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A key component of contemporary healthcare, medical image analysis has transformed precision 
disease diagnosis, treatment planning, and disease monitoring. Advances in medical image 
processing, especially about the incorporation of deep learning techniques, have greatly 
improved the precision and efficacy of diagnostic processes. Federated learning protects patient 
anonymity by enabling cooperative model training across decentralized data sources, keeping 
sensitive medical data localized and private while still promoting model progress. This paper 
provides a complete medical image analysis framework using Federated Learning.  In a 
normalized and pre-processed Chest X-ray dataset, several base deep learning models were 
trained for comparison. These models included a basic CNN model, VGG16, ResNet50, and 
InceptionV3. After training, hyperparameters were optimized to improve performance. Our 
experimental results show that the Inception V3 performs better than other two DL models. The 
best-performing deep learning model was selected as the client’s local model. To address privacy 
concerns, Federated Learning (FL) techniques were employed. FL allows devices to update 
models locally without sharing raw data. The FedAvg algorithm was used at the server to 
aggregate the data received from the clients, and the process was performed cyclically. Model 
weights from individual devices were transmitted to a central server for aggregation. This 
collaborative approach enables learning while preserving data anonymity. 
 
Keywords:. Federated Learning, Medical Image analysis, Deep Learning. 

 

INTRODUCTION 

Medical image analysis is essential to modern healthcare because it enables precise disease diagnosis, treatment 
planning, and disease monitoring. The accuracy and effectiveness of tasks involving medical image processing have 
increased because of recent developments in deep learning techniques. Applying several deep learning models in the 
medical industry now confronts significant obstacles. These challenges include the requirement for reliable and 
understandable models, handling data privacy issues, making sure that the models apply to a variety of patient 
demographics and healthcare environments, and smoothly incorporating the models into clinical processes. The 
interpretability of model predictions and the absence of defined evaluation criteria are further issues that need to be 
addressed if one is to win over healthcare professionals' confidence and acceptance. Furthermore, larger and more 
varied datasets are required to effectively train deep learning models, particularly in light of the variations in clinical 
outcomes and medical imaging data among various patient populations. To fully utilize deep learning to transform 
healthcare, treatment planning, and medical diagnostics, these issues must be resolved. 
 
1.1 Federated Learning: 
Federated learning makes it possible to collaboratively train models using decentralized data sources while protecting 
data privacy (Soham et al., 2023). The effectiveness of federated and deep learning methods can be seen for a variety 
of medical imaging tasks, such as image segmentation (Renard, F, 2020), classification, disease identification (Hu, 
M., 2021)  and anomaly detection (Rauniyar, A, 2023). In the fields of drug discovery, clinical decision support 
systems, healthcare IOT, public health surveillance, and medical research, federated learning makes collaboration 
easier. It benefits multiple medical disciplines by enabling data analysis while maintaining privacy.  

Existing federated learning (FL) algorithms face difficulties in several medical fields. Maintaining model 
performance while aggregating heterogeneous data is challenging due to source-specific data heterogeneity. Network 
bandwidth is strained by high communication overhead, and privacy issues with local model updates and 
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communication security still exist. It is difficult to ensure model convergence when data distributions diverge. 
Effective FL deployment is further hampered by security concerns like model poisoning and resource shortages in 
healthcare facilities. The implementation of FL in medical contexts is further complicated by regulatory compliance 
with privacy restrictions. 
 
1.2 Different types of Federated Learning: 
 

Federated learning encompasses various strategies tailored to address distinct challenges in distributed 
machine learning. As shown in Fig. 1, Each approach offers unique advantages and considerations in optimizing 
collaboration and efficiency across distributed environments. 

 

 
Figure. 1: Federated Learning Framework  

 
Centralized Federated Learning: 
Centralized federated learning relies on a central server to orchestrate model training by selecting client devices and 
collecting updates. This method seems straightforward and yields accurate models. However, it encounters a critical 
bottleneck issue: network failures can disrupt the entire process. Despite its efficacy, the centralized approach is 
susceptible to interruptions due to its dependency on a single point of coordination—the central server. 
 
Decentralized Federated Learning: 
In contrast to centralized federated learning, decentralized federated learning operates without a central server. 
Instead, model updates are shared directly among interconnected edge devices. While this eliminates the risk of 
single-point failures, the accuracy of the final model hinges on the network topology of these edge devices. 
Consequently, the effectiveness of decentralized federated learning varies depending on the interconnectedness and 
reliability of the network. Fig. 2 depicts the centralized and distributed learning techniques. 
   

 
Figure. 2:  Centralized Learning vs. Distributed Learning  
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Heterogeneous Federated Learning: 
Heterogeneous federated learning addresses the diversity among client devices, which can range from mobile phones 
to IoT devices with varying hardware, software, and data characteristics. Unlike conventional federated learning 
methods that assume uniformity among local models, HeteroFL acknowledges and accommodates the heterogeneity 
of these devices. By training over multiple distinct local models, HeteroFL can converge on a single global model 
suitable for inference across diverse device types and data modalities. Fig. 3 depicts the heterogeneous learning 
technique. 

 
Figure. 3: Heterogeneous Learning  

 
 
1.3 Federated Learning Algorithms: 

Federated learning algorithms comprise a range of methodologies tailored for collaborative model training 
across distributed devices. These techniques, such as FEDSG, leverage different strategies to facilitate 
communication and aggregation of model updates among participating devices. While some algorithms prioritize 
centralized coordination for model convergence, others adopt decentralized approaches to eliminate single points of 
failure. Additionally, algorithms like FEDAVG aim to accommodate device heterogeneity by adapting to varied 
hardware, software, and data characteristics. Each algorithm brings its unique strengths and considerations, 
contributing to the optimization of collaborative learning in distributed environments. 
 
Federated Averaging (FedAvg): 
FedAvg (Fig. 4) builds upon the foundation laid by FedSGD, presenting an enhanced algorithm for federated learning. 
Clients in FedAvg are empowered to perform multiple local gradient descent updates, unlike FedSGD where gradients 
are directly shared with the central server. Instead of transmitting gradients, clients share their locally tuned model 
weights with the server. The server then aggregates these weights, effectively averaging the model parameters across 
all participating clients. This approach ensures model synchronization while accommodating variations in local data 
distributions. By allowing for local weight tuning before aggregation, FedAvg optimizes model convergence and 
robustness in heterogeneous federated learning environments. 
 
Federated Stochastic Gradient Descent (FedSGD): 

FedSGD as shown in Fig. 5, revolutionizes the conventional stochastic gradient descent (SGD) approach by adapting 
it to the federated learning setting. Unlike traditional SGD, which computes gradients on mini-batches of data 
samples, FedSGD treats these mini-batches as different client devices, each housing local data. In FedSGD, the central 
model is disseminated to these clients, where each client computes gradients using its local data. These gradients are 
then transmitted back to the central server, which aggregates them in proportion to the number of samples on each 
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client to calculate the gradient descent step. This distributed computation allows for collaborative model training 
while preserving data privacy and decentralization, hallmark features of federated learning. 
 

 
          Figure. 4: Federated Averaging (FedAVG)  
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          Figure. 5: Federated Stochastic Gradient Descent (FedSGD)  

 
 
Federated Learning with Dynamic Regularization (FedDyn): 
FedDyn introduces dynamic regularization to federated learning, addressing the challenge of heterogeneous data 
distributions across client devices. While traditional regularization methods aim to enhance generalization by 
penalizing the loss function, FedDyn adapts regularization to the unique characteristics of federated learning. By 
dynamically adjusting the regularization term based on factors like data volume and communication cost, FedDyn 
ensures that local losses converge effectively to the global loss. This personalized regularization approach optimizes 
model performance across diverse devices and data types, enhancing the efficiency and effectiveness of federated 
learning in real-world scenarios. 

LITERATURE SURVEY 
 

This section presents a detailed review about ML and FL frameworks implemented such as CNN models (VGG16, 

Inception, ResNet18 etc.) with FedAvg, SecAgg, Basic Fl and Methods of federated data partitioning like Federated 

Transfer Learning (FTL) and Vertical FL (VFL). (Sohan, M. F.,2023). 

 

2.1 Related work on Federated Learning 

 
Rauniyar, A., (2023) discussed the benefits of Federated Learning (FL) in various healthcare applications, 
emphasizing its ability to train models on distributed datasets while preserving data privacy. Specifically, they 
introduce FedHome, a FL framework tailored for personalized in-home health monitoring, which utilizes a 
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lightweight GCAE model to overcome statistical and communication challenges. FedHome demonstrates superior 
accuracy compared to traditional CNN techniques and reduces communication costs. Moreover, the authors propose 
a 5G-enabled FL architecture for COVID-19 diagnosis, enabling model sharing among institutions and cooperation 
with central cloud systems. Their investigation aims to develop AI models with robust generalization capabilities 
across multinational COVID-19 datasets. Additionally, the authors introduce a decentralized FL architecture with 
privacy-preserving encryption techniques for healthcare applications, highlighting its advantages in preserving IoT 
device data privacy within the Internet of Medical Things (IoMT) context. This decentralized approach contrasts with 
traditional centralized ML methods, offering significant security and privacy benefits. Furthermore, the integration 
of differential privacy with FL and blockchain technology is proposed for smart home monitoring of IoT data, 
ensuring both data privacy and security. Lastly, they introduce dynamic fusion-based federated learning for COVID-
19 medical image analysis, facilitating collaborative model training across institutions without the need to share 
patient data, thereby enhancing model performance while preserving privacy. 
 
Zhang et al. (2023) proposed a dynamic fusion method aimed at enhancing communication efficiency within 
federated learning (FL) systems. Clients autonomously decide to participate based on their model's performance, 
while the central server selects participants based on waiting time, which is determined by averaging each client's 
previous round's training time. Clients download the learning job from the central server, initiate local training, and 
set a timer based on their previous round times. If a client fails to complete training within the specified time or 
experiences a decline in performance, it may request to skip aggregation; otherwise, it notifies the server to update 
the model accordingly. The results from 18 experimental groups indicate that dynamic fusion-based federated 
learning (DF_FL) achieves lower accuracy than the default federated learning setting (D_FL) in only four groups, 
with differences ranging from 0.57% to 1.711%. Conversely, DF_FL demonstrates higher accuracy in the remaining 
14 groups, consistently outperforming the default setting overall. Furthermore, the interference introduced in the 
fourth group of the dataset does not significantly affect the performance of the fusion-based FL model, highlighting 
its fault tolerance and robustness. 
 
He, C. et al. (2020) introduced FedGKT, a federated learning framework designed specifically for edge devices. 
FedGKT integrates both Federated Averaging (FedAvg) and Supervised Learning (SL) approaches, leveraging local 
Stochastic Gradient Descent (SGD) training to reduce computational demands on edge devices. It adopts a novel 
approach by transferring knowledge from compact edge Convolutional Neural Networks (CNNs) to a larger cloud 
server CNN. Through an alternating minimization technique, FedGKT optimizes edge and server models iteratively, 
thereby improving training efficiency and introducing a novel knowledge distillation paradigm. The compact CNN 
deployed on edge devices comprises a lightweight feature extractor and classifier, trained locally to ensure uniform 
output tensor dimensions across all edge nodes. The server model is then trained utilizing features extracted from 
the edge-side model, aiming to minimize the discrepancy between ground truth labels and soft labels. Bidirectional 
knowledge transfer b 
between edge and server enhances the performance of both models. Ultimately, the final model amalgamates the 
local feature extractor with the shared server model, resulting in an optimized federated learning framework for edge 
devices. 
 
Hard, A. et al. (2018) employed federated learning to train an on-device RNN language model for smartphone virtual 
keyboard next-word prediction. Federated learning utilizes a decentralized computation approach to train neural 
models, particularly suitable for mobile devices acting as clients. Instead of transferring data to central servers for 
training, clients process their local data and share model updates with the server. The server then aggregates these 
updates to create an improved global model. This distributed method remains effective even with unbalanced 
datasets and non-independent data across clients. The Federated Averaging algorithm plays a crucial role in this 
process, combining client updates on the server to generate a new global model. Each client computes the average 
gradient on its local data using stochastic gradient descent, adapting to its dataset size and characteristics. The 
training of both the server and federated CIFG models demonstrates enhanced top-1 and top-3 recall compared to 
the baseline n-gram FST model. Despite the larger vocabulary and inclusion of personalized components like user 
history and contacts LMs in the n-gram model, CIFG achieves significant improvements. Notably, federated CIFG 
outperforms server-trained CIFG, as evidenced by evaluation on client cache data showing a relative 5% improvement 
(0.8% absolute) in top-1 recall compared to server-trained CIFG. Although comparisons on server-hosted logs data 
show similar recall between the two models, it's important to note that the logs may not entirely represent the true 
performance. 
 

2.2 Related work on Deep Learning 
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In the analysis of dataset variability, it was found that more than half of the methods utilized multiple datasets, with 
approximately 30% relying solely on private ones Renard, F. et al., (2020). A notable observation was the insufficient 
description of data augmentation in 13% of articles, indicating a transparency gap in method reporting. Optimization 
strategies varied, with one article introducing a novel approach of merging results from three deep learning (DL) 
models, while others lacked discussions on variability management, suggesting potential for further exploration in 
this area. Hyperparameter explanations were limited, with only one article detailing tuning using a grid search. The 
training proportion, considered a hyperparameter, exhibited significant variability, ranging from 20% to 95% of the 
dataset size. However, despite the wide range of training proportions, the predominant use of convolutional neural 
network (CNN) or recurrent neural network (RNN) architectures suggested diverse approaches across studies 
(Renard, F. et al., 2020). In terms of middleware and infrastructure, various tool boxes were employed, with only one 
article utilizing an in-house implementation. While most articles leveraged GPUs for computation, the lack of 
references to distributed systems indicated limited exploration of distributed computing in DL implementations.  
 
An improved fuzzy clustering algorithm has been developed by Hu, M. et al., (2020) to address the challenges posed 
by the complexity of human brain tissues and noise in MRI images. Named SIPMFCM (Fuzzy Clustering based on 
Spatial Information Fusion PM), this algorithm integrates various techniques such as kernel distance metric, 
membership constraints, and a regularization parameter ρ to improve segmentation accuracy and detail retention. 
By incorporating local spatial information, SIPMFCM aims to enhance segmentation, particularly in scenarios with 
high-intensity noise, resulting in smoother image edges. The algorithm modifies the traditional FCM expression 
using kernel distance measurement, thereby improving fuzzy division distinction and incorporating neighborhood 
space restriction to enhance robustness against image noise. By integrating spatial function into the membership 
function, SIPMFCM aims to achieve better performance in brain image processing and disease diagnosis prediction 
while ensuring safety.  
 
Autoencoder (AE), as described by Puttagunta, M et al., (2021) , serves as a model for unsupervised representation 
learning, where it encodes input x into z and decodes it back to x' through a hidden layer h. The process involves 
encoding, decoding, and minimizing reconstruction error. Restricted Boltzmann machines (RBMs) function as 
Markov Random Fields (MRFs) with visible and hidden units, operating independently of each other. They establish 
energy for states {v,h}, define joint probability distributions, and compute conditional distributions. Deep Belief 
Networks (DBNs) are formed by stacking RBMs, enabling feature extraction and hierarchical representation learning. 
They consist of visible and hidden layers, constructing a directed generative model.Convolutional Neural Networks 
(CNNs) leverage shared weights, local receptive fields, and spatial sub-sampling for pattern recognition [9]. They 
handle unstructured data through convolution operations, which reduce parameters and allow deeper networks. 
Pooling methods such as max-pooling and average pooling are employed to select superior features or averages in 
regions. Fully connected layers at the end process flattened feature maps from previous layers. 
 
Various CNN-based techniques have been proposed for the analysis of medical images, demonstrating promising 
results. One method focused on lung disease categorization using CT scans, leveraging a dataset comprising 14696 
image patches. Another approach utilized a convolutional classification restricted Boltzmann machine for lung CT 
image analysis (Anwar, S. M. etr al., 2018). Additionally, a method based on multiple instances of deep learning was 
applied for body organ recognition. For colon cancer detection, a method combining a locality-sensitive deep learning 
algorithm with CNN was employed. Moreover, a CNN-based system aimed at content-based medical image retrieval 
using radiographic images showed effectiveness. Another method involved a hybrid thyroid module diagnosis system 
that utilized pre-trained CNNs, achieving satisfactory results. Furthermore, CNN-based techniques for diagnosing 
breast cancer and diabetic retinopathy demonstrated high accuracy. Additionally, deep neural networks like 
GoogLeNet and ResNet were employed for multi-class classification of Alzheimer’s disease patients, showing 
promising results. 
 
In a study by Yan et al., various methods were utilized for classification, employing different features and classifiers. 
Initially, Bag of Words (BoW) combined with Scale-Invariant Feature Transform (SIFT) descriptors and linear 
regression (LR) achieved 62.21% precision, 63.37% recall, and 62.78% F1 score. BoW and SIFT with Support Vector 
Machine (SVM) improved performance to 63.72%, 64.63%, and 64.17%, respectively. Histogram of Oriented 
Gradients (HOG) with LR/SVM achieved higher precision, recall, and F1 score: 67.74%, 68.71%, and 68.22%, and 
76.39%, 76.75%, and 76.57%, respectively. CNN surpassed all, achieving 92.25%, 92.21%, and 92.23% precision, 
recall, and F1 score (Anwar, S. M.et al., 2018). 
 
The method involves two main steps: bag preparation and Multiple-Instance Learning (MIL). Initially, patches are 
extracted from Whole Slide Images (WSIs) to generate mosaics. Then, a MEM model is utilized for MIL, ensuring 
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privacy through a combination of local training and central aggregation Adnan, M. et al.(2022). Representative 
patches, known as mosaics, are extracted from WSIs using a selection method. This process entails removing non-
tissue regions, clustering patches, and randomly selecting a subset to compose each mosaic. These mosaics are 
subsequently converted into bags for MIL, with feature vectors derived from a pre-trained DenseNet model. The 
MEM model comprises memory units within a block, generating a permutation invariant representation from input 
sequences. Each unit transforms sequences into attention vectors, capturing relationships among elements. The 
resulting output sequence is invariant to permutations, a crucial characteristic for MIL tasks. 
 
 Research Gap 

Federated Learning (FL) enables collaborative model training across decentralized data sources while 
preserving privacy. Various FL frameworks, including CNN models like VGG16, Inception, and ResNet18, alongside 
techniques such as FedAvg, SecAgg, and Basic FL, have been developed. Methods like Federated Transfer Learning 
(FTL) and Vertical FL (VFL) have also been explored for federated data partitioning. However, FL faces challenges 
such as data privacy risks, communication overhead, and optimizing model performance across decentralized 
datasets, particularly in domains like medical image analysis. Resource constraints on edge devices further 
complicate FL implementation. Similarly, in Deep Learning (DL), interpretability, data scarcity, computational 
complexity, overfitting, biases, and lack of explainability pose significant challenges. Addressing these limitations is 
essential for realizing the full potential of FL and DL across various domains. 
 
Contribution: 
Contribution of the paper is as follows: 

1. The paper proposes a comprehensive framework that integrates Federated Learning (FL) with deep learning 
models for medical image analysis. This approach ensures that sensitive patient data remains private while 
still enabling the development of effective diagnostic models across multiple decentralized sources. 

2. The paper provides a detailed evaluation of multiple deep learning models, including a basic CNN, VGG16, 
ResNet50, and InceptionV3, for the task of chest X-ray analysis. The experimental results demonstrate that 
InceptionV3 outperforms the other models, offering valuable insights into model selection for medical image 
tasks. 

3. One of the key contributions is the practical implementation of Federated Learning to address privacy 
concerns. By using FL, the models are trained collaboratively across different devices without transferring 
sensitive data, preserving patient privacy while improving model performance. 

4. The paper employs the FedAvg algorithm for aggregating model updates from multiple clients. This 
decentralized approach not only improves the model over time but also demonstrates the feasibility of FL in 
healthcare applications, where data privacy is crucial. 

 

METHODS 

Federated Learning is at the forefront of ensuring robust data privacy and security in tandem with training deep 
learning models. In our methodology, we distribute a global model to local devices, each of which houses sensitive 
medical images. These devices independently train the model using their data, obviating the need to share actual 
images. Instead, only model updates—such as weights and biases—are transmitted to a central server, where they 
undergo aggregation to refine the global model. This iterative process fosters collaborative learning across diverse 
datasets while safeguarding sensitive information from centralization. 

Our approach not only facilitates collaborative model training across multiple healthcare institutions and 
distributed data sources but also prioritizes data privacy. It empowers healthcare professionals to access a wealth of 
medical imaging datasets from various institutions without the necessity of physically relocating or centralizing the 
data. By integrating the potent capabilities of deep learning with Federated Learning, our methodology promotes 
privacy-conscious collaboration, serving as a valuable resource for radiologists and healthcare providers alike. Timely 
and accurate diagnoses are pivotal for effective treatment planning, mitigating medical errors, and ultimately 
enhancing patient outcomes. 

Our architecture that simulates the federated system involves dividing the COVIDx CXR-4 dataset  (Wu, Y. 
et al., 2023) into 10 virtual clients. Random 8 clients are chosen to train a deep learning model for 10 epochs, and 
this process repeats for 3 rounds. The resulting weights, biases, accuracy losses, and other parameters are transmitted 
to a central server. The server then employs the Federated Averaging (FedAvg) algorithm to enhance the overall 
performance of the model. 
 
Medical Image Dataset:  
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COVIDx CXR-4 (Wu, Y. et al., 2023), dataset contains 84,818 images from 45,342 subjects, and includes separate 
validation and test sets. The COVIDx CXR-4 dataset, available on Kaggle, is a collection of chest X-ray images 
specifically curated for the detection of COVID-19. With the global outbreak of the COVID-19 pandemic, there has 
been a growing interest in leveraging medical imaging, such as chest X-rays, for the diagnosis of the disease. This 
dataset aims to provide researchers and practitioners with a standardized and curated collection of chest X-ray 
images to facilitate the development and evaluation of machine learning models for COVID-19 detection. The dataset 
comprises chest X-ray images obtained from various sources, including public repositories, research articles, and 
healthcare institutions. These images are labeled according to their respective classes, including COVID-19 positive, 
viral pneumonia (non-COVID), bacterial pneumonia, and normal (healthy) cases. Each image is accompanied by 
metadata providing information such as patient demographics, clinical history, and imaging parameters. 
 
Base DL Model for local devices: 
We implemented three DL models - Inception V3, Res-Net-50 and VGG-19 as a base model for local machines. We 
selected InceptionV3 as the model for our federated learning (FL) along with a simple CNN network for comparison 
as the base deep learning models due to its exceptional accuracy and robust performance with the specific dataset we 
are working with. InceptionV3's proven ability to capture intricate features and hierarchical representations in image 
data makes it an ideal choice for our task. Its pre-trained weights, trained on large-scale datasets, enable us to harness 
the power of transfer learning, saving us valuable time and resources in training a model from scratch. 
 
Federated Average (FedAvg) algorithm 
Federated Averaging (FedAvg) orchestrates model training via a central server that hosts the shared global model. 
However, the critical optimization steps occur locally on individual client devices, where the chosen deep learning 
model is applied. These local devices train their respective models using their unique data and computational 
resources. Subsequently, the locally trained weights and other relevant parameters are transmitted back to the central 
server. 
 
At the central server, sophisticated averaging techniques are employed to aggregate the parameters received from the 
clients. By combining these parameters, the global model is further refined. This collaborative approach allows the 
model to learn from the diverse data distributed across the client devices, ultimately enhancing its effectiveness and 
efficiency. 
 
FedAvg’s decentralized architecture offers several advantages. Firstly, it addresses privacy concerns by keeping raw 
data localized on client devices, mitigating the risks associated with centralized data storage. Secondly, it promotes 
scalability by distributing the computational load across multiple devices, enabling large-scale training without 
overburdening any single server. Additionally, FedAvg adapts to varying data distributions and device capabilities, 
making it suitable for diverse deployment scenarios. 
 
In Fig. 6 the flowcharts begin with a base model that starts with pre-processing techniques used to normalize the data 
as much as possible. To achieve a higher quality image result, techniques like applying noise reduction filters. 
Resampling uses methods to standardize pixel sizes and spatial orientations so that it's important for some analyses 
to ensure uniform resolution across all images. Pixel values, when scaled to a standard range, can aid in the consistent 
training of deep learning models. The dataset is split as 70% training data, 20% testing data and 10%  
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            Figure. 6: Proposed System Flowchart 
 

validation data. DL implementation stands for the base model which in our case in ResNet50 which is then 
hypertuned to achieve utmost performance that optimizes the results. FL framework to implement FedAvg algorithm. 
Each device conducts its own model updates using its unique dataset, without sharing the actual data. The device will 
train its model on its unique data and send the model's weights to the central server. For a designated number of 
rounds, the model updates are rounded up by the central server using the FedAvg algorithm that finds the average of 
the model weights. The localized devices then revive the aggregated model for extra tweaking. In this way, the model 
learns without jeopardizing the confidentiality of the data. 
 

RESULTS 

To implement the federated learning framework on top of basic models, libraries like PySyft are crucial, especially 
for federated learning. PySyft enhances PyTorch by adding features for protecting privacy and ensuring secure 
federated learning, allowing smooth incorporation with current deep learning processes. We use PySyft to deploy 
federated learning methods like Federated Averaging, guaranteeing data privacy and security among decentralized 
clients. 
 
Federated learning algorithm with CNN and InceptionV3: 
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Utilizing Federated Averaging (FedAvg) with a basic CNN network as well as InceptionV3 shows great potential for 
enhancing medical image analysis in a federated learning system. In the scenario of the basic CNN network, FedAvg 
manages the joint training process on various client devices while also maintaining the privacy of data. Every client 
independently trains its CNN model with its own medical images to keep patient data secure on the device. The model 
parameters trained locally are combined on a central server through averaging methods to continually improve the 
overall model. This method allows the CNN model to gain insights from varied data from various medical facilities, 
enhancing its ability to generalize and be resilient. While integrating FedAvg with InceptionV3 simultaneously, it 
bolsters the analysis capabilities because InceptionV3 excels in capturing complex features in medical images with 
its multi-scale convolutional architecture. The federated learning framework enhances accurate diagnosis and 
treatment planning in medical image analysis tasks by utilizing the scalability and privacy-preserving elements of 
FedAvg with the advanced feature extraction capabilities of InceptionV3, all while ensuring patient privacy. 
 
Performance Evaluation of deep learning algorithms: 
Table1 presents the performance metrics of three different deep learning (DL) algorithms—InceptionV3, VGG-19, 
and ResNet-50—on both training and validation datasets.  For the training data, InceptionV3 achieved a low loss of 
0.0183 and a high accuracy of 99.31%. On the validation data, the loss slightly increased to 0.0958, while the accuracy 
remained relatively high at 93.75%.  VGG-19 yielded a higher loss of 0.2392 and a slightly lower accuracy of 88.75% 
on the training data. However, on the validation set, it showed a comparable performance with a loss of 0.2617 and 
a slightly higher accuracy of 90.62%. ResNet-50 performed well on the training data with a moderate loss of 0.1630 
and a high accuracy of 93.77%. However, its performance decreased notably on the validation set, with a substantially 
higher loss of 0.6918 and a reduced accuracy of 68.75%. 
 
 

Table 1: Comparison of Deep Learning Model Performance on Training and Validation Data 

 For Training Data For Validation Data 

DL Algorithms Loss Accuracy Loss  Accuracy 

InceptionV3 0.0183 0.9931 0.0958 0.9375 

VGG-19 0.2392 0.8875 0.2617 0.9062 

 ResNet-50 0.1630 0.9377 0.6918 0.6875 

 
Thus, InceptionV3 showed the best overall performance, maintaining high accuracy on both training and validation 
data with relatively low loss. VGG-19 performed decently but slightly lagged behind InceptionV3 in terms of accuracy. 
ResNet-50 exhibited good performance on the training data but struggled to generalize well to the validation set, 
indicating potential overfitting. 
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             Figure 7: Resnet model Training and Validation COVID-19 losses and accuracies 

 
Fig 7 shows the training and validation accuracy of a ResNet model on COVID-19 X-ray data. Both lines rise with 
training epochs, indicating the model is learning effectively and avoiding overfitting. This suggests the ResNet model 
has potential for accurate chest X-ray classification. This graph shows the training loss of a ResNet model for COVID-
19 X-ray data. The decreasing loss suggests the model is learning the patterns in the data, which is a positive step 
towards accurate chest X-ray classification. 
 
 
Accuracy and Loss of VGG -19 Model for COVID Dataset 
 

 
 

Figure.8: VGG -19 model Training and Validation Loss and accuracies 

                                                      
             

Fig. 8 shows the training and validation accuracy of a ResNet model on COVID-19 X-ray data. Both lines rise with 
training epochs, indicating the model is learning effectively and avoiding overfitting. This suggests the ResNet model 
has potential for accurate chest X-ray classification. This graph shows the training loss of a ResNet model for COVID-
19 X-ray data. The decreasing loss suggests the model is learning the patterns in the data, which is a positive step 
towards accurate chest X-ray classification.  
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Accuracy and Loss of InceptionV3 Model for COVID Dataset  

 
 

 
        Figure. 9: Inception V3 model Training and Validation Loss and accuracies 

 
The graph in Fig. 9 shows the Inception V3 model's accuracy on COVID-19 X-ray data . Both training and validation 
accuracy rise with epochs, indicating the model is learning effectively and avoiding overfitting. This suggests good 
potential for accurate chest X-ray classification. This graph shows the training loss of an Inception V3 model for 
COVID-19 X-ray data. The decreasing loss signifies the model is learning the patterns in the data, which is a positive 
step towards accurate chest X-ray classification. 
 
Accuracy of Client data across the rounds on the deep learning model 

 
Figure. 10: Trained Parameters of 8 clients 

 
The graphs in Fig. 10 likely shows client-side performance within a federated learning framework, focusing on a single 
client across three training rounds (1, 2, and 3). The X-axis likely represents training epochs within each round, where 
the client trains its local model on its own data. The Y-axis likely shows two metrics: client accuracy (how well the 
client's model performs on its own data) and client loss (how well the model fits the client's data). Ideally, client 
accuracy should increase over epochs within each round, indicating the model is learning. Similarly, client loss should 
decrease within each round, signifying a better fit between the model and the client's data. It's important to remember 
that this graph only reflects the client's performance, and the server-side evaluation provides a broader picture of the 
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federated learning process. As the number of clients grows and multiple training iterations occur within each client, 
the accuracy progressively improves. 
 
Server Accuracy: 
In federated learning, devices train a model collaboratively without sharing data. The server evaluates the global 
model on unseen data (hold-out set). The provided graph likely shows training epochs (x-axis) and server-side 
performance metrics (y-axis). Server loss (how well the model fits training data) should decrease, while server 
accuracy (correct predictions on unseen data) should increase over epochs (ideally across many rounds). This initial 
analysis of the first 3 rounds offers insights into the model's early learning progress. 

 
Figure. 11: Accuracy and Loss on the Server using FedAvg 

 
Client Accuracies Over the rounds: 

 

 
 
 

Figure 12:  Client 0 to Client 9 accuracies over the 10 epochs 
From Fig. 12 we can observe that each client’s accuracy increases as the no. of epochs increases.  with each epoch 

the client performance improves. We trained each client for 10 epochs. 

CONCLUSION 



Journal of Information Systems Engineering and Management 
2025, 10(35s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

172 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which 

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Federated learning enables collaborative model training across multiple healthcare institutions data sources while 
preserving data privacy. Deep and federated learning allow access to a range of medical imaging datasets from 
different institutions without centralizing the data. This study explores the ability to leverage deep learning's powerful 
capabilities in medical image analysis while respecting privacy and collaboration constraints through federated 
learning. This is a helping hand to the small community of radiologists along with health professionals for effective 
treatment planning, reducing medical errors, and improving patient outcomes. The implementation of Federated 
Learning (FL) using PyTorch, as demonstrated through Python scripts, showcases the practical application of 
collaborative model training while prioritizing data privacy. Through techniques such as noise reduction filters and 
pixel value standardization, image data normalization is achieved, facilitating the training of deep learning models 
like ResNet50 and Inception. The dataset division into validation, testing, and training subsets ensures robust model 
evaluation. FL, enacted with algorithms such as FedAvg and FedSGD, empowers devices to update models locally, 
preserving data anonymity. By orchestrating communication between clients and a central server, FL enables 
decentralized model training across distributed clients, enhancing scalability and privacy. The incorporation of 
neural network architectures like Inception augments feature extraction capabilities, pivotal for tasks such as image 
classification. While the provided Python scripts offer a comprehensive framework for FL implementation, 
considerations for dataset specifics and metrics aggregation across clients.  
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