision 

 

Fig. 12: The impact of reducing the precision of decimal points in the WISDM dataset on the accuracy of activity 

recognition, for linear mappings of 32 bits (top left), 8 bits (top right), 16 bits (bottom left), and 1 bit (bottom right). 
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Fig. 14 details the effect of reducing the precision of decimal points on the acceleration signal along the x-axis for 

activity-specific samples in the original dataset (a), with 8-bit precision (b), 4-bit precision (c), and 1-bit precision 

(d) for the WISDM dataset. The 1-bit precision (d) exhibits the most significant negative impact on decimal point 

accuracy reduction, resulting in decreased accuracy in activity recognition. 

 

Fig. 13: The impact of reducing the precision of decimal points in the UCI dataset on the accuracy of activity 

recognition, for linear mappings of 32 bits (top left), 8 bits (top right), 16 bits (bottom left), and 1 bit (bottom right). 

In data compression approaches, instead of transmitting n-bit numbers directly, their differences are sent in the form 

of m-bit deltas. Prior to this, data is converted from floating-point representation to fixed-point n-bit format. Both 

lossless and Lossless compression effects have been tested. The measure of compression effectiveness is the 

compression ratio defined by Equation (1). 

Compression⁡ratio =
𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑⁡𝑑𝑎𝑡𝑎⁡𝑠𝑖𝑧𝑒

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑⁡𝑑𝑎𝑡𝑎⁡𝑠𝑖𝑧𝑒
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Fig. 14. The effect of reducing the precision of decimal points on the x-axis signal. 

While lossless compression does not affect accuracy, its effectiveness must be assessed through the compression ratio 

measurement. On the other hand, proposed Lossless compression, despite offering a fixed compression ratio, should 

be evaluated for its impact on recognition accuracy. In the lossless scenario, rather than transmitting 32-bit fixed-

point data directly, their differences are transmitted in 2, 4, 8, and 16-bit delta formats. If the data differences exceed 
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delta capacity, the original data sample is transmitted, and an indicator is placed before the original data to 

distinguish this case. Despite compression, the final volume may exceed the initial volume. This process has been 

tested for 4, 8, and 16-bit data with 2, 4, and 8-bit deltas, and data volume has been examined. As Fig. 15 shows, in 

most cases, the final volume after compression exceeds the initial volume of the original data. Therefore, lossless 

delta compression is not an appropriate method for reducing the volume of data sent to the cloud, except for the 4-

bit data case with 2-bit delta capacity. 

 

Fig. 15. The effect of lossless delta compression on data sample volume 

Delta compression with loss maintains an approximate estimation of the original data, like Lossless compression. 

Instead of transmitting direct 32-bit fixed-point data, their differences are sent in the form of 2, 4, 8, and 16-bit deltas. 

The key difference lies in utilizing the maximum delta capacity for significant differences and using subsequent 

samples for correction. As a result, the compression ratio equals the ideal data size ratio to the delta size, but due to 

the loss of part of the original data, recognition accuracy decreases. In cases where the difference between data size 

and delta size is substantial, accuracy will significantly diminish. Therefore, experiments in this section were 

conducted with 4, 8, and 16-bit data compression using 2, 4, and 8-bit deltas, respectively, with accuracy results 

visible in Table 2. 

Table 2. The impact of Lossless compression on data sample accuracy 

Data sample 

size 

(bit) 

delta size 

(bit) 

Accuracy without 

compression 

Accuracy with 

compression 

Data overflow 

rate 

8 6 96.7 94.7 0.27 

4 3 97.0 95.4 0.09 

4 2 97.0 95.0 0.29 

 

Considering these results, Lossless delta compression performs better than lossless methods. For instance, in the 

case of 8-bit data with a 2% reduction in accuracy, the size of the transmitted data is halved. Fig. 16 illustrates the 

details of the impact of Lossless compression on the WISDM dataset's activity recognition accuracy for 8-bit data 

with 6-bit delta and 4-bit data with 2-bit and 3-bit deltas. 
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Fig. 16. The effect of sample compression on the WISDM dataset's activity recognition accuracy. (a) 8-bit data with 

a 6-bit delta, (b) 4-bit data with a 2-bit delta, and (c) 4-bit data with a 3-bit delta. 

In [26], researchers converted data to 8 bits and achieved an 84-fold savings in transmitted data by applying 

compression, losing only 2% accuracy. In contrast, this study experimented with different bit sizes and achieved up 

to a 32-fold reduction in transmitted data with a 2% loss in accuracy. However, the delta compression method is 

not as effective as the previous two methods in all cases. 

 CONCLUSION 

This study focuses on optimizing outsourcing computational tasks to cloud platforms by reducing the volume of 

transmitted data, with an emphasis on human activity recognition using deep learning. Three methods for reducing 

the number of data samples, reducing the precision of data samples, and compressing data samples have been 

proposed and their efficacy tested on the WISDM and UCI datasets. In the first method, data samples are selectively 

deleted before transmission and estimated recovery methods are employed at the cloud side. In the second method, 

data samples are mapped to integer values with fewer bits using a linear mapping function before transmission, and 

an inverse mapping estimation is performed at the cloud side. In the third method, data samples are compressed 

using a low-overhead compression algorithm, either lossy or lossless, and recovered at the cloud side. Both proposed 

methods for reducing the volume of data samples and reducing the precision of data samples result in only a slight 

decrease in activity recognition accuracy. The method of reducing the precision of data samples demonstrates 

superiority due to a more significant reduction in data volume compared to the first method. Using only 4 bits for 

transmitting each data sample, which reduces the data volume by a factor of 16, incurs a limited accuracy loss of only 

one percent. Although the Lossless compression method yields better results compared to the lossless method, 

neither of these two methods matches the effectiveness of the precision reduction and data sample reduction 

methods. 
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