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Market segmentation through mixture regression models  received lot of impetus  to its ready 

applicability in market analytics, business analytics, financial analytics, supply chain analytics , 

Human Resource analytics etc. In regression analysis it is common to assume that error term 

follows a normal distribution. Normal distribution has several drawbacks such as being 

mesokurtic and the model may not fit well for all types of data. Hence, in this paper we develop 

market segmentation method though mixture of regression models with Generalized Normal 

Distributed (GND) errors. The GND includes leptokurtic, platykurtic and normal distribution 

as special cases. The parameters of the proposed model are estimated using Expectation 

Maximization (EM) algorithm. The initialization of the model parameters is done by using 

hierarchical clustering algorithm. The segmentation algorithm is obtained through component 

maximum likelihood under Bayesian framework. The applicability of the proposed algorithm is 

demonstrated with market segmentation data. The performance of the algorithm is evaluated 

by computing   segmentation performance metrics. It is observed that this method performs 

much better than the earlier segmentation methods having normal distributed   and 

generalized normal distributed errors with k-means algorithm for the data sets having 

leptokurtic and platykurtic response variables. 

Keywords: Segmentation Methods, Generalized Normal Distribution, Market Segmentation, 

Regression Analysis, Hierarchical Clustering. 

 

1. INTRODUCTION 

Segmentwise Linear Regression (SLR) is a statistical technique that addresses a fundamental limitation of 

traditional linear regression, which is the inability to capture complex relationships within a dataset that contains 

different subgroups [1].  In the literature it is also referred to as regression clustering, switching regression. The aim 

of SLR is to find a given number of linear functions each approximating a subset of the whole data set by 

minimizing the overall sum of regression errors. SLR can be considered as extension of linear regression. One 

linear function is used to fit the whole data set in the linear regression where as SLR approximates the data using 

more than one linear functions.  SLR has been applied to several application domains including customer benefit 

segmentation [10], market segmentation[11], modeling of the metal inert gas welding process [12] , pavement 

management systems[13], rain fall prediction[14 ]and PM10 prediction[15].   

Wayne S. Desarbo et.al [2] presented a conditional mixture, maximum likelihood methodology for performing 

clusterwise linear regression. This methodology estimates separate regression functions and membership in S 

segments or groups simultaneously.  Qiang Long et.al [3] described various methods to solve clusterwise linear 
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regression problems. Ye Chow Kuang et.al [1] presented the performance characterization of clusterwise linear 

regression algorithms. Yifan Zhang et.al [16] studied generalized ordinal Bayesian finite mixture regression model 

for market segmentation which allows simultaneous variable selction within each derived segment and recovers 

segment profiling using concomintant variables. Ting Li et. Al [18] extended the classical clusterwise linear 

regression to incorporate multiple functional predictors by representing the functional coefficients in terms of a 

functional principal component basis.  Kaisa Joki et. Al [19] studied a model and solved the SLR problem by using 

support vector machines for regression to approximate each cluster.  Paul W. Murray et. Al [20] applied data 

mining methods to identify behavior patterns in historical noisy delivery data in market segmentation.  Cathy W.S. 

Chen et. Al [21] studied a Bayesian approach to simultaneously classify observations drawn from a finite mixture 

and estimate regression model parameters.  

The concept of market segmentation emerged in marketing. Market Segmentation is defined as representing a 

heterogeneous market as a set of homogeneous submarkets. Segmentation involves creating groups of customers 

who show similar characteristics and can be targeted with customized strategies in context of product markets. 

Market segmentation is the process of segmenting a market into distinct groups of customers who share similar 

characteristics, needs, or behaviors. This approach enables the companies to customize their business strategies for 

each segment to improve the company sales and profits. [24]. Philippe Masset[23] applied  market segmentation to 

wine data to predict the price of fine wines over their life cycle using regression approach. Tuma, M et.al[25] 

reviewed finite mixture models in market segmentation. Juan Prieto-Rodriguez et.al [26] investigated whether the 

null hypothesis of a unique segment of prices in the high end of art market can be rejected using Finite Mixture 

Model(FMM). Aytaç B et.al [27] studied two regression-based techniques used to detect herding among investors. 

Herding is described as the tendency of investors to imitate others by suppressing their own beliefs. They also 

introduced an approach based on the autocorrelation of returns and tested all models on a unique dataset of wine 

prices. Renneboog L et.al[28] examined geographical segmentation and its effects on price formation and returns 

in the international art auction market. Arouri M.E et.al [29] presented a theoretical Capital Asset Pricing Model 

(CAPM) to price assets in different market structures and analyzed whether when markets are partially segmented 

using the local or the global CAPM yields significant errors in the estimation of the cost of capital for a sample of 

firms from developed and emerging countries. Ashish Sood et.al[30] studied a  model for predicting market 

penetration of new products through functional regression. Carsten Hahn et.al [31] developed an approach for 

capturing unobserved customer heterogeneity in structural equation modeling by using a modified finite-mixture 

distribution approach based on partial least squares. Clusterwise linear regression models are used to build efficient 

strategic decision making models in the field of market analytics.  

In all these papers, it was assumed that attributes of the segmentation data set follows normal distribution and the 

whole data set is represented by mixture of normal distributions.  The major drawback of the Normal mixture 

model is it assumes attribute vector is mesokurtic. In some data sets   the attribute vector associated with data may 

not have mesokurtic distribution. Hence, to build accurate modeling, it is necessary to generalize the normal 

mixture model. One of the generalization is including platy, lepty and meso kuritc distributions. Generalized 

normal distribution is capable of describing platy, lepty and meso kurtic distributions. Very little work has been 

reported in the literature regarding market segmentation using mixture regression models with Generalized 

Normal Distributed errors.  To develop efficient market segmentation , in this paper an algorithm is developed 

assuming that the attribute vector associated with the data set follows a  generalized normal mixture model 

proposed method is applied super market dataset[22] to divide  customers into low profit, medium profit and high 

profit margin contributed customers based on their category to the super market store.  

The rest of the paper is presented as follows. Section 2 is concerned with Mixture of regression models with 

Generalized Normal Mixture Model. Section 3 provides the hierarchical clustering algorithm for identifying the 

number of clusters in the data. Section 4 deals with the initialization of the model parameters. Section 5 describes 

the estimation of model parameters using Expectation and Maximization (EM) algorithm. Section 6 elaborates the 

segmentation algorithm for regression models with Generalized Normal Mixture model. Section 7 deals with 

experimental results and performance evaluation of the model. Section 8 deals with conclusions.  

In this paper we follow the following notations: 
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𝑖 = 1,2,3, … … . 𝑁 are subjects / observations/ data points. 

           𝑗 = 1,2,3, … … . . 𝑀 are regressor variables/attributes. 

              𝐵𝑖 = the value of the response variable for data point 

𝑎𝑖𝑗 = the value of the jth regressor variable. 

            s= 1,2, … … . 𝑆 segments 

2) FINITE MIXTURE OF REGRESSION MODELS WITH GENERALIZED NORMAL DISTRIBUTION 

The finite mixture of regression models are composed through the conditional mixture and maximum likelihood 

methodology. The SLR models based on the maximum likelihood methodology are also called as finite mixture 

models for regression problems [7] and finite mixture of linear regression [8]. Finite mixture models for regression 

were discussed in [9]. In the 1990s, these models were extended by mixing standard linear regression models and 

generalized linear models [10]. 

   

In the finite mixture model method, it is assumed that the observations arise from s distinct random segments [2]. 

Each of the segments is modeled by specific probability density function. Let w be a random variable and P(w, 

𝜃𝑘)be a probability density function for each segment s=1,2,.. S . Then the variable w is said to arise from a finite 

mixture model if it has a density function in the following represented form. 

 

                       ℎ(𝑤, 𝜑) = ∑ 𝛼𝑘  𝑃(𝑤, 𝜑𝑠)   𝑆
𝑠=1 𝛼𝑠  ≥ 0, ∑ 𝛼𝑠 = 1𝑆

𝑠=1                                            (2.1) 

where 𝜑𝑠 is the  parameter vector of the segment for the density function and 𝛼𝑠 is the mixing proportion of the 

segment s, s= 1,2, …. S. 

The density function P can be used to formulate the relationship between the regressor and response variables in 

the regression. Let A is independent attribute vector, B is response attribute vector of a dataset D and assume that B 

is distributed as a finite mixture of conditional Generalized Normal densities.  

The probability density function (pdf) of the Generalized Normal Distribution (GND) with mean𝜇 = 0 is defined as  

                      𝑓(𝑥, 𝜃) =  
𝜃𝑘(𝜃)

2𝜎
𝑒−𝐴(𝜃)|
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                                                                                                                      (2.2) 
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     , 𝜎 is standard deviation, 𝜃 is shape parameter and Γ(. ) is Gamma function.  

Figure 2.1 represents the frequency curve of Generalized Normal Distribution with different shape parameters 

 
Figure 2.1 

The finite mixture regression model of s components is   

                       ℎ(𝐵|𝐴, 𝜑) = ∑ 𝛼𝑘  𝑃(𝐵|𝐴, 𝜑𝑠)   𝑆
𝑠=1 𝛼𝑠  ≥ 0, ∑ 𝛼𝑠 = 1𝑆

𝑠=1                                      (2.3) 
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where, 𝑃(𝐵|𝐴, 𝜑𝑠) is the probability density function of the sth component and 𝜑 is the vector of all parameters. 

Then SLR is modeled as a finite mixture or sum of conditional univariate densities as 

                                   Bi ~ ∑ 𝛼𝑠 𝑃𝑖𝑗(𝐵𝑖|𝐴, 𝜑𝑠)   𝑆
𝑠=1                                                                      (2.4)  

Where, Pij are univariate Generalized Normal densities. The model becomes a mixture of standard linear regression 

models. If Pij are members of the exponential family then we get a mixture of generalized linear regression 

models[11]. 

A mixture model based approach to regression analysis assumes that the observations of a data set originate from 

various segments with unknown segment affiliation. 

The mixture of linear regression is defined as follows. 

𝐵𝑖 = ∑ 𝛼𝑠𝑓𝑠(𝐵𝑖|𝑠) + 𝜖   𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2,3, … . 𝐼 𝑆
𝑠=1                                                                       (2.5) 

𝐵𝑖   is the dependent variable , 𝛼𝑠 is the relative size (mixture proportion) of segment s. where ∑ 𝛼𝑠 = 1𝑆
𝑠=1    and 𝛼𝑠 >

0 ∀ 𝑠 = 1,2, … … . 𝑆 

Now 𝐵𝑖  is distributed as a finite sum or mixture of conditional univariate Generalized Normal Distribution (GND). 

 

                        𝐵𝑖 =  ∑ 𝛼𝑠𝑓𝑖𝑠(𝑏𝑖|𝑎𝑖𝑗 , 𝜎, 𝛽𝑖𝑗)𝑆
𝑠=1      Where𝛽𝑖𝑗 is regression coefficient. 

                      𝐵𝑖 = ∑ 𝛼𝑠
𝜃𝑠𝑘(𝜃𝑠)

2𝜎𝑠
𝑒

−𝐴(𝜃𝑘)(
|𝐵𝑖−(𝛽0+𝛽1𝑠𝑎1𝑖+𝛽2𝑠𝑎2𝑖+ …….+𝛽𝑛𝑠𝑎𝑛𝑖)|

𝜎𝑘
)

𝜃𝑠

𝑆
𝑠=1                                 (2.6)  

3. HIERARCHICAL CLUSTERING ALGORITHM FOR IDENTIFYING THE NUMBER OF CLUSTERS 

UNDER REGRESSION ANALYSIS 

In order to utilize the EM algorithm we have to initialize the model parameters which are generally considered as 

known apriori. The following steps involved in the hierarchical clustering algorithm [6]. 

Step 1: Start by assigning each observation to a segment. Each of the N observations, are associated with N 

segments, each containing just one item. Let the distances (similarities) between the segments be the same as the 

distances (similarities) between the items they contain. 

Step 2: Find the most similar pair of segments and merge them into a single segment. The number of segments is 

now reduced by one. Compute distances (similarities) between the new segments and each   of the old segments. 

Step 3: Repeat steps 2 and 3 until all items are segmented.     

Step 3 can be done in different ways, namely a) Single-Linkage b) Complete-Linkage and c) Average- Linkage 

segmenting.  

4. INITIALIZATION OF MODEL PARAMETERS 

The process of identifying the initial estimates of the parametric set for the given linear regression model based on 

GND, one need to update the parameters using EM algorithm. The main constraint in the execution of EM 

algorithm is that it is totally dependent on the number of clusters and initial estimates of the model parameters [5]. 

The initial estimates of the parameters in regression analysis are estimated using moment method of estimation 

and ordinary least square method of estimation.  

The updated equations are to be calculated for 𝛼𝑠 (the mixing parameter), 𝜎𝑠(Standard Deviation) and 𝛽𝑗𝑠 

(Regression Coefficient). Since the process is unsupervised, the initial knowledge about the parameters within the 

data is highly unpredictable. 

In order to estimate the values, the methodology of likelihood estimates is subjected. 
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5. ESTIMATION OF THE MODEL PARAMETERS USING EM ALGORITHM: 

In this section, estimation of model parameters using Expectation Maximization (EM) algorithm that maximizes 

the likelihood function of the model are consider [4].  Given a sample of N observations we can form the likelihood 

function 

𝐿 = ∏ [∑ 𝛼𝑠
𝑆
𝑠=1

𝜃𝑠𝑘(𝜃𝑠)

2𝜎𝑠
𝑒

−𝐴(𝑠)(
|𝐵𝑖−(𝛽0+𝛽1𝑠𝑎1𝑖+𝛽2𝑠𝑎2𝑖+ …….+𝛽𝑛𝑠𝑠𝑛𝑖)|

𝜎𝑘
)

𝜃𝑠

]𝑁
𝑖=1                                 (5.1) 

                                                          where 0 ≤ 𝛼𝑠 ≤ 1, ∑ 𝛼𝑠 = 1, 𝜎𝑠 > 0𝑆
𝑠=1  

   

The log likelihood function is  

ln 𝐿 =  ∑ 𝑙𝑛 [∑ 𝛼𝑠
𝑆
𝑠=1

𝜃𝑠𝑘(𝜃𝑠)

2𝜎𝑠
𝑒

−𝐴(𝑠)(
|𝐵𝑖−(𝛽0+𝛽1𝑠𝑎1𝑖+𝛽2𝑠𝑎2𝑖+ …….+𝛽𝑛𝑠𝑠𝑛𝑖)|

𝜎𝑘
)

𝜃𝑠

]𝑁
𝑖=1                      (5.2) 

To estimate the values of parameters 𝛼𝑠 , 𝜎𝑠, 𝛽𝑗𝑠, EM algorithm consists of two steps i.e. Expectation (E) step and 

Maximization (M) step is applied . The basic step in the EM algorithm needs the estimation of initial estimates from 

a given dataset. The final estimates of parameters 𝛼𝑠 , 𝜎𝑠, 𝛽𝑗𝑠are obtained by maximizing the expected value 

likelihood or log likelihood. The procedure given by [5] is used to estimate the shape parameter 𝜃𝑠. 

The idea of the EM algorithm is then to iteratively calculate the maximum likelihood estimate of the unknown 

parameter set 𝜑 = (𝛼𝑠 , 𝜎𝑠, 𝛽𝑗𝑠).  The first step of EM algorithm is to estimate initial model parameters 𝛼𝑠 , 𝜎𝑠, 𝛽𝑗𝑠 

from a given observations of data. The second step is to maximize Q(𝜑, 𝜑 (1) ) [6]. Using the steps in the EM 

algorithm, we get the following updated equations for the model parameters.  

for 𝜶𝒔 :  

 𝛼𝑠= 
∑ 𝑝𝑖𝑠̂

𝑠
𝑖=1

𝐼
                                                                                                                        (5.3)              

for𝜷𝒋𝒔: 

∑ 𝑝𝑖𝑠̂
𝐴(𝜃𝑠)

𝜎𝑠
𝜃𝑠

𝑁
𝑖=1 𝜃𝑠 𝑠𝑔𝑛 (𝐵𝑖 − (𝛽0 + ∑ 𝛽𝑗𝑠𝑎𝑖𝑗

𝑖=𝑁,𝑗=𝑀,𝑠=𝑆
𝑖=1,𝑗=1,𝑠=1 )) |𝐵𝑖 − (𝛽0 + ∑ 𝛽𝑗𝑠𝑥𝑖𝑗

𝑖=𝑁,𝑗=𝑀,𝑠=𝑆
𝑖=1,𝑗=1,𝑠=1 )|

𝜃𝑠−1
𝑥𝑖𝑗=0   (5.4) 

 

As a special case if 𝜃𝑠 = 2 we have normal  distribution. Then for 𝜃𝑠 = 2  we have 

∑ 𝑝𝑖𝑠̂

𝑁

𝑖=1

|𝐵𝑖 − (𝛽0 + ∑ 𝛽𝑗𝑠𝑥𝑖𝑗

𝑖=𝑁,𝑗=𝑀,𝑠=𝑆

𝑖=1,𝑗=1,𝑠=1

)| 𝑥𝑖𝑗 = 0 

 

for 𝝈𝒔: ∑
𝑝𝑖𝑠̂

𝜎𝑠

𝑁
𝑖=1 (𝜃𝑠𝐴(𝜃𝑠)|𝐵𝑖 − (𝛽0 + ∑ 𝛽𝑗𝑠𝑥𝑖𝑗

𝑖=𝑁,𝑗=𝑀,𝑠=𝑆
𝑖=1,𝑗=1,𝑠=1 )|

𝜃𝑠
𝜎𝑠

−𝜃𝑠 − 1) = 0                            (5.5)  

As a special case if 𝜃𝑠 = 2 we have normal distribution. Then for 𝜃𝑠 = 2  we have 

σs =  (
∑ 𝑝𝑖𝑠̂(|𝐵𝑖 − (𝛽0 + ∑ 𝛽𝑗𝑠𝑥𝑖𝑗

𝑖=𝑁,𝑗=𝑀,𝑠=𝑆
𝑖=1,𝑗=1,𝑠=1 )|)

2
𝑁
𝑖=1

∑ 𝑝𝑖𝑠̂
𝐼
𝑖=1

)

1

2

 

Solving the equations (4.3),(4.4) and (4.5) simultaneously and iteratively , the refined estimates of the model 

parameters  𝛼𝑠 , 𝜎𝑠, 𝛽𝑗𝑠 can be obtained. 

Once estimates of 𝛼𝑠 , 𝜎𝑠, 𝛽𝑗𝑠 are obtained, one can assign each observation i to each segment s though the estimated 

posterior probability using Bayes rule. 

𝑝𝑖𝑠̂ =

𝛼𝑠̂𝑓
𝑖𝑠(𝐵𝑖 |𝑥𝑖𝑗 , 𝛼𝑠̂, 𝛽𝑖𝑠̂)

∑ 𝛼𝑠̂𝑓
𝑖𝑠(𝐵𝑖 |𝑥𝑖𝑗 , 𝛼𝑠̂, 𝛽𝑖𝑠̂)

𝑆
𝑠=1

                                                                                                   (5.6) 

Assign observation i to segment s iff 𝑝𝑖𝑠̂ > 𝑝𝑖𝑙̂∀ 𝑙 ≠ 𝑠 = 1,2, … … 𝑆. 

EXPECTATION – MAXIMIZATION ALGORITHM 

          Step1:  Select the initial model parameters. 

          Step 2:  obtain revised estimates of the model parameters  𝛼𝑠 , 𝜎𝑠, 𝛽𝑗𝑠   using equations (5.3),  



Journal of Information Systems Engineering and Management 
2025, 10(35s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

121 

 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

                       (5.4) and   (5.5) 

          Step 3:  Repeat the process until the parameters do not change or the difference in successive 

                        computations is within the given threshold value.  

         Step 4 :  Write the final estimates of parameters  𝛼𝑠 , 𝜎𝑠, 𝛽𝑗𝑠 

 

6. SEGMENTATION ALGORITHM FOR REGRESSION WITH GENERALIZED NORMAL MIXTURE 

MODEL 

In this section, the segmentation algorithm for regression models with Generalized Normal Distribution is 

presented for identifying the new observations with one of the available clusters. The steps involved in this 

algorithm are as follows.  

           Step 1:  Draw the dendogram for the training data set in order to obtain the initial number                             

                         of clusters by using the hierarchical clustering algorithm. 

            Step 2:  Obtain initial estimates of the model parameters. 

           Step 3:  Obtain the final estimates of the model parameters using the updated equations of  

                        the EM   algorithm given in section 4.  

            Step 4: For a new observation, compute the conditional likelihood with the model  

                      parameters of the  sth   class and assign it to the class for which the sample conditional  

                     likelihood is maximum. i.e. the  classification is C=argmaxkP(Dt│Ck). Where C is the  

                     maximum likelihood class and   Dt is the new observation. 

7. EXPERIMENTAL RESULTS AND PERFORMANCE EVALUATION 

In this section, the applicability of the proposed algorithm for segmenting marketing data is demonstrated.  The 

dataset was collected from Kaggle dataset repository [22]. This dataset has 21 features among them Segment (The 

segment where the Customer belongs), Sales (Sales of the Product), Quantity (Quantity of the Product) and Profit 

(Profit/Loss incurred) are considered as relevant attributes for this study. Here there are three segments of 

customer groups like Consumer, Home Office and Corporate. After analyzing super market data set, it was observed 

that two attributes sales (A1) and quantity (A2) are most relevant attributes for deriving the profit(B) margins such 

as low profit margin, medium profit margin and high profit margin of the store. Here Consumer segment customers 

contributed low profit margin, Home Office segment customers contributed medium profit margin and Corporate 

segment customers contributed high profit margin. To identify the margins of the profit, it is required to segment 

the data set into various clusters based on sales and quantity variables. The number of clusters in the super market 

data is not known and requires unsupervised learning algorithms to identify various margins of profit. Hence a 

study is carried out by collecting a sample of 80 data points with sales and quantity variables of super market data 

set.  

Using hierarchical clustering algorithm, the number of profit margins according to sales and quantity is 

determined. For implementing the hierarchical clustering algorithm, the initial number of clusters is required. 

Hence, using the training data, the sample observations are plotted in dendogram shown in figure 7.1. 

 
Figure 7.1: Dendogram of Market Data 
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Using the initialization of parameters discussed in section 6, the initial estimates of parameters 𝛼𝑠 , 𝜎𝑠, 𝛽𝑗𝑠 are 

obtained for 3 profit margins such that low profit margin corresponds to cluster 1, medium profit margin 

corresponds to cluster 2 and high profit margin corresponds to cluster 3. The computed initial estimates of the 

model parameters are presented in Table 7.1 

 

Table 7.1: Initial estimates of the model parameters 

Parameter Segment 1( Low Profit Margin)  Segment 2 ( Medium Profit Margin) Segment 3(High Profit 

Margin) 

𝛼𝑠 0.1750 0.6500 0.1750 

𝜎𝑠 117.5365 11.4240 0.0010 

βjs Intercept 17.9278 -52.9095 0.0010 

Coefficient 

1 

0.3597 0.2356 0.2636 

Coefficient 

2 

-4.6381 -3.3996 -20.1636 

 

Using these initial estimates and the EM algorithm, the refined estimates of parameters for each segment are 

obtained and presented in Table 7.2. 

Table 7.2: Final estimates of the model parameters 

Parameter Segment 1( Low Profit Margin)  Segment 2 ( Medium Profit Margin) Segment 3(High Profit 

Margin) 

𝛼𝑠 0.5695 0.4055 0.0250 

𝜎𝑠 4.2448 1.3767 e+03 5.7443e -26 

βjs Intercept 0.1846 32.4429 2.8715 

Coefficient 

1 

0.3239 0.1414 0.2585 

Coefficient 

2 

0.1034 -6.1929 -20.2312 

 

With these final estimates, the 3 segments of profit margins are estimated as  

Segment 1:  Consumer segment customers (low profit margin) 

   B= 0.1846 + 0.3239 A1 – 0.1034 A2 

Here A1 represents sales, A2 represents quantity and B represents profit. 

Segment 2:  Home Office Segment customers (medium profit margin) 

B= 32.4429 + 0.1414 A1 – 6.1929 A2 

Segment 3:  Corporate Segment customers (high profit margin) 

 B= 2.8715 + 0.2585 A1 – 20.2312 A2 

Therefore, the model characterizes the whole data set is a three-segment mixture of Generalized normal 

Mixture Model (GNMM) whose segment proportions are: 𝛼1 =0.5695, 𝛼2=0.4055,𝛼3=0.0250, respectively.  For 

evaluating the proposed algorithm, the test data consisting of 80 data points is considered. The proposed 

unsupervised algorithm using GNMM identified 50 tuples as low profit margin, 28 tuples as medium profit margin 

and 2 tuples as high profit margin. For evaluating the performance of the proposed algorithm, accuracy, 

misclassification rate, precision, recall and F-measure are used. For the proposed unsupervised learning algorithm 

of GNMM with hierarchical clustering (GNMM-H), the performance measures for each segment are computed and 

presented in Table 7.3.  

 

 

 



Journal of Information Systems Engineering and Management 
2025, 10(35s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

123 

 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Table 7.3: Performance Measures of the Mixture of GNMM classifier with hierarchical clustering 

 True Positive Rate(TPR) 

Recall 

Precision False Discovery Rate F-Measure 

Segment 1 0.9800 0.9800 0.0200 0.9800 

Segment 2 1.0000 0.9285 0.0000 0.9629 

Segment 3 0.2500 1.0000 0.5000 0.4000 

 

Table 7.4: Performance Measures of the Mixture of GGMM classifier with k-means clustering 

 True Positive Rate(TPR) 

Recall 

Precision False Discovery Rate F-Measure 

Segment 1 0.9682 0.9839 0.0317 0.9760 

Segment 2 0.9166 0.7857 0.0833 0.8461 

Segment 3 0.8000 1.0000 0.2000 0.8888 

 

Table 7.5: Performance Measures of the Mixture of GMM classifier 

 True Positive Rate(TPR) 

Recall 

Precision False Discovery Rate F-Measure 

Segment 1 0.9365 0.9672 .0635 0.9516 

Segment 2 0.9166 0.7857 0.0833 0.8461 

Segment 3 0.8000 1.0000 0.2000 0.8888 

 

To compare the efficiency of the proposed GNMM classifier using hierarchical clustering (GNMM-H) with earlier 

Generalized Gaussian Mixture Model using k-means (GGMM-K) and Gaussian Mixture Model (GMM) classifiers, 

recall, precision, false discovery rate and F-measure are computed and presented in Table 7.4 and Table 7.5 

respectively. 

Comparing   Table 7.3, Table 7.4 and Table 7.5 it is observed that the F value for segment 1 and Segment 2 using the 

proposed classifier is more compared to that of the classifier with GGMM-K and GMM. The f value for segment 3 is 

less than proposed classifier compare to classifier with GGMM-K and GMM.  

To compare the efficiency of the developed unsupervised algorithm with existing unsupervised learning algorithm 

with GMM model for both sales and quantity variables, the same test data were considered and the accuracy and 

misclassification rates were computed. Table 7.6 presents the accuracy and error rates of GNMM-H, GGMM-K and 

GMM classifiers. 

Table 7.6: Performance evaluation of accuracy & error rate 

Classifier Accuracy Error rate 

GNMM-H 0.9625 0.0375 

GGMM-K 0.9500 0.0500 

GMM 0.9250 0.0750 

 

From Table 7.6 it is observed that the accuracy of GNMM-H classifier is more compared to the accuracy of GGMM-

K and GMM classifiers and the error rate of GNMM-H  classifier is lesser compared to the error  rate of GGMM-K 

and GMM classifiers.  

8. CONCLUSIONS 

This paper deals with the development and analysis of a new and novel method in segmentation algorithm for 

market analytics data using mixture regression models with Generalized Normal Distribution with hierarchical 

clustering. In market segmentation so far the algorithms developed using mixture regression models with normal 

distribution. For the first time we developed an unsupervised learning algorithm for market segmentation using 
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Generalized Normal mixture regression models under Bayesian framework. This algorithm is more suitable for 

analyzing all types of data sets that show different behaviours such mesokurtic, playkurtic and leptokurtic. This 

algorithm is utilized for analyzing the real time  situations in market analytics, business analytics, financial 

analytics, HR analytics etc. where the variables under study are correlated and follows Generalized Normal 

Distribution.  

Another important feature of this proposed algorithm is integration of hierarchical clustering with model based 

method in learning algorithms. The learning algorithm is developed based on component maximum likelihood 

under Bayesian framework. Hence it is assumed that the attribute vector is generated from a heterogeneous 

population which can be modeled by a finite mixture of regression models with Generalized Normal Distribution. 

The model parameters are estimated using Expectation and Maximization (EM) algorithm. 

The performance of the proposed algorithm is evaluated using the super market data set. The experimental results 

revealed that the proposed algorithm outperforms the existing learning algorithms.  This learning algorithm can be 

extended to the integration of clustering algorithms with mixture regression models using Truncated Generalized 

Normal Distributed errors which will be considered later. 
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