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Beta regression has emerged as a widely used technique for modeling the 

relationship between a response variable and a set of covariates. It assumes 

that the dependent variable follows a beta distribution, making it especially 

well-suited for continuous outcomes restricted to the interval (0, 1). This 

paper presents a Bayesian Lasso framework for variable selection and 

parameter estimation within the Beta Regression Model (BRM), which is 

particularly suited for modeling continuous response variables constrained to 

the (0, 1) interval such as proportions and rates. By incorporating Laplace 

priors through a hierarchical Bayesian structure, the proposed Bayesian Lasso 

Beta Regression model enables simultaneous coefficient shrinkage and 

variable selection, thereby improving both model interpretability and 

predictive performance. Monte Carlo simulations and a real data analysis are 

conducted to evaluate and compare the performance of the proposed 

Bayesian Lasso Beta Regression with the non-Bayesian Beta Regression  and 

Bayesian Beta regression. 

Keywords: Bayesian Inference, Beta regression, Lasso, Variable selection, Gibbs 

sampler. 

 

1. Introduction  

The beta regression model has become one of the most popular techniques for modeling the 

relationship between a response variable and covariates. This model assumes that the dependent 

variable follows a beta distribution, making it particularly suitable for continuous data constrained 

within the interval (0,1). The model offers several advantages, including the ability to account for 

heteroskedasticity and asymmetry in the data, direct interpretability of the regression parameters in 

relation to the mean of the original variable y, and a more flexible and robust approach for analyzing 

proportions, rates, and indices constrained within the (0,1) interval. As such, the beta regression 

model serves as a superior alternative to traditional transformation-based methods. Introduced by 

(Ferrari and Cribari-Neto 2004) he (0,1) interval providing a framework for handling such data 

effectively. Beta regression models (BRMs) have been widely applied across various fields. For 

example, (Erkoç and Sever 1986) used BRMs to analyze body fat percentages, while (Qasim et al. 

2021) applied them to assess crude oil proportions after distillation and fractionation. Additionally, 

(Karlsson and Fraenkel 2020) utilized BRMs to evaluate the color characteristics of hazelnuts. 

The maximum likelihood estimator (MLE) is commonly used to estimate model parameters. However, 

in certain applications, incorporating prior information about the parameters can be beneficial. Such 

prior information can improve estimation accuracy and is often incorporated as constraints within the 

model. Beta Regression Models (BRMs) can incorporate both linear and nonlinear constraints, which 

may be in the form of either equalities or inequalities.(Seifollahi, Bevrani, and Mansson 2024) and 

(Yang et al. 2022) have explored the use of linear equality constraints in BRMs. Their studies aim to 
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enhance the Beta Maximum Likelihood Estimator (BMLE) and the Beta Liu Estimator (BLE), 

respectively, by applying shrinkage methods such as the James-Stein, positive James-Stein, and 

preliminary test methods to constrain the regression parameters.  These constraints ensure structural 

consistency based on physical phenomena or the validity of scientific theories. For example, in applied 

econometrics, certain coefficient parameters must be non-negative or non-positive (Borders 1989), 

(Bails and Peppers 1982). Similarly, in hyperspectral imaging, physical considerations require that 

coefficient parameters remain non-negative (Shaw and Manolakis 2002) 

Among penalized regression techniques, the Least Absolute Shrinkage and Selection Operator 

(LASSO) is one of the most widely used methods in statistical analysis. LASSO applies L1 

regularization to the regression model, which encourages sparsity in the coefficients by driving some 

of them to exactly zero. This makes it particularly effective for variable selection and shrinkage. 

LASSO is a specific case of the bridge estimator, where the parameter α is set to 1, thereby balancing 

between model fit and complexity.  (Tibshirani 1996) introduced the Least Absolute Shrinkage and 

Selection Operator (LASSO), which is formulated as the solution to the following optimization 

problem: minimize the residual sum of squares subject to a constraint on the sum of the absolute 

values of the regression coefficients. Mathematically, this is expressed as: 

 

where λ controls the amount of shrinkage applied to the coefficients, and t is a constant. 

Bayesian variable selection using the LASSO (Least Absolute Shrinkage and Selection Operator) is a 

widely used approach for high-dimensional regression. The Bayesian framework offers a probabilistic 

alternative to the traditional LASSO, enabling uncertainty quantification in variable selection. The 

Bayesian LASSO was first introduced by (Park and Casella 2008), who applied Laplace (double-

exponential) priors to the regression coefficients, providing a Bayesian interpretation of LASSO. This 

method enables shrinkage while integrating prior information into the model. In this paper, a 

Bayesian hierarchical model is construct for estimation and variable selection in the beta regression 

framework, with modifications and extensions to enhance its performance. 

2. Beta Regression 

Beta regression is a specialized regression model designed for situations where the dependent variable 

represents a proportion or percentage constrained within the open interval (0,1). It is particularly 

useful when the response variable is both bounded and exhibits heteroskedasticity, making 

conventional linear regression unsuitable. 

The beta regression model relies on an alternative parameterization of the beta distribution, where the 

density function is defined in terms of the mean of the response variable and a precision parameter. 

The beta density is typically represented as: 

 

To construct a regression model for beta-distributed random variables, we begin with the equation 

that defines the beta distribution density, parameterized by p and q. However, in regression analysis, 

it is more practical to model the mean of the response variable directly. Additionally, incorporating a 

precision (or dispersion) parameter into the model is a common approach to account for variability. 

To establish a regression framework that incorporates both the mean of the response variable and a 

precision parameter, we reparameterize the beta density using an alternative formulation. Let: 

 and  which  
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Using this parameterization, the expected value and variance of the random variable y are expressed 

as: 

  

 

Here, μ represents the mean of the response variable, while γ serves as the precision parameter. For a 

given μ, larger values of γ lead to a smaller variance var(y), indicating greater concentration of the 

response variable around its mean. The density function of y under the new parameterization is given 

by: 

 

where: . This reparameterization enables a regression framework that 

simultaneously models the mean μ and the precision parameter γ, enhancing the model’s flexibility 

and making it more effective in capturing the variability present in the data.  

3. Bayesian Lasso for Beta Regression 

The statistical analysis of continuous data constrained within the interval (0,1), such as rates and 

proportions, requires a probability model that adheres to these boundaries. In this section, we present 

a Bayesian beta regression modeling framework specifically designed for such data. Bayesian Beta 

regression is an extension of classical Beta regression that integrates prior distributions for model 

parameters, enabling probabilistic inference. 

Suppose that n independent response variable    take values within the interval (0,1) follows a Beta 

distribution where  is the mean of the Beta distribution, often modeled via a link 

function and  is the precision parameter, and  is a  vector of covariates. The model allows the 

response mean to depend on linear predictors by applying the link function k(.) in the following 

manner: 

 

Where  is a vector of unknown parameters, the likelihood function can be shown as 

follows: 

 

 

The regression model is typically specified as:  
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Where  g(.) is a link function (e.g., logit, log, or probit), is a vector of covariates. Bayesian Lasso 

regularization for beta regression can be achieved by assigning a Laplace (double-exponential) prior to 

the regression coefficients (Park and Casella 2008). Therefore, the distribution of Laplace prior can be 

expressed as: 

 

where λ>0 is the regularization parameter that controls the sparsity of the regression coefficients. To 

simplify sampling, the Laplace prior is often reformulated as a hierarchical model by expressing it as a 

scale mixture of normals. This is done by introducing an auxiliary variance-like parameter and 

assigning it an exponential prior (Andrews and Mallows 1974): 

 

Let  , then  Laplace prior on  can be written as : 

 

 In this study, Gamma distribution will set as  prior to the precision parameter ( ) and  . The 

hierarchical model for Bayesian variable selection in Beta regression can be formulated as follows: 

 

 

 

 

 

Where a, b, c and d are the hyperparameters.  

4. The Conditional Posterior Distributions: 

Based on the hierarchical model (7), the posterior distribution for Bayesian variable selection in beta 

regression can be constructed as follows: 

1- Sample the coefficients  from the full conditional posterior distribution of :  
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Since the distribution is not common, the Metropolis algorithm will be used to sample . 

 

2- Sample     from the following  full conditional posterior distribution of : 

 

 

 

 

The full conditional posterior distribution of  is generalized inverse Gaussian distribution. 

3- Sample     from the following  full conditional posterior distribution of : 

 

 

 

Since the distribution is uncommon, the Metropolis algorithm will be used to sample . 

 

4- Sample      from the following  full conditional posterior distribution of : 

 

 
 

 

 

The full conditional posterior distribution of   is a Gamma distribution. 

5. Simulation studies: 

In this section, we conduct Monte Carlo simulations to evaluate the performance of Bayesian 

regularized Beta regression, comparing it with the non-Bayesian Beta approach proposed by (Ferrari 

and Cribari-Neto 2004) and the Bayesian Beta regression method proposed by (Kottas and Gelfand 

2001). In this study, we propose performance criteria such as the bias and standard deviation of the 
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estimated parameters, as well as the mean squared error and mean absolute error of the model. We 

consider three simulation scenarios for the parameter coefficients, which are similar to those 

presented in (Zhu et al. 2008), these scenarios as follows: 

- Scenario one: = (3, 1.5, 0, 0, 2, 0, 0, 0), representing a sparse case. 

- Scenario two:  = (0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85), representing a dense case. 

- Scenario three:  = (5, 0, 0, 0, 0, 0, 0, 0), representing a very sparse case. 

 The explanatory variables  are drawn from a multivariate standard normal distribution  

where the (i, j)th entry of Σ is defined as . The data is generated for two different sample sizes: 

n=50 and 150. The number of explanatory variables is set to p=8, and the precision parameter is set to 

. The response variable will be generated as: 

 

where  represents the mean response for the i-th observation, and  is a precision parameter that 

controls the dispersion of the Beta distribution. For Bayesian inference at each quantile, a total of 

12,000 iterations will be run, with the first 2,000 iterations discarded as burn-in. For 100 replications 

of our experiment, the standard deviation and bias are reported in the following tables and figures. 

Table (1): show the standard deviation and bias to the first scenario at each sample size. 

Sample 

size 
Methods criteria          

50 BReg SD 1.2047 0.4637 0.5351 0.4209 0.7264 0.4162 0.2661 0.3779 0.9372 

  Bias 2.3207 0.9722 0.1988 0.2049 1.2874 0.1176 0.1547 0.0938 0.8676 

 BBReg SD 0.3283 0.2339 0.1659 0.3154 0.2420 0.3984 0.3677 0.2263 0.5162 

  Bias 0.6240 0.3146 0.0029 0.0629 0.3122 0.2342 0.0044 0.1033 2.9488 

 BLBReg SD 0.2787 0.1733 0.1287 0.1495 0.1522 0.2844 0.2372 0.1514 0.3705 

  Bias 0.1099 0.0576 0.0340 0.0554 0.1030 0.1027 0.0453 0.1152 0.2659 

            

150 BReg SD 0.2268 0.3413 0.3236 0.4151 0.3318 0.3172 0.3114 0.3843 0.6666 

  Bias 2.4632 1.3225 0.1246 0.2178 1.6188 0.1074 0.1547 0.1113 0.8417 

 BBReg SD 0.3002 0.2423 0.3268 0.2983 0.1699 0.3550 0.2620 0.2929 0.0042 

  Bias 1.5442 0.7932 0.0632 0.0402 0.9798 0.0424 0.0638 0.0959 2.7632 

 BLBReg SD 0.2343 0.1578 0.1599 0.1911 0.1371 0.1628 0.1409 0.1732 0.2901 

  Bias 0.1005 0.0505 0.0196 0.0169 0.0473 0.0077 0.0740 0.0512 0.1509 

 

Table  )1) presents a comparative analysis of three estimation methods Classical Beta Regression 

(BReg), Bayesian Beta Regression (BBReg), and Bayesian Lasso Beta Regression (BLBReg) under the 

first simulation scenario, which represents a sparse setting where only a subset of the regression 

coefficients is non-zero. The evaluation focuses on the standard deviation (SD) and bias of the 

estimated regression coefficients   and the precision parameter ), across two sample 
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sizes: n = 50 and n = 150.   Across both sample sizes, the BLBReg method consistently delivers 

superior performance, achieving the lowest bias and standard deviation for nearly all parameters. This 

demonstrates its robustness and accuracy in sparse settings, where only a few predictors are relevant. 

By effectively shrinking the coefficients of irrelevant variables toward zero, BLBReg enhances model 

parsimony and reduces estimation error. 

 In contrast, BBReg exhibits comparatively higher bias, particularly in estimating the precision 

parameter , with its performance declining further in smaller samples. Additionally, BBReg shows 

greater variability across several coefficient estimates, indicating reduced stability in sparse scenarios. 

 The BReg approach, while displaying acceptable variability for some coefficients, generally suffers 

from higher bias  most notably for larger coefficients such as  and . This underscores the 

limitations of classical methods in handling sparse, high-noise data environments.Overall, these 

results highlight the advantages of the Bayesian Lasso Beta Regression approach in sparse modeling 

contexts, offering improved accuracy, stability, and variable selection capability even when sample 

sizes are limited. 

 

Figure (1): shows the trace plots for the estimated parameters and the precision parameter to the 

first scenario. 

Figure (1) illustrates the superior performance of the Bayesian Lasso Beta Regression (BLBReg) model 

in the first simulation scenario, which is defined by a sparse structure with few active predictors. 

Among the three models compared, BLBReg achieves the lowest levels of bias and standard deviation 

in estimating the regression coefficients. These results underscore the model’s effectiveness in both 

accurate parameter estimation and efficient variable selection, particularly in sparse data settings. 
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Figure (2): shows the histogram for the estimated parameters and the precision parameter to 

the first scenario. 

Figure (2) displays the posterior distributions of the regression coefficients  and the 

precision parameter (  obtained from the Bayesian Lasso Beta Regression (BLBReg) model. The 

distributions of , and are distinctly centered away from zero, indicating their substantial 

contribution to explaining the response variable. In contrast, the remaining coefficients are 

concentrated near zero, suggesting minimal or no influence on the outcome. These findings 

demonstrate the effectiveness of the Bayesian Lasso framework in performing variable selection by 

shrinking non-informative coefficients. Furthermore, the posterior distribution of the precision 

parameter) exhibits a right-skewed pattern, with most values falling between 2 and 5, indicating a 

moderate to high degree of precision in the model’s estimates. 

Table (2): show the standard deviation and bias to the second scenario at each sample size. 

Sample 

size 
Methods criteria          

50 BReg SD 0.1213 0.1678 0.3833 0.3147 0.3150 0.2110 0.2754 0.2494 0.7575 

  Bias 0.1640 0.0424 0.0411 0.0355 0.1080 0.1279 0.1515 0.0167 1.2203 

 BBReg SD 0.3413 0.2260 0.5711 0.4586 0.3562 0.3602 0.3975 0.3362 0.1185 

  Bias 0.5169 0.4040 0.3202 0.4270 0.5616 0.2362 0.6068 0.3130 2.9485 

 BLBReg SD 0.1423 0.1417 0.3151 0.2924 0.2759 0.1909 0.2218 0.2517 0.0857 

  Bias 0.1031 0.0259 0.0941 0.1059 0.0111 0.1010 0.0482 0.0523 0.0131 

            

150 BReg SD 0.1492 0.2214 0.4202 0.1296 0.3708 0.2835 0.3059 0.3116 0.4818 
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  Bias 0.0757 0.0814 0.2019 0.0606 0.2344 0.0751 0.1411 0.1689 0.3255 

 BBReg SD 0.2825 0.2848 0.3061 0.2117 0.2083 0.4063 0.2756 0.1963 0.1103 

  Bias 0.5857 0.6774 0.6214 0.7377 0.4631 0.6442 0.6414 0.5741 2.9839 

 BLBReg SD 0.1290 0.1317 0.1365 0.0734 0.0767 0.2317 0.1461 0.0941 0.1214 

  Bias 0.0031 0.0144 0.0003 0.0370 0.0375 0.0055 0.0004 0.0223 0.1567 

 

Table (2) provides a comparative evaluation of three estimation under the second simulation scenario, 

which represents a dense case where all regression coefficients are equal ( ). The 

performance of each method is assessed using standard deviation (SD) and bias for the estimated 

coefficients  and the precision parameter ( , across two sample sizes (n = 50 and n = 

150). 

In both sample sizes, the BLBReg model consistently outperforms the other methods, achieving the 

lowest bias and standard deviation for nearly all coefficients. By contrast, BBReg exhibits relatively 

high bias  particularly in estimating the precision parameter  and greater variability, especially in 

smaller samples. While BReg performs reasonably well, it falls short of the precision and accuracy 

achieved by BLBReg. 

These results affirm the effectiveness of the Bayesian Lasso approach in high-dimensional modeling 

contexts, particularly its ability to select and estimate significant predictors with greater reliability 

while minimizing estimation error. 

 

Figure (3): shows the trace plots for the estimated parameters and the precision parameter to the 

second scenario. 

Figure (3) illustrates the posterior distributions of the regression coefficients  and the 

precision parameter  obtained from the Bayesian Lasso Beta Regression (BLBReg) model under 
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the second simulation scenario, representing a dense setting in which all covariates are equally 

relevant. 

The figure reveals that all regression coefficients are distinctly centered away from zero, confirming 

the model’s effectiveness in identifying the significance of all predictors. This behavior is expected in 

dense scenarios, where no covariate should be excluded. Furthermore, the posterior distributions are 

narrow and smooth, indicating low variability and high estimation precision. These findings align with 

the numerical results reported in Table (2), underscoring the model’s capacity to generate stable and 

accurate coefficient estimates. 

Moreover, the posterior distribution of the precision parametercentered and exhibits -is well   )

minimal dispersion. This reflects a high degree of confidence in the model's ability to account for 

variability in the data, reinforcing its robustness and reliability in dense modeling scenarios. 

 

 

Figure (4): shows the histogram for the estimated parameters and the precision parameter to 

the second scenario. 

Figure (4) displays the posterior distributions of the regression coefficients   and the 

precision parameter ) obtained from the Bayesian Lasso Beta Regression (BLBReg) model under 

the dense simulation scenario with an increased sample size of n = 150. 

As anticipated in a dense setting, the distributions of all regression coefficients are distinctly centered 

away from zero, reaffirming the model’s ability to accurately identify and retain all relevant predictors. 

Compared to the results in Figure (3), which is based on a smaller sample size, the coefficient 

distributions in Figure (4) appear sharper and more concentrated. This reflects a notable 

improvement in estimation precision and reduced variability attributable to the larger sample size. 

Similarly, the posterior distribution of the precision parameter γ is more tightly concentrated and 

exhibits lower dispersion, indicating increased certainty in the model’s estimation of overall 

variability. These visual results are consistent with the quantitative outcomes reported in Table (2), 
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which demonstrate reductions in both bias and standard deviation, further validating the model’s 

robustness and reliability in higher-sample dense scenarios. 

Table (3): show the standard deviation and bias to the third scenario at each sample size. 

Sample 

size 
Methods criteria          

50 BReg SD 0.2711 0.2517 0.3475 0.2421 0.3273 0.3931 0.3246 0.2596 1.5575 

  Bias 4.2665 0.0114 0.0669 0.0555 0.2175 0.0188 0.0909 0.0404 1.1686 

 BBReg SD 0.6184 0.3406 0.2198 0.3689 0.5404 0.3926 0.4314 0.2972 0.8091 

  Bias 0.4984 0.0066 0.0160 0.2115 0.1558 0.0733 0.2961 0.1990 2.9685 

 BLBReg SD 1.3554 0.1554 0.3261 0.1562 0.2734 0.2146 0.2242 0.3631 0.6874 

  Bias 0.2214 0.0721 0.1215 0.0160 0.1450 0.0182 0.0350 0.0243 0.1960 

            

150 BReg SD 0.3964 0.1411 0.1981 0.3808 0.1428 0.3244 0.2452 0.2030 1.0434 

  Bias 4.6766 0.0646 0.0175 0.1749 0.0409 0.0611 0.0157 0.0689 0.4506 

 BBReg SD 0.2138 0.2481 0.2644 0.1964 0.3672 0.2710 0.2358 0.1986 0.9023 

  Bias 2.3044 0.1285 0.0529 0.0387 0.0292 0.1074 0.0380 0.0854 2.9884 

 BLBReg SD 0.2482 0.1198 0.1327 0.1681 0.1955 0.1534 0.1726 0.0859 0.6325 

  Bias 0.0027 0.0034 0.0374 0.0260 0.0246 0.0857 0.0053 0.0001 0.0887 

 

Table (3) summarizes the bias and standard deviation of the estimated parameters under a highly 

sparse scenario, in which only  is non-zero. Across both sample sizes (n = 50 and n = 150), the 

BLBReg model exhibits superior performance, achieving the lowest bias for the active coefficient 

) while successfully shrinking the remaining coefficients   toward zero. 

It is important to highlight that for n = 50, the standard deviation of β̂₁ in BLBReg is relatively large 

. This elevated variability is expected due to the combination of a high true coefficient value 

 and a limited sample size, both of which contribute to increased uncertainty in the 

posterior distribution. Nevertheless, the model maintains high estimation accuracy and strong 

variable selection capacity. 

By contrast, BReg and BBReg display greater bias and variability in most coefficients, particularly in 

estimating the precision parameter ). Additionally, both methods show limited effectiveness in 

distinguishing between relevant and irrelevant predictors, resulting in less sparse and more unstable 

estimates. 

In summary, BLBReg stands out as the most dependable approach under sparse conditions, providing 

accurate parameter estimates and robust variable selection, even when data are limited. 
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Figure (5): shows the trace plots for the estimated parameters and the precision parameter to the 

third scenario. 

Figure (5) displays the posterior distributions of the regression coefficients  and the 

precision parameter  under the third simulation scenario, characterized by a very sparse structure, 

using the Bayesian Lasso Beta Regression (BLBReg) model with a sample size of  n = 50. 

The distribution of  is clearly centered away from zero, indicating its importance and confirming 

that the model accurately identifies the true active variable. In contrast, the posterior distributions of  

are tightly clustered around zero, demonstrating the model’s effectiveness in shrinking  through

irrelevant coefficients and enforcing sparsity. 

This pattern highlights the strong variable selection capability of the BLBReg model, even in scenarios 

with limited data and a high proportion of non-informative predictors. Furthermore, the posterior 

distribution of the precision parameter  is moderately concentrated, indicating that the model 

maintains reasonable certainty in estimating overall variability despite the small sample size. 

These results underscore the robustness and reliability of the Bayesian Lasso approach in sparse 

settings with limited observations. 
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Figure (6): shows the histogram for the estimated parameters and the precision parameter to 

the third scenario. 

Figure (6) presents the posterior distributions of the regression coefficients  and the 

precision parameter  under the third simulation scenario  characterized by a very sparse structure 

using the Bayesian Lasso Beta Regression (BLBReg) model with an increased sample size of n = 50. 

The posterior distribution of remains sharply centered away from zero, reaffirming its significance 

in the model. In contrast, the distributions of through are narrowly concentrated around zero, 

indicating that the model continues to effectively suppress non-informative variables as the sample 

size increases. 

Moreover, the posterior distribution of the precision parameter becomes noticeably more 

concentrated compared to the smaller sample case, reflecting increased certainty and enhanced 

stability in the model’s estimation process. These outcomes further emphasize the robustness and 

efficiency of the BLBReg model in handling sparse scenarios, particularly when supported by larger 

datasets. 

 

Table (4): show the MSE and MAE for all scenarios at each sample size 

Model Sample size criteria Breg BBReg BLBReg 

Model 1 50 MSE 0.1246 0.1236 0.0896 

  MAE 0.1676 0.1580 0.1040 

 150 MSE 0.1252 0.1274 0.0836 

  MAE 0.1751 0.1866 0.1102 

Mode 2 50 MSE 0.2142 0.1126 0.1050 
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  MAE 0.2461 0.1707 0.1255 

 150 MSE 0.2185 0.1320 0.1198 

  MAE 0.2290 0.1810 0.1344 

Model 3 50 MSE 0.1328 0.1348 0.0833 

  MAE 0.1436 0.1435 0.1065 

 150 MSE 0.1350 0.1421 0.0921 

  MAE 0.1491 0.1495 0.1160 

 

Table (4) presents a comparative analysis of the predictive performance of the three models Classical 

Beta Regression (BReg), Bayesian Beta Regression (BBReg), and Bayesian Lasso Beta Regression 

(BLBReg)   across the three simulation scenarios. Mean Squared Error (MSE) and Mean Absolute 

Error (MAE) are used as evaluation metrics for two sample sizes (n = 50 and n = 150). 

The results clearly indicate that BLBReg consistently achieves superior predictive accuracy, yielding 

the lowest MSE and MAE values across all scenarios and sample sizes. The model exhibits particularly 

strong performance in sparse and very sparse scenarios (Model 1 and Model 3), where variable 

selection is critical. Even in the dense setting (Model 2), BLBReg maintains competitive performance, 

demonstrating its adaptability and effectiveness under varying degrees of data sparsity. 

These findings confirm the robustness and generalizability of the BLBReg model in delivering 

accurate predictions across a range of modeling contexts. 

 

 

Figure (7): comparison of MSE and MAE for different scenarios and sample sizes. 
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Figure (7) provides a visual comparison of the predictive accuracy of the three regression models  

BReg, BBReg, and BLBReg  across the three simulation scenarios, using Mean Squared Error (MSE) 

and Mean Absolute Error (MAE) as evaluation metrics for both sample sizes (n = 50 and n = 150). 

The figure clearly illustrates that BLBReg consistently outperforms the competing methods, achieving 

the lowest MSE and MAE values across all scenarios and sample sizes. The performance gains are 

especially pronounced in the sparse and very sparse settings (Model 1 and Model 3), where effective 

variable selection is crucial. Even in the dense scenario (Model 2), BLBReg maintains highly 

competitive performance, often matching or exceeding that of BBReg. 

These graphical findings corroborate the numerical results reported in Table (4), further reinforcing 

the strength, flexibility, and predictive reliability of the Bayesian Lasso Beta Regression model under 

diverse data conditions. 

5. Real Data Application 

The Gasoline Yield dataset, initially compiled by Prater (1956), captures the proportion of crude oil 

converted into gasoline through distillation and fractionation processes. In a later analysis, Atkinson 

(1985) applied a linear regression model to this dataset and observed notable asymmetry in the 

residuals, indicating the presence of both unusually large and small prediction errors. 

In the present study, a controlled level of data contamination was introduced by systematically 

altering the initial values of the explanatory variables by 10%. This modification was implemented to 

assess the robustness and stability of the regression models when exposed to mild distortions in the 

input data. 

Dataset Description 

The Gasoline Yield dataset contains 32 observations of 6 variables related to gasoline reduction: 

Variable Description 

yield Proportion of crude oil converted into gasoline (response variable) 

gravity API gravity of crude oil 

pressure Vapor pressure of crude oil 

temp10 Temperature at which 10% of crude oil has vaporized 

temp Temperature at which 50% of crude oil has vaporized 

temp90 Temperature at which 90% of crude oil has vaporized 

Table (5): shows the estimated parameters and the precision parameter to the real data. 

Methods 
     

 

BReg -0.02636 0.10792 -0.21780 0.74511 -0.20016 25.01168 

BBReg 0.03681 0.21296 -0.15650 0.94126 -0.30791 0.54139 

BLBReg 0.00000 0.11956 -0.21898 0.60211 -0.08519 4.40813 

 

Table (5) presents the estimated regression coefficients and the precision parameter ( ) for the BReg, 

BBReg, and BLBReg models, based on the analysis of the Gasoline Yield dataset. 
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The results clearly demonstrate that the BLBReg model provides more stable and realistic parameter 

estimates compared to its counterparts. Notably, BLBReg yields a well-balanced estimate of the 

precision parameter ( ), in contrast to the excessively high value obtained by BReg and the 

significantly underestimated value produced by BBReg. 

In addition, BLBReg successfully shrinks the coefficients associated with non-informative predictors 

toward zero while preserving those linked to meaningful covariates. This highlights the model’s ability 

to perform effective variable selection and maintain robustness in the presence of mild data 

contamination, making it a reliable tool for real-world regression applications involving bounded 

response variables. 

 

Figure (8): shows the trace plots for the estimated parameters and the precision parameter to  the 

real data 

Figure (8) demonstrates the posterior distributions of the estimated regression coefficients and the 

precision parameter for the BLBReg model based on the Gasoline Yield dataset. The figure shows 

that certain coefficients  such as  and are clearly centered away from zero, suggesting their 

significance in explaining the response variable. 

In contrast, other coefficients are either concentrated around zero or heavily shrunk, indicating that 

the model has effectively reduced the influence of irrelevant predictors. The posterior distribution of 

also appears well-behaved and moderately concentrated, reflecting a stable and precise 

estimation of the model's variability.  
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Figure(9): shows the histogram for the estimated parameters and the precision parameter to the real 

data 

Figure (9) provides a graphical comparison of the predictive performance of the BReg, BBReg, and 

BLBReg models on the Gasoline Yield dataset, using Mean Squared Error (MSE) and Mean Absolute 

Error (MAE) as evaluation metrics. The figure clearly demonstrates that the BLBReg model attains the 

lowest MSE and MAE values, indicating superior prediction accuracy compared to both BReg and 

BBReg. 

This enhanced performance underscores the robustness and flexibility of the BLBReg model, 

particularly in scenarios involving mild data contamination. Furthermore, the visual results align 

closely with the numerical findings presented in Table (6), reinforcing the conclusion that BLBReg is 

the most accurate and reliable choice for regression modeling when the response variable is 

constrained within the (0,1) interval. 

Table (6): show the MSE and MAE to the real data 

Methods BReg BBReg BLBReg 

MSE 0.09566 0.10056 0.08325 

MAE 0.30308 0.31831 0.27029 

 

Table (6) summarizes the predictive performance of the BReg, BBReg, and BLBReg models on the 

Gasoline Yield dataset, evaluated using Mean Squared Error (MSE) and Mean Absolute Error (MAE). 

The results clearly indicate that BLBReg delivers the most accurate predictions, achieving the lowest 

values for both error metrics. 

While BReg and BBReg provide reasonable performance, they are consistently outperformed by 

BLBReg, particularly in the presence of mild data contamination. These findings further support the 

effectiveness and robustness of the Bayesian Lasso Beta Regression model for analyzing bounded 

response data, especially in applications where high predictive accuracy is essential. 
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6. Conclusions 

This study introduces a novel and effective Bayesian Lasso Beta Regression (BLBReg) model, tailored 

for analyzing continuous response variables bounded within the (0,1) interval, such as rates and 

proportions. By integrating the Bayesian Lasso framework into the beta regression context, the 

proposed model effectively addresses key challenges in variable selection, parameter shrinkage, and 

predictive stability  particularly in high-dimensional settings characterized by sparsity in the covariate 

space. The hierarchical Bayesian formulation employing Laplace priors expressed as scale mixtures of 

normal enables efficient posterior sampling through Gibbs sampling and the Metropolis algorithm, 

while also allowing the incorporation of prior information into the model structure. 

Simulation results across multiple scenarios with varying levels of sparsity and different sample sizes 

consistently demonstrate the superiority of BLBReg over classical Beta Regression (BReg) and 

standard Bayesian Beta Regression (BBReg). Specifically, BLBReg yields lower bias and standard 

deviation, improved estimation accuracy, and enhanced model sparsity by correctly identifying and 

retaining only the influential predictors. These advantages are further supported by reduced Mean 

Squared Error (MSE) and Mean Absolute Error (MAE), confirming the model’s reliability and 

accuracy in prediction. 

Moreover, BLBReg demonstrates strong robustness when applied to real-world data, as shown in its 

performance on the Gasoline Yield dataset under controlled contamination. Unlike other methods, it 

maintains interpretability and estimation stability by shrinking irrelevant coefficients and producing 

well-behaved posterior distributions for both the regression coefficients and the precision 

parameter . 
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