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Fairness in machine learning is a complex and multifaceted concept, increasingly critical in 

automated decision-making systems. Numerous metrics and techniques have been developed to 

measure and mitigate bias effectively. However, tensions often arise between different fairness 

notions, such as individual versus group fairness, and even among various group fairness 

approaches. These conflicts are typically rooted in inadequate implementation of fairness measures 

rather than fundamental contradictions. Additionally, failing to account for interdependencies 

among attributes can lead to unintended outcomes, such as those exemplified by Simpson's 

paradox, when focusing solely on group fairness based on sensitive attributes. This paper seeks to 

reconcile individual and group fairness by addressing the sources and causal dynamics of 

unfairness. We propose a dynamic in-process fairness enforcement method that leverages Bayesian 

networks and harmonizes conditional probability terms through an agnostic and symmetric 

objective function. Our approach aims to achieve both individual and group fairness simultaneously 

by applying causal path-specific bias mitigation. Moreover, it implicitly handles multiple sensitive 

attributes to prevent hidden redlining effects from correlated attributes and supports multi-valued 

attributes. A comparative evaluation of our method against related approaches using 14 real-world 

datasets demonstrates that our technique significantly outperforms existing fairness solutions. 
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INTRODUCTION 

The issue of fairness in machine learning has garnered significant notice due to its impact on individuals and 

society at large. Numerous instances have emerged where prominent machine learning models failed to meet 

expectations and were deemed unjust or discriminatory [1, 2, 3]. Recently, a group of AI researchers at Apple, 

Amazon, Google, Facebook, IBM, Microsoft, and others founded an organization knows as Partnership on AI (PAI) 

which has published AI Incident Database (AIID) containing more than 1,000 AI incidents from the media and 

publicly available sources. Fairness issues are the most common AI incidents submitted to AIID [4]. In response, 

scholars have organized conferences such as the ACM Fairness, Accountability and Transparency (FAccT) 

conference with a focus on subjects related to Ethical and Trustworthy AI topics in automated decision making at 

scale [5, 6, 7]. 

Fairness notions proposed in the literature are usually classified in three broad areas: individual, group, and causal 

fairness definitions. Individual fairness aims to ensure that individuals with similar characteristics or features 

receive similar outcomes or treatment, while group fairness concerns with achieving equality across distinct 

protected groups identified by certain sensitive attributes (e.g. gender, race, or people in different age groups). On 

the other hand, causal fairness advocating the necessity of finding and employing causality among variables in 

order to really disentangle unfair impacts on decisions [8] [9] [10] [11]. 

However, most existing metrics and algorithms of ML fairness implicitly assume that the underlying statistical 

procedures or notations of fairness can be mathematically defined and deployed to create fair ML systems. This 

assumption generally does not involve the social and historical background of a particular field [12]. Therefore, 
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because the applications are so different, the scope of these methods is limited. For example, while group-

independent predictions make sense in employee recruitment for a certain job (when gender or ethnic factors are 

illegal in decision-making), this may not the case in medical applications, where gender and ethnicity can play an 

important role in understanding the patient's symptoms [13]. 

Another example is the potential conflict between individual and group fairness. For instance, while aiming to 

address issues related to societal inequalities on a larger scale through group fairness measures, we might produce 

disparate results for specific individuals belonging to those groups. The resulting biases may stem from factors such 

as differences in individual characteristics that are not accounted for within the broad categorization of certain 

populations. Nonetheless, the apparent conflict between individual and group fairness in machine learning is more 

of an artefact of the blunt application of fairness measures, rather than a matter of conflicting principles. In 

practice, this conflict between individual and group fairness may be resolved by a nuanced consideration of the 

sources of ‘unfairness’ in a particular deployment context and the carefully justified application of measures to 

mitigate it [14, 15]. 

In such cases, reconciling individual and group fairness may require the use of contextual information to identify 

the source of bias and which attribute should take precedence in decision-making. Causal fairness can be a useful 

tool for this reconciliation by understanding the root causes of unfairness and to identify ways in which individual 

and group fairness can be promoted simultaneously. Thus, employing a combination of statistical and causal 

approaches to fairness can provide a more comprehensive perspective on fair machine learning practices [16, 17, 18, 

19, 20]. 

In this work, we proposed a framework that achieve a balance between individual and group fairness by fine-

grained attribute value weighing of Bayesian network classifier to identify the causal path-specific sources of bias. 

The proposed method dynamically detects and debias Bayesian network classifier; we call it (3D-BN), without the 

explicit identification of sensitive attributes values. The aim is to improve the estimation of each conditional 

probability term and mitigate individual and group fairness by penalizing each attribute value with a causal 

influence on the model’s individual and group fairness. Since we are fine tuning every attribute value, the proposed 

method will detect other correlated hidden sensitive attributes value if exist (red-lining effect). Moreover, our 

method works with binary and multi-value attributes. 

We hypothesize that this approach will improve group fairness without reducing the individual fairness. We 

conduct extensive experiments to compare our proposed method with related (in-process) approaches on 14 ML 

fairness benchmark datasets. To sum up, the main contributions of our work include: 

 

• Our inductive approach in dealing with the root cause and sources of bias in training data will improve group and 

individual fairness, exceedingly. 

• We argue that dynamic and implicit identification of sensitive attributes will improves the model performance to 

extent greater than explicit identification of sensitive attributes one. 

• We conduct extensive experiments to compare our proposed method with related fair ML methods on 14 

benchmark datasets and compare individual and group fairness performance. 

 

The remainder of this paper is organized as follows. In Section 2, we review related work. In Section 3, we propose 

our 3DBN algorithm and experimental results in detail. In Section 4, we provide our conclusions and suggestions 

for future research. 

LITERATURE REVIEW 

Bias in data-driven decision making primarily stems from the data and its collection methods. While there are 

numerous types of potential form of bias, statistical and representation biases are the two broad primary types of 

bias that frequently occur in real-world scenarios [21, 16, 18]. Statistical bias arises when the data used to train the 

models do not accurately represent the population while representation or historical bias occurs when the data 

labeling reflects existing societal biases and discrimination. This creates systematic differences among various 

groups and is not just limited to sample unrepresentativeness but rather affects the entire population. Therefore, 
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some group fairness metrics are outcome comparison and not utilizing ground truth label (i.e. not impacted by data 

bias and focus on model bias). In addition, poor selection of features may result in a loss of important information 

in disproportionate ways across groups [18]. 

Fairness Formalization 

Many works have used mathematical formulas to quantify fairness in ML. Broadly speaking, they describe some 

criteria that algorithms must meet to be considered "fair." Narayanan [22] and Verma and Rubin [23] provide 

detailed discussion of different fairness definitions. [24] also provide useful distinctions between different notions 

of fairness, as well as the many assumptions that justify them. In general, fairness formalization falls into three 

categories: group, individual and causal fairness.  

Groups fairness refers to the concept that the decisions must be made independently (or conditionally 

independent) of group membership. For instance, the demographic parity criterion requires that predictions to be 

independent of the sensitive attributes [25] [26] [8]. In addition, the prediction metrics (such as accuracy, true 

positive rates, false positive rates, etc.) across groups must be met. For instance, the criterion of equality of 

opportunity requires that true positive rates are equal across groups, while the criterion of equality of odds requires 

that false positive rates and false negative rates are equal across groups [9] [10] [11]. 

Individual fairness ensures that similar individuals with respect to the prediction task are treated similarly. Feature 

spaces are assumed to exist in which to compute similarity, and those features will be recoverable from the data. 

For instance, fairness through awareness identifies a task-specific similarity metric that implies individuals who are 

close according to this metric are also close according to the outcome space [27] [28] [25]. 

Causal fairness enforces some requirements for the causal graph that generate the data and the outcomes. For 

instance, to ensure counterfactual fairness, it is required that there is no causal pathway from a sensitive attribute 

to the outcome decision [29] [26] [30]. Table 1 outlines major fairness metrics. 

Table 1: Fairness Metrics 

Notion Condition 

Statistical Parity (SP) Equal acceptance rate across group 

Equal Opportunity (EO) Equal TPR across group 

Equal Odds (EOdd) Equal TPR and FPR across group 

Fairness Through Unawareness (FTU) No Explicit use of sensitive attributes 

Fairness Through Awareness (FTA) Similar individuals are given similar outcome 

Counterfactual Fairness Individual’s outcome wont changed if sensitive attribute value is changed 

Anti-Classification Fairness Limitations 

The first definition we examine is anti-classification, which implies that classification decisions are made without 

considering protected attributes. Notice that anti-classification is very likely one of the first ideas that one might 

consider when asked for a decision system that, for example, does not discriminate against race, is not to use race 

attribute explicitly to make the decisions. Anti-classification approach guarantees that decisions are not based 

solely on group membership. Nonetheless, historical evidence demonstrates that discrimination can still occur even 

without reliance on protected characteristics.  

An illustrative example is the use of literacy tests until the 1960s, which were apparently race-neutral but effectively 

discriminate against African Americans and other marginalized groups. This is because subtle correlations may 



Journal of Information Systems Engineering and Management 
2025, 10(35s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

422 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

exist between protected attributes and other observed or unobserved features, resulting in what Kusner et al. [30] 

refer to as "discrimination by proxy." For example, hobbies listed on a resume screening system could serve as an 

indication of gender, while zip codes associated with one's current home or birthplace might indirectly reflect race. 

Despite the goal of achieving fairness through unawareness, the use of proxy variables can still result in 

discrimination, figure 1. 

In our approach, we address these issues by proposing fairness framework that can detect bias dynamically and 

mitigate it for any attribute including sensitive attributes while considering attributes inter-relation. As a result, our 

method can be generalized on different application domains that requires fairness of equal metric across group 

without identifying sensitive attribute explicitly. 

 

Figure 1: Discrimination by proxy for sensitive attribute (A) 

Fairness Implementation 

The simplest method for model fairness is to utterly strip the training information of any sensitive attributes such 

as demographic signals, both implicit and explicit. However, altering information might lead to loss in prediction 

power, and there are ways to incorporate into the model’s training design some fairness measures without 

sacrificing model performance. These different approaches to increase fairness and mitigate biases in the Machine 

Learning literature in general are organized into widely accepted frameworks of pre-processing, in-processing, and 

post-processing methods [31, 32, 33, 8, 34]: 

 • Pre-processing methods 

 Pre-processing methods focus on adjusting the training data distribution to balance the sensitive groups. 

 These methods transform the data before the machine learning models learn from it. Examples include 

 reweighting and resampling, as well as more complex methods like optimized data transformation which 

 reduces bias and the predictability of the protected or sensitive attribute [35] [36] [37] 

 • In-processing methods 

 In-processing methods take fairness directly into consideration during model design to induce intrinsically 

 fair models and fundamentally mitigate fairness issues in outputs and representations. They constrain 

 machine learning models while they learn. These methods can be categorized into explicit and implicit 

 mitigation methods based on where the fairness is achieved in the model. Explicit methods directly 

 incorporate fairness metrics in training objectives, while implicit methods focus on refining latent 

 representation learning [38, 39, 40, 41] 

 • Post-processing methods  

 Post-processing methods calibrate the prediction results after model training. They make predictions from 

a  black-box machine learning model fair in the post-processing stage. These methods are versatile for 

 correcting bias in machine learning systems that are already used in production, avoiding expensive 

 retraining [11] [42] 

Following [39, 40], in this study, we design (in-process) regularization strategy to the training objective that 

quantifies the degree of bias for the system training to maximize prediction performance while minimizing 

discrimination. We show that these discriminations are often due to scarce or skewed historical bias data for 
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underrepresented minority or protected group, where one group has more training examples for some outcome 

than another. 

Related Fair Bayesian Classifiers 

Recent research efforts aim to improve Naïve Bayes fairness and focus on static fairness, which requires identifying 

the set of sensitive attributes in advance and tailor the objective function of the model to improve its fairness. As a 

result, the model is limited to application domains in which the sensitive attribute is known. Two-naive-Bayes 

(2NB) [43], and N-naive-Bayes (NNB) [44] algorithms partition the data based on sensitive attribute value and use 

in-processing routine to enforce statistical independence of the label and the sensitive attribute. For example, given 

a training set of labeled instances, the algorithm partitions the data based on the sensitive attribute value and trains 

a separate naive Bayes sub-estimator on each of the subsets then uses the related model based on the query 

instance sensitive value. 

In [45], a proposed fair Bayes-optimal classifier incorporates a post-processing technique to mitigate NB classifier 

unfairness over protected groups and achieves a better fairness-accuracy tradeoff. First, they define a threshold for 

NB classifier as the intersection points of any vertical line with two conditional probability densities of Y = 1 for the 

two groups values of sensitive attribute. Then, the classifier balances the thresholds for the two groups, by 

increasing the threshold for the group with a higher proportion classified as “1” and thus bringing the proportions 

classified as “1” closer. The procedure is similarly applied for “0” class. 

The Bayesian network (BN) can be classified as a transparent model unlike other black box models, such as neural 

networks, and can help identify the sources of bias by explicitly modeling the relationships and the causal influence 

between input variables and output variables. Despite that BN is still susceptible to data biases, the causal relations 

between variables can help identifying any factors that are unfairly influencing the model's predictions, and to 

adjust the model accordingly.  

The determination of interdependencies among random variables in a domain becomes exponentially complex 

when the Bayesian Network's structure is unknown. The process of inference within Bayesian Networks (BN) is not 

only NP-hard but also NP-hard for approximate inference to achieve a fixed level of accuracy [46]. The absence of 

knowledge regarding the correlation between random variables impedes the reduction of the joint probability 

distribution. In the context of a BN classification model, it becomes imperative to ascertain the joint probability 

distribution conditioned on the class. To address this challenge, various simplified Bayesian structures tailored for 

classification tasks have been proposed. Notable examples include naïve Bayes and Tree-augmented naïve Bayes, as 

depicted in Figure 2. These structures play a significant role in defining the classification model, which can be 

expressed by the following formula: 

𝑃(𝑐|𝑎1 … 𝑎𝑛) =  𝑃(𝑐) ∏  n
i=1 𝑃(𝑎𝑖|𝑝𝑎𝑟𝑒𝑛𝑡(𝑎𝑖)  ∧  𝑐) ) (1) 

                      

     (a) Naïve Bayes                         (b) TAN                                (c) 2NB 

Figure 2: Naïve Bayes, Tree- Augmented naïve Bayes and Two-naive-Bayes (2NB) 

DYNAMIC DETECTING AND DEBIAS BAYESIAN NETWORK (3DBN) 

In this work, we aim to improve individual and group fairness simultaneously while employing causal fairness. 

Precisely, we will first balance the model performance metric (i.e. fpr, tpr … etc.) across each attribute value and for 

each outcome to mitigate the root cause of bias and enforce overall equal metric across group. Making fairer 

outcome for each attribute value will assure group fairness represented by the subset of sensitive attribute value but 
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might affect model’s performance and individual fairness which we will tackle in the second step. Moreover, by 

enforcing fair outcome for each attribute value, we will assure mitigating redlining of correlated hidden sensitive 

attributes. Secondly, we will promote discrimination by boosting high predictive attribute value (and more 

importantly hidden high predictive attribute value) to improve its predictive power influence on classifying the 

correct target class. Thus, we will improve the classification performance (the mapping function between input 

features and outcome) which in turn improves individual fairness by classifying similar individual to similar 

outcome. 

Improve Group Fairness 

To improve fairness across groups, we will enforce fairness across each attribute value by measuring its instances’ 

performance metric across outcomes. Then, we will decide if we should increase or decrease its conditional 

probability terms. For example, if the training examples that contain the attribute value has lower true positive rate 

compared to false positive rate, then we should increase its conditional positive class probability terms. However, 

we should also compare the true negative and the false negative rates in the same manner.  

Now the performance metrics could conflict each other and to priorities which metric is more important than 

others on deciding the update direction, we have two options: first, we can make it as user input to decide which 

metric is more important (i.e. SP is more important than EO, and therefore, true positive is more important than 

true negative). The second option is to incorporate all four values of the confusion metric (tp, fp, tn, and fn) equally 

using a composite score such as Matthews Correlation Coefficient (MCC). MCC is Symmetric where no class is more 

important than others even if one class is disproportionately under- (or over-) represented. 

𝑀𝐶𝐶 =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (2) 

Improve Individual Fairness 

The update amount of attribute value probability terms will play a key role for maintaining individual fairness while 

improving group fairness. Thus, we want to increase discriminative attribute value predictive power while 

balancing its influence across different outcomes. In our proposed method, we delineate three scenarios concerning 

the distribution of conditional probability terms for attribute values. In the first scenario, a certain potentially 

discriminatory attribute value, denoted as 𝐷𝑎𝑖𝑗 , might be under-represented in the training data. Consequently, the 

conditional probability term 𝑃(𝐷𝑎𝑖𝑗|𝐶) for both the ground truth label and other class labels will be substantially 

small due to inadequately represented data and weak correlation between the ground truth label and other classes, 

respectively. We refer to such attribute value as hidden discriminatory attribute values, leading to incomplete 

information and, consequently, causing underfitting which will generate high misclassification rate in both training 

and testing data. Therefore, it is imperative to significantly enhance attribute values with small conditional 

probability terms 𝑃(𝐷𝑎𝑖𝑗|𝐶) for both the ground truth label and other class labels. 

In the second scenario, some potential discriminatory attribute value might be under-sampled due to class-

imbalanced dataset, where numerous examples belong to one or more major classes, and only a few belong to 

minor classes. In this scenario, certain discriminatory attribute value (𝐷𝑎𝑖𝑗) may be considered as noise examples 

leading to an over fitting problem due to bias toward major classes compared to the rare classes. It is crucial to 

distinguish these examples from those in the third scenario that are strongly correlated with both classes. The 

former examples are affected by under-sampling problem, which is very common in real world application, whereas 

the later should be regarded as redundant information with no predictive power given their relatively highly 

correlations with different classes and being unaffected by scarce data issues. 

 

To address these three different scenarios, we can employ a disproportional probability term boost for attribute 

values using the harmonic average. This choice is motivated by the harmonic average's sensitivity to smaller values, 

making it apt for the task [47]. Precisely, for scenario 1, the complement harmonic average (1- harmonic average) 

would be large and the update size would be large if both the 𝑝(𝑎𝑖|𝑐+ ⋀ 𝑝𝑎𝑟𝑒𝑛𝑡(𝑎𝑖)) and 𝑝(𝑎𝑖|𝑐− ⋀ 𝑝𝑎𝑟𝑒𝑛𝑡(𝑎𝑖)) were 

to be small. In this context, 𝑐+ and  𝑐−represent the different outcome classes. Similarly, for scenario 2 of skewed 



Journal of Information Systems Engineering and Management 
2025, 10(35s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

425 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

data, the complement harmonic average would be relatively large, and the update size would be large if either 

𝑝(𝑎𝑖|𝑐+ ⋀ 𝑝𝑎𝑟𝑒𝑛𝑡(𝑎𝑖)) or 𝑝(𝑎𝑖|𝑐− ⋀ 𝑝𝑎𝑟𝑒𝑛𝑡(𝑎𝑖)) were to be small. Finally, in scenario 3, the complement harmonic 

average would be small, and the update size would be small if both 𝑝(𝑎𝑖|𝑐+ ⋀ 𝑝𝑎𝑟𝑒𝑛𝑡(𝑎𝑖)) and 𝑝(𝑎𝑖|𝑐− ⋀ 𝑝𝑎𝑟𝑒𝑛𝑡(𝑎𝑖)) 

were to be large. Thus, we calculate the update weights for 𝑝(𝑎𝑖|𝑐+ ⋀ 𝑝𝑎𝑟𝑒𝑛𝑡(𝑎𝑖)) and 𝑝(𝑎𝑖|𝑐− ⋀ 𝑝𝑎𝑟𝑒𝑛𝑡(𝑎𝑖)) of each 

attribute value using Eqs. (3). 

𝑊𝑖 =
𝜂

𝑡  
( 1 −  2 /( 

1

𝑝𝑡(𝑎𝑖| 𝑐𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒  ⋀  𝑝𝑎𝑟𝑒𝑛𝑡(𝑎𝑖))
 +  

1

𝑝𝑡 (𝑎𝑖| 𝑐𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 ⋀  𝑝𝑎𝑟𝑒𝑛𝑡(𝑎𝑖))
) )  (3) 

  

Here, (η) is a learning rate between zero and one, and (t) is the iteration (epochs) number and used as weight decay. 

 

We argue, that applying this heuristic rule aligns with the evidence observed in the training data. In scenarios 1 and 

2, the model's misclassification of training examples is attributed to underfitting and overfitting, respectively. It is 

reasonable to assume that there is insufficient data to support the accurate classification of these training instances. 

Despite the global non-linearity in the relationship between attribute values and class prediction, our proposed 

method establishes a local linear relationship for discriminative attribute values. This localized approach is robust 

enough for a Bayesian classifier to discern and significantly enhance potentially hidden discriminative attribute 

values, thereby augmenting its predictive capability. 

 

Improve Causal Fairness 

 

To address the causal fairness, we may use causal influence quantification to answer fairness questions. For 

instance, consider a hypothetical scenario where the loan rejection rates are higher for women compared to men. 

This discrepancy could be attributed to the fact that women might be applying for loans to establish businesses with 

higher inherent risks. In contrast, men may predominantly seek loans for businesses with lower risk profiles, 

consequently leading to lower rejection rates. This outcome could be explained by hidden variables such as 

differences in business risk, among male and female applicants which influenced acceptance rates and ultimately 

 

resulted in reversing the overall trend observed in the data. From a causal perspective, what is important is the 

direct impact of the protected attribute (in this case, gender) on the decision (loan approval), which cannot be 

attributed to any other factor such as business risk. 

In our proposed method (algorithm 1) where we employ Bayesian network (TAN) which require that a causal link 

be established between attributes and the decision, we are able to carefully assess unfairness at a deeper level by 

balancing the causal path for each attribute value to the decision. For instance, in our previous example, we will 

find that business risk has more influence on the decision. Thus, the gender value given the business risk as parent 

might has no bias. Therefore, improving causal path represented by the conditional probabilities will impact 

positively individual and group fairness metrics than arbitrary balancing attribute value independently from other 

correlated attributes. 

Algorithm 1: Pseudocode for a probability-balancing routine to enforce statistical parity 

Build initial BN classifier 

while training MCC improve and t < T do 

for each attribute value, ai, given the class value C and other parent of ai (if exists) 

Calculate the tpr and tnr of training subset containing ai 

if tpr <= tnr then 

        𝒑𝒕+𝟏(𝒂𝒊|𝒄+ ⋀ 𝒑𝒂𝒓𝒆𝒏𝒕(𝒂𝒊)) += 𝑾𝒊 

        𝒑𝒕+𝟏(𝒂𝒊|𝒄− ⋀ 𝒑𝒂𝒓𝒆𝒏𝒕(𝒂𝒊)) −= 𝑾𝒊 

else 

        𝒑𝒕+𝟏(𝒂𝒊|𝒄− ⋀ 𝒑𝒂𝒓𝒆𝒏𝒕(𝒂𝒊)) += 𝑾𝒊 
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       𝒑𝒕+𝟏(𝒂𝒊|𝒄+ ⋀ 𝒑𝒂𝒓𝒆𝒏𝒕(𝒂𝒊)) −= 𝑾𝒊 

end if 

Let 𝒑𝒕+𝟏(𝒂𝒊|𝑪 ⋀ 𝒑𝒂𝒓𝒆𝒏𝒕(𝒂𝒊)) be equal to min(max(𝒑𝒕+𝟏(𝒂𝒊|𝑪 ⋀ 𝒑𝒂𝒓𝒆𝒏𝒕(𝒂𝒊)), 1e-5), 1-1e-5) 

Let t = t + 1 

end while 

 

EXPERIMENT SETUP AND RESULT 

 

In various application scenarios, the assessment of fairness in machine learning models can vary based on the desired 

classification performance criteria. For instance, in pretrial risk assessments, achieving equal false positive rates 

across all groups may be prioritized, as it is often more acceptable to let a guilty person go free than to wrongfully 

incarcerate an innocent individual. Conversely, in loan approval systems, one may prefer a decision-making process 

where false negative rates are equal, ensuring that individuals deserving of loans (positive class) are not 

disproportionately denied (negative class) based on a specific sensitive attribute value. Furthermore, depending on the 

specific application and the associated costs of misclassification, disparate mistreatment may be assessed using false 

discovery and false omission rates instead of traditional false positive and false negative rates. 

 

In our experiment, we will make our metric more generic, and we will use three Equal Metrics Across Groups as 

fairness criterion for group fairness Namely, SP, EO, and EOdd. In addition, we will use consistency to measure 

individual fairness. We also, average accuracy and F-Score for each sensitive attribute value to have fairer metrics 

for the models and not marginalizing them over sensitive attribute. The counterfactual fairness has limitation 

where it doesn’t address other hidden sensitive attributes and/or other correlated attributes, thus, we opt not to use 

it in our experiments. Table 2 outlines the fairness metrics employed in the study. In Equation (7), NkNN 

represents the k-Nearest Neighbor function utilized to locate a specified number of instances (k = 5 in our scenario) 

surrounding xi within the attribute space. Ideally, these five neighbors should share the same label as xi. Any 

deviations from this expectation will result in a diminished consistency score, moving away from the perfect score 

of one. 

 

Table 2: Fairness evaluation metrics 

Notion Formula  

Statistical Parity (SP) |
𝑇𝑃𝑝 + 𝐹𝑃𝑝

𝑁𝑝

 − 
𝑇𝑃𝑢 +  𝐹𝑃𝑢

𝑁𝑢

 | 
(

4) 

Equal Opportunity (EO) |
𝑇𝑃𝑝 

𝑇𝑃𝑝 + 𝐹𝑁𝑝

−
𝑇𝑃𝑢 

𝑇𝑃𝑢 + 𝐹𝑁𝑢

 | 
(

5) 

Equal Odds (EOdd) 
1

2
 ∗ ( 

|
𝐹𝑃𝑝 

𝐹𝑃𝑝 + 𝑇𝑁𝑝

−
𝐹𝑃𝑢 

𝐹𝑃𝑢 + 𝑇𝑁𝑢

 | + |
𝑇𝑃𝑝 

𝑇𝑃𝑝 + 𝐹𝑁𝑝

−
𝑇𝑃𝑢 

𝑇𝑃𝑢 + 𝐹𝑁𝑢

 |

 
 

 )  
(

6) 

Consistency   𝑵𝒌𝑵𝑵 1 −
1

𝑁𝑘
∑ | 𝑦𝑖 − ∑ 𝑦𝑗

𝑗∈𝑁𝑘𝑁𝑁(𝑥𝑖)

| 

𝑁

𝑖=1

 
(

7) 

 

We will compare our work with FLR [43, 48], “complement class” Naive Bayes (CNB) [49] for imbalanced dataset 

and original LR, NB models. We implement 2NB [43] and CNB [49] in Python within the scikit Learn framework, 

using Multinomial NB and download modified logistic regression FLR that applies fairness constraints to convex 

margin-based classifiers. In addition, we implement vanilla LR, Gaussian NB and our proposed method (3DBN). 

We then evaluate the models fairness and performance in 9 fairness benchmark datasets with different sensitive 
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attributes (total 14 datasets) obtained from UCI repository [50], NYP [51] and [52].  

In figure 3, we show the distribution of protected attribute values such as Female and Black compared to other 

attribute values such as Male and White. Each value presented with positive class (+ve) and negative class (-ve) 

outcome. 

 

Figure 3: Protected attributes and class distribution 
 

In Figure 4, we show the average performance (Accuracy and F-score), Individual fairness (Consistency), and 

Group fairness (SP, EOdd, and EO) for seven different algorithms on 14 datasets. The optimal result for (Acc, F1, 

and Consistency) is 1 and the optimal result for (SP, EOdd, and EO) is 0, however, the results is subtracted from 1 

for consistency. Therefore, the optimal result is 100% for all metrics. 

The result revels that our proposed algorithm (3DBN) consistently ranked in top 2 algorithms for all six metrics. 

FLR, LR and NB algorithms achieved optimal individual and group fairness for NYP 2020 and Census-income, 

respectively. However, the classifier’s F1-score performance is 0. The FLR, LR and NB algorithms in these severely 

imbalanced datasets become a dummy classifier and predict all instances to be 0 (negative class). Our algorithm 

3DBN, CNB, TAN, and 2NB classifiers don’t suffer from this issue 

Comparing to CNB, TAN, and 2NB, the proposed method (3DBN) significantly outperforming CNB for Accuracy, 

SP, EO, and EOdd. While CNB is significantly outperforming for consistently. Comparing to TAN and 2NB, our 

method 3DBN significantly outperforming for F1, EO, and EOdd. While 2NB is significantly outperforming for SP. 

It’s worth mentioning that 2NB is optimized for SP and doesn’t count for ground truth label and it focus on 

balanced outcome regardless of the causality between sensitive attribute and other attributes values. This could 

lead to Simpson’s paradox as discussed earlier. 

The finding revealed that not assessing multiple fairness metrics can lead to erroneous conclusions regarding the 

fairness performance of a model. It's possible for a model to be optimized for accuracy and individual/group 

fairness but still behave like a dummy classifier, predicting all instances as the majority class. In this scenario, the 

model attains high accuracy because it correctly predicts the majority class, and it achieves high individual/group 

fairness because there is no variation in outcomes for sensitive attribute values—they consistently predict the same 

outcome. 

Moreover, focusing exclusively on optimizing group fairness based on sensitive attributes may lead to a distorted 

outcome. It could result in satisfactory group metric performance while compromising model accuracy, as it 
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overlooks the inter-correlation between attributes. This situation is reminiscent of the Simpson's paradox observed 

in college admissions example, where the overall acceptance rate may seem unfair based on gender, but fairness is 

achieved when considering admission rates per gender within selected colleges. 

Hence, the study recommends a thorough assessment of model fairness by concurrently examining multiple 

metrics. Additionally, it emphasizes cautious optimization, considering attribute inter-correlation and path-specific 

causal fairness, such as the influence of parent nodes on child nodes, as observed in the Bayesian network classifier. 

 
 

Figure 4: Classification performance and Fairness result for 3DNB compared with other classifiers 

 

CONCLUSION 

To sum up, we show that our method improves both fairness and F-score especially in real life dataset where the 

underlying representation for sensitive attribute often is bias due to scarce or very skewed data. This statistical and 

historical biases in the data will reflect the model bias against protected or minority groups. Therefore, in-process 

fine tuning mitigates the tradeoff between the model performance and fairness. Furthermore, our method 

dynamically finds implicit correlation between sensitive attribute value and other attribute values that could 

discriminate protected group and work on mitigate both terms probability and the underlying distribution.  

In the presence of statistical biases, it is feasible to train a classifier that achieves high accuracy while giving an 

appearance of fairness based on statistical metrics such as Statistical party (SP) and Consistency (NkNN). However, 

the decision outcome might go completely injustice and predict all the outcome to one class. This is called dummy 

classifier, and metric such as Accuracy, SP, and Consistency will achieve high performance, while Fscore and EO, 

and EOdd only will detect this behavior. On the other hand, in the presence of historical bias, it also feasible to train 

a classifier to achieve 100% Statistical party in trade of with all other performance and fair metrics. However, in 

truth, the classifier may still be significantly unfair due to its causal dependence on sensitive attributes that cannot 

be justified without other attributes values causality. We see this example presented as Simpson’s paradox.  

The focus of our evaluation metrics is for two-classes problem, but the metric can be extended for multi-class 
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problem. Precisely, we are using Harmonic average as the sum of positive and negative classes, however, this will 

work for multi-class problem as well and we can use the harmonic average of the sum of all classes in (Eqs. 3). 

Similarly, evaluation metric can be extended to categorical and numeric sensitive attributes and not only binary 

attribute. The numeric values can be converted to nominal value using discretization, then, both categorical 

(ordinal or nominal) attributes will be evaluated by considering the fairness metrics in (Eqs. 4-7) between the most 

common value compared to each other attribute values. Fair Model should have values close to 0 for each pair of 

(common and minor) sensitive attributes values used in in (Eqs. 4-7). As future work, we intend to investigate using 

the complement harmonic average in different Bayesian Network classifiers and evaluate the result using different 

AI fairness metrics and benchmark datasets. 
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