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Real-time face segmentation in embedded systems is a challenging task that 

requires a proper reconciliation between the computational cost and the 

segmentation quality. However, the currently available approaches frequently 

pay more attention to one of these factors. This paper solves this problem by 

first identifying framework-aware optimisations and architectural scalability 

for the YOLOv8-seg model. A systematic evaluation of the model size across 

five model scales (X, L, M, N, S) shows that the N scale is optimal in terms of 

the mAP50-95 of 0.8283 at the frame rate of 137.20 FPS when trained and 

evaluated in PyTorch, outperforming the L model (0.7758 mAP, 29.30 FPS) in 

terms of speed and accuracy. The inference time is also optimised with 

TensorRT, which enhances the inference latency by 58% (4.28 ms/image) 

with nearly equal mAP50-95 of 0.8170, which is almost the same as that of 

native PyTorch. Our analysis reveals that TensorRT improves the throughput 

by 233.67 FPS for model N, but smaller architectures (N, S) are more efficient 

in terms of latency-accuracy compared to larger architectures (X, L) where 

there is a low return on investment (for example, the X model has an mAP of 

0.7301 and frames per second of 11.29). Present a framework for deploying a 

system that assists in choosing the scale of the model and the inference engine 

(PyTorch, ONNX, TensorRT) based on the application's latency and memory 

requirements. The effectiveness of the proposed methodology is tested 

through experiments on NVIDIA Jetson platforms, and it can achieve real- 

time frame rates (≥37.17 FPS) with less than 3% quantization in accuracy, 

which is sufficient for consistent face segmentation in practical environments. 

This work closes the accuracy–deplorability gap and provides practical 

recommendations for designing edge computing applications for AR, 

biometrics, and privacy-preserving systems. 
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1. Introduction 

The expansion of applications such as augmented reality (AR), biometric authentication and human-

computer interaction (HCI) has greatly increased the need for advanced and real-time algorithms for 

face segmentation, transforming the market demand for such technologies. Face segmentation is the 

process of extracting a facial region from a complex image, and this process is one of the crucial steps 
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for more sophisticated applications such as virtual makeup, automatic facial expression analysis, and 

private face video conferencing [1]. The task of face segmentation remains a challenge on edge devices 

due to their limited processing resources because of the delicate balancing act practitioners need to do 

between having efficient computing resources, fast inference, and accuracy of segmentation [2]. Even 

though architecture design innovations have come with MobileNet [3] and YOLO models [4] and 

boosted the efficiency of vision models profoundly, their real-world applicability is too often blind- 

sided by more important issues like the optimization of the framework, diversity of the datasets, and 

the possibility of scalability of model topology on the hardware platforms. The majority of these 

approaches to face segmentation assume that the only issue remaining is architectural improvements 

to the model, and no attempt is made to consider the combination of data cleaning, framework- 

specific inference optimization, and model downscaling. 

2. Overview Of Tensorrt and Deep Learning  

An overview of the DL framework and proposed workflow, compiler, and runtime employed for this 

study is given in this section. 

A. Proposed workflow 

Figure 1 depicts the proposed workflow for building the dataset, YOLOv8-seg model training, and 

model optimization for real-time facial segmentation. Dataset collection and preprocessing initiate the 

process, followed by the systematic building of the dataset. YOLOv8-seg model training on various 

scales (X, L, M, N, S) with hyperparameter tuning is done to achieve optimal segmentation accuracy. 

Then, the best-performing model is optimized with TensorRT to enable fast real-time inference on 

embedded hardware like the Jetson Orin Nano. Ultimately, FPS benchmarking on various hardware 

platforms is done to verify real-time feasibility and computational efficiency. 

 
          Figure 1 Proposed workflow 

B. PyTorch 

An open-source framework called PyTorch makes the transition from experimentation motivated by 

research to real production deployment easier. For the great majority of deep learning workloads [5], 

PyTorch prioritizes speed and flexibility because it is a Python-focused package. Using Tensors (n- 

dimensional arrays) on CPUs and GPUs, PyTorch can increase the computation speed. The platform 

offers a rich set of tensor operations that are useful for many scientific computations, including linear 

algebra and other mathematical operations. It also implements reverse-mode automatic 

differentiation to enable online tuning of the network behaviour with almost no overhead. To increase 

execution speed, it is also integrated with high-performance libraries such as NCCL, cuDNN, and 

Intel 
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MKL [6]. Compared to some other frameworks, it has superior memory management, allowing for 

the training of larger NN models. 

C. ONNX 

Many technological companies and academic organizations promote the Open Neural Network 

Exchange (ONNX), an open standard for describing machine learning models. In addition to using a 

standardized file format to facilitate model interchange across various frameworks, tools, compilers, 

and runtimes, it defines a set of fundamental operations that are necessary for creating AI systems [7]. 

ONNX enables efficient model deployment on various hardware and is interoperable with platforms 

like PyTorch, TensorFlow, Caffe2, and Apache MXNet. By utilizing specially designed runtimes that 

are compatible with the target hardware [8], ONNX models can achieve improved inference 

performance. 

D. TensorRT 

TensorRT is a deep learning inference engine that comes as a software development kit (SDK). It is a 

part of the NVIDIA CUDA X AI Kit and provides an optimizer and runtime for deep learning inference 

that offers high throughput and low latency [9]. TensorRT is an optimization tool for inference that 

performs six types of optimizations to reduce the latency and increase the throughput of deep learning 

models: 

1. Layer and tensor fusion: Improves the use of GPU memory and bandwidth by fusing nodes in a 

kernel up and down, or across, which reduces the overhead of reading and writing the tensor data for 

each layer. 

2. Dynamic tensor memory: By only allocating memory to the tensor for the duration that it is 

required, this feature enhances memory re-usage. 

By doing this, memory usage is decreased, and the expense of memory allocation is avoided, allowing 

for more effective execution. 

3. Multi-stream execution: It handles many streams of input simultaneously. 
 

4. Fusion of time TensorRT uses dynamically generated kernels to optimize recurrent neural networks 

(RNNs) across time steps [10]. TensorRT may accept customizable deep learning model inputs and 

serve a wide range of AI applications, including text-to-speech, computer vision, automatic speech 

recognition, natural language processing (BERT), and recommender systems. For computer vision 

models nearby, like those used in autonomous driving, it can deliver ready-to-use inference engines. 

Furthermore, TensorRT enables low-latency real-time video analytics in large-scale data centers, and 

its optimization makes it suitable for real-time edge deployments – e.g., on the NVIDIA Jetson Orin 

Nano Developer Kit or in various Internet of Things (IoT) scenarios. 

3. Materials and Methods 

3.1 Image Collection and Dataset Construction 

3.1.1 Data Collection and Annotation 
 

The dataset collected in this study involves images that were captured using a Canon EOS 3000D 

camera, as well as other images that were downloaded from online repositories. The dataset is divided 

into six classes, which were manually captured, and four classes, which were downloaded from open 

source repositories, namely the Celebrity Faces NC dataset. The dataset consists of images of 10 

subjects, namely: ['Alkinani', 'Cruise’, ‘Dr Raja Kumar', 'HUMMMAM', 'Layan', 'Leonardo', 'Tom', 

'Will Smith', 'Abdoo', 'Madhur']. All images are in JPEG format and of size 640 × 640 pixels. Manual 

annotation was done using LabelMe, and the labels are in JSON format. These annotations were then 

converted to labelme2yolov8 format with polygon labels that define the coordinates of the face 

segmentation tasks and then the dataset.yaml file to use for training the model. Figure 2: Face 

Annotation using LabelMe Tool. 

http://www.jisem-journal.com/


Journal of Information Systems Engineering and Management 
2025, 10(35s) 

e-ISSN: 2468-4376 
https://www.jisem-journal.com/ Research Article 

235 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution 

License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 

 

 
 

                  Figure 2 LabelMe Tool for Face Annotation 
 

3.1.2 Dataset Augmentation and Construction 
 

The dataset's visual attributes have a significant impact on the training accuracy of deep learning 

models. It implies that to prevent overfitting, the model's accuracy increases with the density of the 

input. Nevertheless, the model's accuracy may be harmed by noise in the photos and mistakes in the 

annotations. This research uses 90◦ clockwise and counterclockwise rotations, 0.1% Gaussian noise, 

±25% saturation, and ±15% brightness fluctuations to enhance the dataset size to overcome the issue 

of insufficient data and prevent network overfitting. These methods increased the number of training 

images from 1372 to 2741, as shown in Table 1, Before and After Augmentation. 

Table 1 Before and After Augmentation 
 

 
 

Train Images   Val Images   Test Images    Total Images 

Before Augmentation 1372 168 84 1624 

After Augmentation 2741 168 84 2993 

 
 

3.2 Network Model Construction 

3.2.1 Structure of the YOLOv8-Seg Network 
 

Real-time object detection: The YOLO (You Only Look Once) family of algorithms is well-known for 

its speed and accuracy among the current detectors [11]. Improved methods like adaptive anchor 

computation, adaptive picture scaling, mosaic data augmentation, and Mixup data enrichment have 

been used to train these models in successive iterations to increase performance. By substituting the 

more gradient-efficient C2f module for the C3 structure, introducing more skip connections, and 

implementing split operations for better feature extraction, the YOLOv8 model enhances the YOLOv5 

backbone. To stay lightweight and enhance gradient flow, the model expands the channel dimensions 

in proportion to the size of the entire network. Similar to FPN [12] and PAN [13], the Neck component 

of the model enhances multi-scale feature fusion; however, in contrast to YOLOv5, it leaves out 

several convolution operations from the upsampling layers. The Head, on the other hand, uses a 

decoupled structure (Decoupled-Head), which keeps only the unique classification and regression 

routes and removes the original objectness branch. To enable pixel-level instance segmentation, 
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YOLOv8 instance segmentation (YOLOv8-seg) expands upon these foundations by integrating 

YOLACT [14]. The YOLOv8-Seg network structure is shown in its entirety in Figure 3. 

 

 
Figure 3 Structure of the YOLOv8-Seg Network 

 

3.2.2 Implementation of TensorRT Workflows 
 

To embed deep learning models into real-time applications, it is crucial to optimize them in terms of 

latency and memory consumption. First, receive a pre-trained YOLOv8-seg model (see Fig. 4) and 

examine three main workflows that include NVIDIA’s TensorRT for improving the performance: 

Torch-TensorRT (P1). 
 

This workflow embeds TensorRT into the PyTorch environment using Torch-TensorRT. It examines 

the model graph, identifies sub-graphs that can be expressed in TensorRT, and transforms those parts 

of the graph to TensorRT-optimized kernels. The unconvertible parts are left in the standard PyTorch 

and result in a hybrid TorchScript module. As a result, Torch-TensorRT is easy to use in the Python 

environment, and it provides a moderate boost in inference speed with limited settings when 

compared to the full engine conversion. 

The Conversion from ONNX to TensorRT (P2). 
 

First, the PyTorch model is saved to the ONNX format. Then, the ONNX model is loaded in Python 

and parsed using the TensorRT Python API to create a self-contained TensorRT engine. This 

conversion can lead to the best performance improvement since most layers are optimized to the 

engine level during the conversion process if they are supported by TensorRT. Nevertheless, there is 

one more setup for engine creation and runtime memory handling, which can be nontrivial for more 

complicated models. 

ONNX Runtime with TensorRT Execution Provider (P3). 
 

The same as in P2, the model is saved in the ONNX format. Instead of creating a separate TensorRT 

engine, ONNX Runtime is used with TensorRT as the chosen execution backend. This approach 
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provides more flexibility about the hardware and software environments without sacrificing the 

TensorRT acceleration. However, some overhead may be observed due to the extra level of abstraction 

compared to a dedicated TensorRT engine. 

As shown in Fig. 4, three workflows converge to a TensorRT engine or a TensorRT-enhanced runtime 

environment (blue box) that reduces latency and memory requirements. These methods enable the 

real-time application of YOLOv8-seg for live video segmentation by measuring inference throughput 

and resource usage. In practice, the choice of the workflow depends on the application task: P1 – 

Torch-TensorRT provides a seamless integration; P2 – direct ONNX-to-TensorRT conversion can 

provide the maximum speed up; P3 – ONNX Runtime together with TensorRT is a good middle 

ground that does not have such a rigid requirement on the underlying framework. 

 

 
Figure 4 Overview of Proposed TensorRT Workflows for YOLOv8-seg 

 
3.3 Model Training and Output 

 
An MSI laptop running Ubuntu 22.04, a 9th Generation Intel Core i7-13600KF CPU running at 5.1 

GHz, 16 GB of RAM, and an NVIDIA GeForce GTX 1660 TI 8 GB GPU were used for training in this 

study. Using the deep learning framework PyTorch, a neural network for multiclass segmentation was 

created; Table 2 lists the main software versions. The following was the setup for the training: The 

input image's resolution was 640 x 640, the batch size was 8, the initial learning rate was set to 

0.0001, the number of epochs was 50, and the momentum was set to 0.937. After completion, the 

model was exported to ONNX and TensorRT formats and tested on NVIDIA Jetson Orin Nano 8GB 

running Ubuntu 20.04 with JetPack 6.2, which has an ARM64 CPU and TensorRT for inference 

acceleration. All configurations were checked to be compatible with CUDA, cuDNN, and NumPy 

versions less than or equal to 2.0. 

Table 2 Training configuration 

Configuration MSI GTX 1660 Ti GPU Jetson Orin 8 GB GPU 

CUDA version 11.5           12.6 

cuDNN 8.9.7 9.3 

Python 3.9              3.10 

TensorRT 10.7             10.7 

ONNX 1.17             1.16.1 

Onnxruntime_GPU                    1.17.0              1.17.0 

PyTouch 2.5.0              2.1.0 

Torchvision 0.16.1              0.16.1 

Ultralytics 8.3.5              8.3.5 

NumPy 1.24               1.24 
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3.4 Model Evaluation Criteria 
 

This paper assesses the accuracy of the chosen models in identifying objects and dividing up an image 

using standard metrics such as precision, recall, and mean average precision (mAP). Furthermore, the 

inference speed is represented by the frames per second (FPS), which tells how many images can be 

processed per second by the target hardware. The confusion matrix, which comprises True Positives 

(TP), True Negatives (TN), False Positives (FP), and False Negatives (FN), is used to calculate 

Precision (P) and Recall (R). An indication of classification accuracy is provided by precision, which is 

the ratio of accurate detections to all detections made by the network. Conversely, recall might be 

defined as the proportion of correctly identified objects to all objects present in the data. In formal 

terms, these metrics are defined by: 
 

Precision = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

… 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

 

Recall = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

… 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

 
The connection between the number of intersections and the number of unions in the object 

identification job is described by the metric known as intersection over union, or IoU. The degree of 

overlap between the object borders and the ground truth bounds serves as a criterion for assessing the 

model's capacity to represent the true object shape. Regarding detectability, an object is considered 

detectable if its IoU value is more than 0.5. Should the annotated region be B and the real region be 

A, then 
 

IoU = 
𝐴 ∩ 𝐵 

… 
𝐴 ∪ 𝐵 

For a single category, the average precision (AP) is calculated by sorting the model's predictions by 

their confidence, then calculating the area under the precision-recall (PR) curve. 
 

1 

𝐴𝑃 = ∫ 𝑃(𝑅)𝑑(𝑅) 
0 

 

Mean average precision (mAP) is the average precision across multiple categories, and mAP50 is the 

mAP at an IoU threshold of 50%. mAP50-95 is a more rigorous metric that computes the mean AP at 

each IoU threshold from 50% to 95% with a step of 0.05 to capture the performance more precisely at 

different IoU thresholds. 

𝑚𝐴𝑃50 − 95 = (𝐴𝑃𝐼𝑜𝑈 = 0.5 + + 𝐴𝑃𝐼𝑜𝑈 = 0.55 + 𝐴𝑃𝐼𝑜𝑈 = 0.6 + . . . + 𝐴𝑃𝐼𝑜𝑈 = 0.95)/𝑛 … 
 

The performance of the YOLOv8-seg models is assessed using key computational metrics. The total 

processing time (𝑇total) consists of three components: 

𝑇total = 𝑇pre + 𝑇inf + 𝑇post ... 

 

Where: 
 

 𝑇total Is the preprocessing time, 

 𝑇inf Is the inference time, 

 𝑇post Is the post-processing time. 

The frames per second (FPS), a key indicator of real-time performance, is determined by: 

http://www.jisem-journal.com/


Journal of Information Systems Engineering and Management 
2025, 10(35s) 

e-ISSN: 2468-4376 
https://www.jisem-journal.com/ Research Article 

239 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution 

License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 

 

FPS = 
1000 

… 
𝑇total 

Where 1000ms represents one second. These equations provide a standardized approach to 

measuring model efficiency in environments. 

 

4. Results and Discussion 

4.1 Ablation Experiments and Model Training Details 
 

In this study, ablation experiments were performed to assess the efficacy of different optimization 

strategies used in YOLOv8-seg. For this purpose, two optimization techniques were incorporated 

separately into the base YOLOv8-seg network. A comparison was made between different YOLOv8- 

seg models trained on a custom face segmentation dataset with a batch size of 50, while the training 

process was kept constant. The inference speed of each model was measured in terms of Frames Per 

Second (FPS) to determine if the models are in real-time. The results, as presented in Table 3, 

compare the YOLOv8-seg models, which include YOLOv8-seg-S, YOLOv8-seg-N, YOLOv8-seg-M, 

YOLOv8-seg-L, and YOLOv8-seg-X. These findings reveal the relationship between model size, 

confidence, segmentation quality, and computational time. 

Table 3 compares the YOLOv8-seg models 
 

Model P (%) R (%) mAP50 mAP50-95 Seg Loss Clas Loss Training 

Time (h) 

Model 

Size (MB) 

YOLOv8n 92.89 91.87 95.9 80.36 0.84056 1.03964 0.98 3.2 

YOLOv8s 84.36 91.98 92.42 76.83 0.86817 1.19025 2.04 11.2 

YOLOv8m 82.34 91.99 89.34 75.07 0.81893 1.20521 2.12 25.9 

YOLOv8l 72.5 82.68 82.12 67.6 0.85562 1.36596 2.83 43.7 

YOLOv8x 75.54 84.23 85.07 70.53 0.85234 1.36493 3.35 68.2 

 
These results show how model size and complexity affect segmentation performance, Precision, and 

computational overhead. YOLOv8n has the best precision but has lower computational requirements 

compared to other models; however, models such as YOLOv8x increase segmentation accuracy at the 

cost of inference time. This study further confirms that for real-time applications, it is necessary to 

select an appropriate model variant. The YOLOv8n model has the highest inference speed of 114.39 

FPS and the best mAP50 of 95.9%. In contrast, the YOLOv8x model has a decent mAP50 of 85.07%, 

but it has the worst FPS of 11.99. The YOLOv8m and YOLOv8s models are in the middle of accuracy 

and speed, with mAP50 of 89.34 and 92.42 and FPS of 29.26 and 61.19, respectively. The result shows 

that model complexity is opposed to real-time inference capability. The accuracy is improved by larger 

models such as YOLOv8x and YOLOv8l, but at the cost of time, and therefore, these are more suitable 

for offline or high-powered computing. At the same time, light models such as YOLOv8n and 

YOLOv8s provide better real-time performance and are, therefore, suitable for low-latency 

applications. Figure 5: mAP50 vs. FPS for YOLOv8 Models. 
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                  Figure 5 mAP50 vs. FPS for YOLOv8 Models 
 

4.2 Optimization with TensorRT for Real-Time 
 

The FPS comparison between YOLOv8-seg and TensorRT is shown in Figure 6(a) for different model 

sizes. The results show that TensorRT improves the inference speed of all models. The greatest boost 

is seen in the YOLOv8n model, where TensorRT gives 233.67 FPS as opposed to 137.20 FPS of 

YOLOv8-seg. 

Similarly, YOLOv8s increases its FPS from 65.27 to 95.26. 

However, the boost in FPS is not as high for larger models such as YOLOv8x; it increases from 11.29 to 

14.48 FPS. This is because for smaller models, TensorRT offers the most performance improvement, 

which is crucial for real-time applications that require fast inference. The improvement in FPS in 

larger models is, however, rather limited due to computational complexity and resource limitations. 

Accuracy (mAP50-95) Comparison 

Figure 6(b) shows that TensorRT provides a similar level of detection accuracy while boosting speed. 

The YOLOv8n model achieves an mAP50-95 of 0.8170 with TensorRT, lower than the original 

YOLOv8-seg of 0.8283. The YOLOv8m and YOLOv8x models also have close accuracy, which shows 

that the TensorRT optimization does not lead to a significant degradation of the model performance. 

These results show that TensorRT is very suitable for improving the inference time without sacrificing 

the accuracy of the model and thus can be used as an optimization technique for real-time 

deployment. 

Figure 6 Comparison of YOLOv8-seg and TensorRT Performance 
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4.3 Performance Evaluation of YOLOv8-SEG for Face Segmentation and Detection 
 

The YOLOv8-SEG model was trained on a private dataset, and its face segmentation and detection 

capacity were evaluated on a reserved test dataset. A normalized confusion matrix (Figure 7) shows 

that the model had very specific accuracy scores for different classes: Alkinani, Dr Raja Kumar, and 

HUMMMMAM had the best detection rates (100%), whereas Cruise (53%), Layan (41%), Leonardo 

(6%), and Will Smith (5%) had the worst rates. The new confusion matrix (Figure 7) gives more 

details: Alkinani has high sensitivity (0.92 true positives) but low specificity and positive predictive 

value with Cruise (0.06) and background (0.02). Cruise has moderate sensitivity (0.53 true positives) 

but high false positives with Leonardo (0.28) and background (0.06). Leonardo has very low 

sensitivity (0.47) and tends to misclassify with Cruise (0.34) and background (0.06). Layan has a 

perfect detection rate (1.00) but has a low to moderate rate of false positives with background (0.6). 

The background class is often misclassified as Cruise (0.19) and Leonardo (0.12), suggesting that the 

model is sensitive to non-face regions. The model, however, had some difficulties in distinguishing 

between Layan (missed detections) and Leonardo (many wrong classifications), which might be 

because there is little feature discrimination around facial structure, texture, or skin color. Such 

restrictions propose that the dataset is biased towards high-accuracy classes and lacks representation 

of low-performing categories. 

 

Figure 7 A normalized confusion matrix 
 

Figure 8 compares in detail the results of the face segmentation algorithm for three samples using 

ground-truth masks, prediction overlays and error distributions. The results indicate that false 

positives (red regions) include over-segmentation artifacts such as background noise or textures, 

which are incorrectly predicted to be part of the object, while false negatives (blue regions) are 

regions where the face is not fully segmented, especially the jawlines or the forehead. This is in line 

with the moderate mean IoU of 0.58 and pixel-level errors of FP: 152k, FN: 89k, especially for low- 

contrast regions, for example, neck regions. 

 

Figure 8 visually compares ground-truth masks 
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4.4 Computational Performance and Model Efficiency 

Figure 9 shows the performance of 5 model sizes (X, S, N, m, and l) on 8 different deployment 

formats: PyTorch, TorchScript, ONNX, TensorRT, TensorFlow SavedModel, TensorFlow GraphDef, 

MNN, and NCNN. All the combinations are compared based on three key metrics: mean Average 

Precision (mAP50-95), inference time (in milliseconds per image) and frames per second (FPS). 

Accuracy (Figures 9a and 9d). Specifically, N-format PyTorch is 0.8283, while other N-format 

variations are 0.8170. The S model is also close to this, achieving up to 0.8020 with the help of the 

export format. However, the X and l variants are 

significantly lower than that; X (PyTorch) is approximately 0.7301 or other formats, and l is between 

0.7078 and 0.7036. There are some small differences in the format (±0.004–0.015), but it seems that 

the conversion process does not affect the accuracy much. These results indicate that model 

architecture is a more significant factor that affects mAP than the export format. Inference Time 

(Figure 9b). For the N model, which is the smallest in our benchmark, TensorRT delivers 4.28 

ms/image (233.67 FPS), which is much better than PyTorch’s 7.29 ms/image. Nevertheless, N is still 

quite fast compared to any other format, including ONNX (7.39 ms) and TorchScript (5.53 ms). On 

the other hand, MNN and NCNN can enhance the inference time by 56.74 and 69.53 ms for the N 

model and may often take hundreds of milliseconds for larger architectures. X and L models are 

particularly vulnerable: NCNN makes X achieve 826.60 ms/image (1.21 FPS) and L reach 595.03 

ms/image (1.68 FPS). These latency figures highlight the importance of making the right choices 

about export formats, especially for real-time applications. Frames per Second and the Accuracy- 

Speed Tradeoff (Figure 9c). The mAP50–95 versus FPS plot shows that the N model is located in the 

top-right area, which achieves the best accuracy (approximately 0.8283 in PyTorch) at the highest 

speed (more than 180 FPS in many formats, including TorchScript). The S model has lower accuracy 

(around 0.7993–0.8020) but remains above 60 FPS in most configurations and can exceed 90 FPS 

with TensorRT. On the other hand, the X and l models lie toward the lower-left corner of the plot, with 

less than 20 FPS for many formats and fairly poor accuracy (about 0.7301 for X in PyTorch, 0.7036– 

0.7078 for l). 

 
Figure 9 Model Efficiency with different deployment formats 
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The YOLOv8-seg Benchmark Results Across Model Variants and Export Formats table presents the 

performance of five YOLOv8-seg models, X, l, m, s, and n, across eight export formats (PyTorch, 

TorchScript, ONNX, TensorFlow Saved Model, TensorFlow GraphDef, MNN, and NCNN). Smaller 

models (n, s) achieve higher FPS but so-so mAP50–95; larger models (X, l) offer more capacity but 

come with longer inference times. TensorRT is rather fast; MNN and NCNN are generally slower, 

although they have the same mAP50–95. 

Table 4 YOLOv8-seg Benchmark Results Across Model Variants and Export Formats 
 

Model 
Format 

Size (MB) mAP50–95 (M) 

x l m s n x l m s n 

 
 
 
 
 
 

 
X 

 
l 

m 

s 

n 

PyTorch 137.3 88.0 52.3 22.8 6.5 0.7301 0.7078 0.7758 0.7993 0.8283 

TorchScript 274.2 175.8 104.4 45.4 12.9 0.7301 0.7036 0.7818 0.8020 0.8170 

ONNX 273.9 175.4 104.1 45.2 12.7 0.7301 0.7036 0.7818 0.8020 0.8170 

TensorRT 423.1 270.8 157.2 65.3 18.3 0.7301 0.7036 0.7818 0.8020 0.8170 

TensorFlow 

S.M 
684.8 438.6 260.3 113.0 31.7 0.7301 0.7036 0.7818 0.8020 0.8170 

TensorFlow 

G.Def 
273.9 175.5 104.1 45.2 12.7 0.7301 0.7036 0.7818 0.8020 0.8170 

MNN 273.8 175.3 104.0 45.1 12.6 0.7301 0.7036 0.7818 0.8020 0.8170 

NCNN 273.8 175.4 104.1 45.1 12.6 0.7301 0.7036 0.7818 0.8020 0.8170 

 

Inference Time (ms/im) FPS 

x l m s n x l m s n 

PyTorch 88.55 56.36 34.13 15.32 7.29 11.29 17.74 29.30 65.27 137.20 

TorchScript 79.07 51.07 29.77 13.04 5.53 12.65 19.58 33.59 76.68 180.92 

ONNX 83.55 55.11 33.27 15.96 7.39 11.97 18.14 30.06 62.67 135.29 

TensorRT 69.04 44.26 24.83 10.50 4.28 14.48 22.59 40.27 95.26 233.67 

TensorFlow 

S.M 
104.63 73.08 47.79 28.52 19.00 9.56 13.68 20.92 35.06 52.63 

TensorFlow 

G.Def 
126.07 86.16 58.25 32.31 19.48 7.93 11.61 17.17 30.95 51.34 

MNN 728.00 475.54 253.99 123.80 56.74 1.37 2.10 3.94 8.08 17.62 

NCNN 826.60 595.03 315.32 159.15 69.53 1.21 1.68 3.17 6.28 14.38 

 
Generally, N stands out because it offers high accuracy (0.8283 in PyTorch) and relatively low 

inference times, which makes it particularly useful for real-time or near-real-time applications. The S 

model also exhibits a good tradeoff between mAP and speed, achieving ≈0.8020 while staying above 

60–90 FPS in most formats. However, X and L offer more extensive capacity at the cost of much 

higher latency (for example, 826.60 ms and 595.03 ms in NCNN) and are, therefore, more suitable for 

use in situations where time is not such a crucial factor. Among the deployment formats, TensorRT 

has been known to produce some of the lowest inference times while maintaining accurate results; 

however, MNN and NCNN are generally slower than the rest. Thus, PyTorch, TorchScript, and ONNX 

can be considered stable and balanced solutions that do not suffer from significant fluctuations in 

performance. Thus, for tasks that require minimal latency, it is recommended to use smaller models N 

or S in conjunction with TensorRT and for tasks that require higher capacity, the user may be willing 

to tolerate the increase in inference time by using larger architectures X or L. 
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4.5 Comparison of the Performance with the Other Segmentation Models 
 

Table 6 compares our best-trained YOLOv8-seg-N and YOLOv8-seg-S models (last two rows) with 

four popular segmentation frameworks based on accuracy (Precision, Recall, mAP50, mAP50–95), 

inference speed (FPS) and model size (MB). The results of the experiments show that both of our 

YOLOv8-seg models have comparable or better accuracy than the reference baselines and reasonably 

high FPS. The YOLOv8-seg-N variant offers a near-perfect tradeoff between speed and model size, 

with 233.7 FPS and a moderate model size of 18.3 MB, which makes it suitable for real-time use in 

resource-limited environments. The YOLOv8-seg-S model, however, offers 0.802 mAP50–95 at 95.3 

FPS, which indicates that although the model has a larger model footprint of 65.3 MB, it is still 

sufficiently efficient for embedded and edge computing applications. From a practical perspective, 

these findings support the idea that model architecture and inference optimization (e.g., TensorRT) 

can overcome the accuracy-runtime tradeoff. When compared to Mask R-CNN or YOLOv7-seg, which 

both exhibit high accuracy on large-scale tasks, our YOLOv8-seg models maintain high precision and 

significantly increase the frame rate, a feature that can be crucial in many time-critical applications, 

such as autonomous navigation or real-time surveillance. 

Table 5 Comparison of different segmentation models 
 

Model Precision Recall mAP50 mAP50-95 FPS Size/MB Reference 

Mask R-CNN 0.895 0.876 0.880 0.682 34 228 [15] K. He, et al. 

YOLOv5-seg 0.701 0.781 0.854 0.593 227 4.2 [16] J. Jocher, et al. 

YOLOv7-seg 0.917 0.950 0.975 0.749 18.3 76.4 [17] C.-Y. Wang, et al. 

YOLOv8-seg 0.926 0.894 0.960 0.776 270 6.8 [18] G. Jocher, et al. 

YOLOv8-seg-N (Ours) 0.950 0.950 0.980 0.817 233.7 18.3 This Work 

YOLOv8-seg-S (Ours) 0.920 0.920 0.965 0.802 95.3 65.3 This Work 

 
4.6 Testing on Standalone Devices 

 
In this paper, YOLOv8n-seg and YOLOv8s-seg on the Jetson Orin Nano are compared to determine 

certain distinctions in behavior. The YOLOv8n-seg model processed images faster than the other 

models, with a frame rate of 37.17 FPS and a total time of 26.9 ms, which is suitable for real-time 

applications that require fast decisions. On the other hand, YOLOv8s-seg showed slightly better 

accuracy than YOLOv8n-seg, with the precision of 0.87 and 0.851, respectively. Its mAP50 score of 

0.91 indicates that it is a good detector, although it is slower than the other model (30.12 FPS). In a 

real-world application, the choice between these models depends on the application requirements. 

Thus, for fast response, YOLOv8n-seg is suitable for robotics and surveillance that needs to make 

decisions quickly, whereas for accurate detection, YOLOv8s-seg is recommended, as accuracy is given 

more priority than speed. From these results, as shown in Table 7, it is possible to gain useful 

information about the effectiveness of deep learning models for edge computing. 

Table 6 Performance of YOLOv8-seg N/S on Jetson Orin. 
 

Model 
mAP50 

(%) 

mAP50-

95 

Precision 

(%) 

Recall 

(%) 

Inference 

Time (ms) 

Total 

Processing 

Time (ms) 

Pure 

Inference 

FPS 

Total 

Processing 

FPS 

YOLOv8n-seg 0.923 0.799 0.851 0.93 16.9 26.9 59.17 37.17 

YOLOv8s-seg 0.91 0.78 0.87 0.9 22.4 33.2 44.64 30.12 
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5. Conclusion 

 
Real-time face segmentation in embedded systems demands a careful balance between computational 

efficiency and segmentation accuracy. Traditional approaches often sacrifice one aspect to enhance 

the other, limiting their practical deployment in real-world applications. This study systematically 

evaluates framework-aware optimizations and architectural scalability for YOLOv8-seg models, 

offering a structured approach to model selection for edge computing environments. A comparative 

analysis across five model scales (X, L, M, N, S) demonstrates that the N model achieves the optimal 

trade-off, attaining high accuracy (mAP50-95 of 0.8283) with a superior inference speed (137.20 FPS 

in PyTorch). In contrast, the L model exhibits a lower mAP50-95 of 0.7758 at 29.30 FPS, highlighting 

the diminishing returns of larger architectures. Further optimization using TensorRT reduces 

inference latency by 58% (to 4.28 ms per image) while maintaining mAP50-95 of 0.8170, 

demonstrating minimal degradation compared to PyTorch. The performance gains achieved via 

TensorRT significantly improve real-time feasibility, particularly for latency-sensitive applications. 

Our findings underscore key trade-offs: lighter models (N, S) deliver superior latency-accuracy 

efficiency, whereas larger models (X, L) suffer from computational bottlenecks, limiting their practical 

scalability. The proposed deployment framework provides a structured methodology to select the 

optimal model scale and inference engine (PyTorch, ONNX, or TensorRT) based on application- 

specific constraints, including latency, memory, and accuracy requirements. 

Extensive testing on NVIDIA Jetson platforms validates the robustness of this methodology, achieving 

real-time performance (≥37.17 FPS) with minimal accuracy loss (<3%). These results establish a 

deployable segmentation pipeline that optimally balances precision and speed, making it suitable for 

biometric security, augmented reality, and privacy-preserving applications in dynamic environments. 

This work bridges the gap between theoretical accuracy and real-world efficiency, providing actionable 

insights for deploying deep learning models on resource-constrained embedded systems. 
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