
Journal of Information Systems Engineering and Management 
2025, 10(35s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 464 

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Vision Transformer-Based Soil NPK Classification Using 

Infrared Heatmap Analysis and Optimization Techniques 

 

Aarti Abhijit Chavan1*, Yuvarj M. Patil2 
1Research Scholar, KIT’s College of Engineering, Shivaji University, Kolhapur, India 

2KIT’s College of Engineering, Shivaji University, Kolhapur, India 

*Correspondence: E-mail: aartiabhijitchavan@gmail.com 

 

ARTICLE INFO ABSTRACT 

Received: 30 Dec 2024 

Revised: 05 Feb 2025 

Accepted: 25 Feb 2025 

Accurate soil nutrient analysis is essential for optimizing fertilizer application and improving 

agricultural productivity. Traditional machine learning (ML) and deep learning (CNN-based) 

approaches have been widely used for soil classification; however, they face limitations in 

capturing long-range dependencies and complex feature representations. This study proposes a 

Vision Transformer (ViT)-based model for NPK classification from infrared heatmap images. 

The ViT architecture leverages self-attention mechanisms to enhance spatial feature extraction, 

improving classification accuracy. The experimental evaluation demonstrates that the proposed 

ViT model achieves a 94.2% classification accuracy, outperforming standard CNN architectures 

such as VGG19, ResNet-50, Inception-V3, MobileNet-V3, and EfficientNet-B2. The confusion 

matrix analysis highlights the model's robustness in distinguishing varying soil nutrient 

compositions, even under different moisture levels and fertilizer concentrations. The results 

validate the effectiveness of attention-driven feature extraction and optimization techniques in 

soil nutrient classification. This research establishes a strong foundation for precision 

agriculture, enabling real-time NPK monitoring and adaptive fertilizer management. 

Keywords: Soil NPK classification, Vision Transformer, Infrared heatmap analysis, Grey Wolf 

Optimizer, Precision agriculture 

 

I. INTRODUCTION 

Soil fertility is one of the most crucial factors influencing agricultural productivity. The availability of essential 

macronutrients—Nitrogen (N), Phosphorus (P), and Potassium (K)—plays a significant role in crop growth, yield 

optimization, and overall soil health. A precise and efficient method for detecting NPK levels in soil can help farmers 

make informed decisions about fertilizer application, leading to sustainable agricultural practices and improved crop 

production [1]. Conventional soil testing techniques, such as chemical analysis and spectroscopic methods, often 

involve labor-intensive and time-consuming processes, making them less feasible for real-time applications. Recent 

advancements in imaging technologies, particularly infrared (IR) imaging, have opened new avenues for rapid and 

non-destructive soil nutrient assessment. By leveraging deep learning-based classification models, specifically 

Convolutional Neural Networks (CNNs), a more accurate and automated system for NPK detection can be developed. 

Infrared-sensitive cameras have demonstrated significant potential in agricultural research, particularly in soil and 

plant health monitoring [2]. IR imaging captures variations in soil composition by detecting heat radiation patterns 

emitted by different materials. When combined with deep learning models, IR imaging can provide an efficient means 

of analyzing soil nutrient content based on the spectral and thermal properties of the captured images. This study 

proposes an innovative approach that utilizes IR imaging to generate heatmap representations of soil samples, 

allowing for effective classification of NPK concentration levels using a CNN-based framework. By developing a 

structured experimental process that includes soil sample preparation, controlled fertilizer application, and image 

acquisition under varying conditions, we aim to establish a robust dataset for training and evaluating the proposed 

model. 

Agriculture has always been dependent on efficient soil management to ensure optimal plant growth and food 

security. Traditional soil testing methods, including laboratory-based chemical analysis, involve complex procedures 
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and prolonged waiting times before results are available. This delay often leads to inefficient fertilizer usage, resulting 

in either nutrient deficiency or excessive application, both of which can harm soil health and the environment. As a 

solution, researchers have explored remote sensing and imaging technologies to facilitate faster soil analysis. Infrared 

imaging has proven effective in detecting soil characteristics, as different soil components exhibit unique thermal 

and spectral responses when exposed to infrared light. 

In recent years, artificial intelligence (AI) and deep learning techniques have revolutionized many aspects of 

agricultural research [3]. CNNs have demonstrated remarkable success in image classification tasks, making them 

ideal candidates for detecting variations in soil properties from IR images. Unlike traditional machine learning 

approaches that require extensive feature engineering, CNNs automatically learn important patterns from images, 

enhancing the accuracy and efficiency of classification models. This motivates the integration of CNN-based image 

analysis for soil nutrient detection, addressing existing challenges in precision agriculture and enabling more 

informed decision-making in fertilizer management. 

This research presents a novel approach for detecting NPK concentrations in soil using IR imaging and deep learning. 

The key contributions of this study include: 

1. Dataset Preparation: 

o Soil samples with minimal NPK content are prepared as the base material. 

o Fertilizer of the 15:15:15 class is added incrementally from 0.1g to 2g to study varying NPK 

concentrations. 

o Moisture levels are controlled between 10% and 60% to assess their impact on nutrient detection. 

2. Infrared Image Acquisition: 

o Soil samples are placed in a light-tight box fitted with an IR-sensitive camera to ensure consistent 

imaging conditions. 

o Heatmap images are generated, with red-to-blue color effects, incorporating green shades for 

enhanced visualization of NPK levels. 

3. Deep Learning-Based Classification: 

o A CNN model is designed and trained to classify IR images based on soil NPK concentration levels. 

o The model is optimized for improved accuracy, ensuring a reliable and efficient detection system for 

real-world agricultural applications. 

By combining IR imaging with deep learning, this study introduces a cost-effective, rapid, and automated solution 

for soil fertility assessment. The proposed framework is expected to contribute significantly to precision agriculture 

by enhancing nutrient management practices and improving overall soil health. 

II. RELATED WORK 

Soil serves as a fundamental component in plant growth by acting as a primary source of essential nutrients. Among 

these, N, P, and K are crucial macronutrients that plants require in significant quantities to achieve optimal 

development and high-yield crop production. To ensure healthy crop growth, farm managers must frequently assess 

the levels of NPK in the soil. Traditionally, chemical analysis has been the primary approach for determining nutrient 

levels in soil [4]. However, in recent years, Near Infrared (NIR) Spectroscopy has gained traction due to its rapid 

assessment capabilities and eco-friendly nature. Similar study [5] explored the application of NIR Spectroscopy for 

identifying NPK levels in soil, where researchers collected absorbance spectra and applied an Artificial Neural 

Network (ANN) to derive correlations between spectral data and nutrient concentrations. Their model exhibited 

strong predictive accuracy, emphasizing the potential of NIR for effective soil nutrient characterization. Another 

investigation [6] utilized a compact Fourier Transform Infrared Spectroscopy (FTIR) sensor to enable rapid nitrogen 

detection in soil. This method was further enhanced by a software system that efficiently processed spectral data, 

delivering precise nitrogen content predictions. Given its portability, this detector demonstrated promising outcomes 
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in agricultural applications, particularly for use in miniaturized sensing devices. In addition to nutrient analysis, a 

study on heavy metal contamination [7] introduced a broadband photoacoustic spectrometric (PAS) system, which 

allowed for the non-invasive quantification of toxic elements such as lead (Pb) in soil. By analyzing variations in near-

infrared photoacoustic spectra corresponding to different Pb concentrations, the study successfully developed a 

predictive model capable of detecting heavy metal pollutants in soil. Another study [8] investigated adaptive 

fertilization strategies tailored to soil and crop requirements. This research leveraged the photon absorption 

characteristics of key soil nutrients, employing Near IR laser beams to interact with soil samples and accurately 

measure nitrogen, phosphorus, and potassium levels. The technique effectively facilitated rapid, simultaneous 

nutrient assessments within soil-fertilizer mixtures, demonstrating its potential for precision agriculture 

applications. 

Additionally, researchers [9] developed an optical transducer to assess NPK content in soil, aiming to improve soil 

quality and reduce unnecessary fertilizer usage. LEDs emitted light corresponding to nutrient absorption bands, with 

a photodiode detecting reflected light for evaluation. The results categorized soil content as High, Medium, or Low, 

offering a practical tool for soil assessment. Furthermore, a combined approach [10] incorporated image processing 

and artificial neural networks to efficiently identify soil nutrients. It also included analysis of pH levels. For this 

purpose they used Soil Test Kits along with rapid testing. This system aimed to streamline soil parameter evaluation 

for improved agricultural practices. In the realm of spectral imaging [11], hyper spectral imaging (HSI) was used to 

predict total nitrogen (TN) content in soil samples. The research explored various algorithms and models, including 

extreme learning machine (ELM), to achieve accurate TN content estimation through characteristic wavelengths. 

In a practical application [12], soil test report values were harnessed to classify soil features and predict village-wise 

soil parameters, aiding in cost-effective fertilizer use and soil health improvement. ELM was employed for accurate 

classifications. Finally, an investigation [13] into long-term nitrogen fertilization's impact on soil temperatures and 

water content revealed complex relationships. Changes in soil temperature and CO2 concentrations were attributed 

to increased N load, demonstrating the ecological ramifications of nitrogen deposition. In [14], the importance of soil 

testing in orchard management was highlighted as complementary to plant tissue testing. Discussions included 

ensuring soil testing's reliability and interpreting soil test parameters like Saturation Percentage (SP) and pH. The 

focus shifted to N, P and K nutrients. In [5], a non-destructive method for assessing NPK levels in tomato plants was 

introduced, utilizing multispectral 3D imaging. Synchronized collection of multi-view RGB-D and multispectral 

images facilitated accurate plant multispectral reflectance registration to depth coordinates. An iterative closest point 

(ICP) algorithm was employed for point cloud registration, leading to precise multispectral 3D point cloud model 

reconstruction. This method utilized back-propagation artificial neural network (BPANN), support vector machine 

regression (SVMR), and Gaussian process regression (GPR) for accurate determination of NPK contents.  

In [15] authors discussed the significance of nitrogen (N) and phosphorus (P) in plant and environmental efficiency. 

N contributes to cell structures and chlorophyll, essential for photosynthesis, while P is vital for nucleic acids and 

protein synthesis regulation. Overreliance on chemical fertilizers has resulted in diminishing returns and 

environmental concerns. In [16], comprehensive spectral combinations were developed to quantify leaf N, P, and K 

contents in various vegetation types using hyper spectral datasets. Effective combinations included reflectance 

difference, normalized differences, and first-order derivatives. These indices demonstrated the potential for fine-

scale monitoring of degraded vegetation. In [17], rapid soil and plant nutrient testing technologies were assessed, 

highlighting mechanisms like colorimetry, spectroscopy, and sensors. While the accuracy of these products compared 

to traditional methods is debated, their potential in guiding rational fertilizer recommendations and addressing 

complex farming systems was explored. Finally, [16] explored estimating nitrogen content in pasture grass using 

thermal images and artificial neural networks (ANN). The study investigated the correlation between N fertilizer 

levels, plant temperature, and active photosynthesis, with implications for smart fertilizer management. In [18], a 

GA-BPNN method was introduced, integrating a genetic algorithm with a backpropagation neural network. This 

approach improved the accuracy of soil nutrient content prediction using hyper spectral data. Field observations and 

comparisons with PLSR and BPNN models demonstrated that the GA-BPNN method was most accurate for 

estimating total nitrogen (TN), total phosphorus (TP), and total potassium (TK) contents. Notably, GA-BPNN 

outperformed BPNN in terms of estimation accuracy and potential for improvement. Authors in [19] explored the 
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use of infrared thermography (IRT) to monitor soil surface temperature (SST) variations in a vineyard. Different 

treatments were assessed, including bare soil, biochar cover, and biochar-amended topsoil. The study revealed 

distinctive diurnal SST patterns, highlighting the potential of IRT to study soil temperature dynamics. For [20], 

thermal imaging's benefits in farming were assessed. A color-coded table was developed based on existing research, 

allowing farmers to gauge soil condition using thermal imaging. This approach facilitated the detection of water 

composition and temperature variations, aiding in determining optimal conditions for fertile soil. In [21], spatial 

predictions of soil nutrient content in Sub-Saharan Africa were made using machine learning algorithms. A large 

dataset of soil samples and remote sensing covariates was used to create ensemble models for 15 target nutrients. 

This work demonstrated the potential of machine learning to predict soil nutrient levels across large geographic areas. 

In the exploration of machine learning-based recommendations [22] for crops yeild based on soil nutrients (NPK), 

pH, and climatic factors. They evaluated different ML model on a dataset containing yield data for 11 agricultural and 

10 horticultural crops. Results indicated that separated analysis provides better results for crops oriented work. 

XGBoost achieved the highest accuracy (99.09% for agricultural, 99.3% for horticultural, and 98.51% for both 

combined). The study highlights the potential for AI-driven cloud-based decision-making in crop selection and 

fertilizer application. Sujatha et al. [23] reviewed machine learning-based approaches for soil fertility assessment, 

emphasizing the necessity of accurate classification and optimized fertilizer application. The study followed PRISMA 

guidelines to analyze ML and deep learning techniques used for soil fertility prediction. Findings revealed that most 

models effectively predicted soil fertility levels, but only a few provided fertilizer recommendations. The study 

identified key challenges, including reliance on expensive laboratory tests and regional satellite data. It recommended 

future research into low-cost soil fertility classification and AI-driven fertilizer prescriptions to enhance productivity 

while reducing costs and environmental impact. 

Mahapatrao et al. [24] proposed an IoT-AI integrated system. The water quality analysis was the main objective. IoT 

sensors collected data on phosphorus, potassium, pH, temperature, and BOD from reservoirs and irrigation sources, 

transmitting it securely to a cloud-based platform. Advanced ML classifiers, including an ensemble model (Random 

Forest + SVM), were used for nutrient-level predictions. The hybrid model outperformed traditional methods with 

90% accuracy. Explainable AI (XAI) techniques improved model interpretability, and encryption protocols ensured 

data security. The study demonstrates an innovative AI-IoT synergy for precise water quality monitoring and 

agricultural sustainability. Sarangi et al. [25] examined ML-based soil fertility assessment, aiming to classify soil as 

“Fertile” or “Non-Fertile” based on N, P, K, pH, moisture, temperature, rainfall, and topography. Using Kaggle data, 

they trained four ML models—Logistic Regression, KNN, Naïve Bayes, and Decision Tree—to determine the best 

classifier. Results showed that the Decision Tree model achieved the highest accuracy (89%), outperforming others 

in fertility prediction. The study underscores the role of ML in soil analysis, aiding farmers in crop selection and 

precision agriculture through data-driven decision-making. 

Despite the extensive research on soil nutrient detection using spectroscopy, machine learning, and sensor-based 

techniques, several gaps remain that need to be addressed. Many existing studies rely on Near-Infrared (NIR) 

Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), and Hyper Spectral Imaging (HSI) for soil analysis, 

which, while effective, often require complex preprocessing, calibration, and expensive instruments. Additionally, 

photoacoustic spectrometry (PAS) and multispectral 3D imaging have been explored for soil and plant nutrient 

analysis, but they primarily focus on spectral absorbance properties rather than spatial variations in soil composition. 

These methods do not fully leverage the potential of thermal pattern recognition in infrared imaging, which can reveal 

unique soil properties based on nutrient levels and moisture content. Furthermore, while several studies have 

integrated Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), and Gaussian Process Regression 

(GPR) for predictive modeling, there is a lack of research incorporating deep learning-based CNN architectures for 

direct image-based NPK concentration detection. Most prior approaches extract spectral features and then apply 

traditional machine learning models, often requiring feature selection and manual tuning, which may introduce 

biases and limit scalability. 

Additionally, existing works do not account for real-world variations in soil moisture while analyzing NPK levels. 

Moisture significantly influences IR absorption and reflectance properties, which may lead to inconsistent 

predictions. The proposed work addresses this limitation by capturing soil samples at varying moisture levels (10% 
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to 60%), ensuring a more generalized model. Lastly, while IoT and AI-driven cloud-based systems have been 

introduced for soil monitoring, these systems still depend on external sensor-based data acquisition, making them 

costly and dependent on network connectivity. The proposed work provides an affordable, non-destructive 

alternative using a CNN model trained on heatmap images derived from IR-sensitive cameras, ensuring an end-to-

end automated solution for accurate and real-time soil NPK detection. 

III. PROPOSED WORK 

The proposed work focuses on the development of an automated system for detecting Nitrogen (N), Phosphorus (P), 

and Potassium (K) levels in soil using infrared (IR) imaging and deep learning techniques. The study follows a 

systematic approach, starting with soil sample preparation and controlled fertilizer addition, followed by image 

acquisition using an IR-sensitive camera, heatmap generation, and CNN-based classification. The objective is to 

create a robust and non-destructive method for soil nutrient analysis, enhancing precision agriculture through AI-

driven decision-making. 

In the first phase, soil samples with minimal NPK content are collected and prepared as the base material for 

experimentation. To systematically introduce variations in nutrient levels, a balanced 15:15:15 fertilizer mix is added 

in increments of 0.1g to 2g per 10g of soil. This controlled approach ensures a diverse dataset representing different 

nutrient compositions. Additionally, soil moisture levels are adjusted from 10% to 60%, as moisture significantly 

influences the IR spectral response of soil samples. 

The second phase involves capturing IR images of soil samples in a controlled environment. A light-tight box fitted 

with an IR-sensitive camera is used to eliminate external lighting interference, ensuring consistent imaging 

conditions. The captured images are processed to generate heatmaps, where color variations (ranging from red to 

blue with green components) indicate different levels of NPK concentration. These heatmaps serve as input data for 

deep learning-based classification. 

In the final phase, a Convolutional Neural Network (CNN) model is designed and trained to classify soil samples 

based on their NPK concentration. The CNN model extracts features from the heatmaps, learning complex patterns 

to accurately predict soil fertility levels. By leveraging deep learning, this approach aims to provide a cost-effective, 

rapid, and reliable alternative to conventional soil testing methods, aiding farmers in precise fertilizer management. 

 

Figure 1: Steps in Proposed Work 

1. Soil Sample Preparation 

Soil Sample Preparation with Fertilizer Addition 
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Soil Sample Preparation and Fertilizer Addition 

Soil sample preparation is the foundational step in analyzing nutrient composition and optimizing fertilizer 

application. In this study, we begin with raw soil samples containing minimal amounts of Nitrogen (N), Phosphorus 

(P), and Potassium (K). Each sample has an initial weight of 𝑊𝑠 = 10𝑔, and fertilizers are added in varying 

proportions to examine the impact of nutrient concentration. 

A balanced fertilizer mix from the 15:15:15 category is used, where each component contributes 15% of the total weight 

in nitrogen, phosphorus, and potassium. The mass of fertilizer added to the soil is denoted as 𝑊𝑓, and it is 

incrementally increased from 0.1𝑔 to 2.0𝑔 in 0.1𝑔 steps. The total weight of the mixture after fertilizer addition is 

given by: 

𝑊𝑡𝑜𝑡𝑎𝑙 = 𝑊𝑠 +𝑊𝑓                                                  …(1) 

The concentration of each nutrient (N, P, K) in the final mixture is determined by: 

𝐶𝑁𝑃𝐾 =
0.15×𝑊𝑓

𝑊𝑡𝑜𝑡𝑎𝑙
× 100%                                             ...(2) 

where 𝐶𝑁𝑃𝐾  represents the percentage concentration of nitrogen, phosphorus, or potassium in the soil-fertilizer 

mixture. 

To account for realistic agricultural conditions, moisture levels in the soil are varied from 10% to 60%. The moisture 

content 𝑀 is calculated based on the weight of water added (𝑊𝑚) as: 

𝑀 =
𝑊𝑚

𝑊𝑡𝑜𝑡𝑎𝑙+𝑊𝑚
× 100%                                             ...(3) 

This controlled experimental setup ensures that soil samples exhibit varying NPK concentrations and moisture levels, 

allowing for robust dataset generation for subsequent infrared imaging and classification. 

2. Infrared Image Capturing and Light-Tight Box Construction 

To ensure high-quality infrared (IR) image acquisition for soil sample analysis, a controlled imaging environment is 

necessary. A light-tight wooden box is constructed to eliminate external light interference and ensure consistent 

imaging conditions. The box is designed with internal black coating to minimize reflections and maintain uniform 

illumination. The IR-sensitive camera is mounted at the top of the box, positioned directly above the soil sample 

holder to capture images in a controlled setting. 

The dimensions of the box are chosen based on the camera’s field of view (FoV) and the required spatial resolution 

of the soil sample images. The height of the box is optimized to achieve a balance between image clarity and coverage 

area. The focal length 𝑓 of the camera lens is a critical parameter in determining the appropriate placement of the 

camera. The focal length is calculated using the thin lens equation: 

1

𝑓
=

1

𝑑𝑜
+

1

𝑑𝑖
                                                        …(4) 

where: 

• 𝑓 is the focal length of the lens, 

• 𝑑𝑜 is the object distance (distance from soil sample to the lens), 

• 𝑑𝑖 is the image distance (distance from the lens to the image sensor). 

The field of view (FoV) of the camera is given by: 

FoV = 2 × tan−1 (
𝑆

2𝑓
)                                          …(5) 

where 𝑆 represents the sensor size of the camera. The resolution of the captured images depends on the sensor pixel 

density and the focal length of the lens. A higher focal length provides better magnification but reduces the coverage 

area, whereas a shorter focal length captures a wider scene but with potential distortion. 
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To ensure consistency in image capture, a uniform IR illumination source is integrated inside the box. This helps in 

eliminating shadow effects and enhances the visibility of soil texture and nutrient variations. The soil sample is placed 

on a non-reflective surface inside the box, and multiple images are captured under varying moisture and fertilizer 

conditions. The collected IR images are then processed to generate heatmaps for further classification using a deep 

learning-based model. 

3. Heatmap Image Generation 

Heatmap Image Generation for Soil Nutrient Analysis 

Heatmap image generation is a crucial step in the proposed methodology for detecting soil nutrient concentrations 

using infrared (IR) imaging. The objective of generating heatmaps is to visualize spatial variations in nitrogen (N), 

phosphorus (P), and potassium (K) concentrations by encoding temperature and spectral variations into a color-

mapped representation. Heatmaps provide an effective means of analyzing infrared radiation emitted by the soil 

samples, correlating it with nutrient distribution. 

Preprocessing and Infrared Image Analysis 

Once the infrared images are captured in a controlled environment, they undergo preprocessing to enhance image 

quality and remove noise. The key preprocessing steps include: 

• Grayscale Conversion: The raw IR images are converted to grayscale to focus on intensity variations. 

• Histogram Equalization: This technique is applied to improve contrast, making soil texture and nutrient 

variations more prominent. 

• Filtering: Median and Gaussian filters are employed to remove noise while preserving important features. 

The processed IR images are then mapped to a heatmap representation where temperature variations correlate with 

different soil nutrient concentrations. The conversion from IR data to heatmap is performed using a colormap 

transformation function. 

Heatmap Generation and Colormap Mapping 

The intensity values obtained from the IR images are mapped to a predefined color spectrum to generate a heatmap. 

The mapping follows the principle: 

𝐶(𝑥, 𝑦) = Colormap(𝐼(𝑥, 𝑦))                                   …(6) 

where 𝐶(𝑥, 𝑦) represents the color at each pixel, 𝐼(𝑥, 𝑦) is the intensity of the infrared signal at pixel (𝑥, 𝑦), and is the 

function that assigns a color to each intensity level. 

The commonly used colormap for heatmaps is the jet colormap, which assigns blue for low intensity, green for mid-

intensity, and red for high-intensity regions, allowing a clear differentiation between areas of varying nutrient 

concentration. Figure 2 shows the input and heat map generated images. 
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Figure 2: Heatmap Images of Soil Samples 

Heatmap Interpretation and Feature Extraction 

After generating the heatmap, features are extracted to quantify soil nutrient variations. Key extracted features 

include: 

• Mean and Variance of Temperature Regions: Higher nutrient concentrations alter thermal emissions, which 

are statistically analyzed. 

• Texture Features: Local Binary Patterns (LBP) and Gray-Level Co-occurrence Matrix (GLCM) are used to 

analyze texture variations in heatmaps. 

• Edge and Contour Detection: Sobel and Canny edge detectors help identify distinct nutrient-rich regions. 

The extracted features from heatmaps serve as inputs to a deep learning-based classifier, allowing precise 

classification of soil samples based on their NPK composition. The heatmap generation process enhances 

interpretability and contributes to the automated detection of soil fertility conditions. 

4. CNN Model Design for Classification 

The proposed Vision Transformer (ViT) CNN model architecture is designed for classifying soil nutrient levels (N, P, 

K) based on infrared heatmap images. The architecture incorporates convolutional layers in the ViT blocks for 

enhanced feature extraction and spatial information retention. The overall pipeline consists of multiple stages, each 

contributing to the effective classification of soil samples. 

Input and Patch Extraction 

The input image is represented as 𝑋 ∈ ℝ𝐻×𝑊×𝐶 , where 𝐻 and 𝑊 denote the image height and width, and 𝐶 represents 

the number of channels (RGB). The image is divided into non-overlapping patches of size 𝑃 × 𝑃, resulting in 𝑁 

patches: 

𝑁 =
𝐻×𝑊

𝑃2
                                                           …(7) 

Each patch is flattened into a vector and projected into a lower-dimensional embedding space using a linear 

transformation: 

𝑍0 = [𝑋𝑝
1𝐸; 𝑋𝑝

2𝐸;… ; 𝑋𝑝
𝑁𝐸]                                        …(8) 

where 𝐸 is the learned embedding matrix. 
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Positional Encoding 

Since transformers do not inherently capture spatial relationships, a positional encoding matrix 𝑃 is added to the 

token embeddings: 

𝑍 = 𝑍0 + 𝑃                                                           …(9) 

This encoding helps retain positional information within the patch tokens. 

ViT Blocks with Convolutional Layers 

Each ViT block consists of convolutional layers, multi-head self-attention (MHSA), and a feed-forward network 

(FFN). The convolutional layers enhance feature extraction before attention is applied: 

𝐹 = ReLU (Conv2 (ReLU(Conv1(𝑋))))                            …(10) 

where Conv1 and Conv2 are two convolutional layers with different kernel sizes. 

The attention mechanism computes query, key, and value matrices: 

𝑄 = 𝑋𝑊𝑄 , 𝐾 = 𝑋𝑊𝐾 , 𝑉 = 𝑋𝑊𝑉                           …(11) 

The scaled dot-product attention is given by: 

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉                         …(12) 

where 𝑑𝑘 is the dimensionality of the key vectors. 

Each ViT block also includes a feed-forward network (FFN): 

𝐹𝐹𝑁(𝑋) = max(0, 𝑋𝑊1 + 𝑏1)𝑊2 + 𝑏2                     …(13) 

Layer normalization is applied after attention and FFN layers. 

MLP Head and Classification 

The final output from the transformer is normalized and passed through a Multi-Layer Perceptron (MLP) classifier: 

𝑌 = softmax(𝑊𝑚𝑙𝑝 ⋅ 𝑋 + 𝑏𝑚𝑙𝑝)                            …(14) 

This produces the classification output for soil nutrient levels (N, P, K). Model architecture is shown in Figure 3. 

 

Figure 3: Architecture Configuration of Proposed Model 

IV. RESULTS AND ANALYSIS 

1. Dataset Description 

The dataset used for this study consists of 2000 soil samples, each labeled based on nitrogen (N), phosphorus (P), 

and potassium (K) concentrations. The dataset is carefully prepared by varying the fertilizer composition and 
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moisture levels to ensure a comprehensive representation of soil conditions. The samples are split into training and 

testing sets to evaluate the model’s performance effectively. 

The soil samples were prepared with different fertilizer concentrations, starting from 0.1g to 2.0g per 10g of soil, with 

increments of 0.1g. The moisture levels were adjusted between 10% and 60% to observe the impact on infrared 

imaging. Table 1 presents the detailed dataset distribution. 

Table 1: Dataset Distribution Based on Fertilizer and Moisture Levels 

Category Total Samples Training Samples Testing Samples 

Low NPK (0.1g - 0.5g Fertilizer) 500 400 100 

Medium NPK (0.6g - 1.2g Fertilizer) 700 560 140 

High NPK (1.3g - 2.0g Fertilizer) 800 640 160 

Moisture: 10% - 20% 600 480 120 

Moisture: 21% - 40% 800 640 160 

Moisture: 41% - 60% 600 480 120 

 

The dataset is well-balanced across different fertilizer concentrations and moisture conditions, ensuring the 

robustness of the training process. The training set comprises 80% of the total data, while the remaining 20% is 

reserved for testing. 

2. Performance Analysis 

Performance parameters used for evaluating the ViT-based NPK classification model include accuracy, precision, 

recall, and F1-score. Accuracy measures overall correctness, precision indicates the proportion of correctly predicted 

positive samples, recall (sensitivity) assesses the model’s ability to detect true positives, and F1-score balances 

precision and recall. These metrics ensure a comprehensive evaluation of classification effectiveness. 

3. Performance Comparison 

To evaluate the effectiveness of the proposed Vision Transformer (ViT) based model, its performance is compared 

against well-established CNN architectures, including VGG19, ResNet-50, Inception-V3, MobileNet-V3, and 

EfficientNet-B2. The comparison is based on key classification metrics: accuracy, precision, recall, and F1-score. The 

results are presented in Figure 4. The results indicate that the proposed ViT model outperforms the standard CNN 

models, achieving the highest accuracy of 94.2%, with superior precision, recall, and F1-score. The improved 

performance is attributed to the attention mechanism, enhanced feature extraction, and spatial understanding 

provided by the transformer-based architecture 
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Figure 4: Performance Comparison of Different Model 

 

Figure 5: Confusion Matrix Analysis 

A confusion matrix is a fundamental tool for evaluating the performance of a classification model. In the context of 

NPK classification using the Vision Transformer (ViT) model, the confusion matrix provides a detailed breakdown of 

how well the model distinguishes between 10 different soil nutrient compositions. 

Each row in the confusion matrix represents the actual class (true label), while each column represents the predicted 

class assigned by the model. The diagonal elements indicate correctly classified samples, where the predicted class 

matches the actual class. Off-diagonal elements represent misclassifications, showing instances where the model 

incorrectly predicted an NPK category. 

For this experiment, the 10 classes represent different NPK concentration levels, such as low, medium, and high 

amounts of Nitrogen (N), Phosphorus (P), and Potassium (K). The model classifies soil samples into one of these 

categories based on extracted infrared heatmap features. 

The confusion matrix helps analyze model strengths and weaknesses: 

• A high number of values along the diagonal indicates strong model accuracy. 
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• Off-diagonal misclassifications reveal confusion between similar NPK compositions. For example, the model 

may misclassify “Medium N, High P, Medium K” as “Medium N, Medium P, Medium K” due to spectral similarity. 

• The misclassification rate provides insights into whether additional preprocessing, feature extraction, or 

model tuning is needed. 

The proposed ViT model achieves high classification performance, correctly identifying most NPK classes with 

minimal confusion among similar categories. The heatmap visualization of the confusion matrix allows for easy 

interpretation, showing how often different classes get confused and guiding further improvements in model training. 

This analysis ensures reliable soil nutrient detection, helping in precision agriculture by optimizing fertilizer 

application based on accurate NPK classification. 

3. COMPARATIVE STUDY 

Several machine learning (ML) and deep learning-based approaches have been explored for soil nutrient 

classification, crop recommendation, and fertilizer prediction, each offering different advantages and limitations. 

Dey et al. [22] demonstrated that traditional ML models such as SVM, XGBoost, Random Forest, KNN, and Decision 

Tree can effectively classify soil fertility and recommend crops based on NPK, pH, and climate data. Their results 

showed that XGBoost outperformed other models, achieving 99.3% accuracy for horticultural crops, 99.09% for 

agricultural crops, and 98.51% for combined crops. Similarly, Sarangi et al. [25] found that Decision Tree performed 

the best for soil fertility classification, achieving 89% accuracy, making it a strong contender for soil-based predictive 

analysis. 

In contrast, Mahapatrao et al. [24] integrated IoT with ML models to enable real-time multi-nutrient water quality 

analysis, leveraging an ensemble of Random Forest and SVM. Their approach resulted in 90% accuracy, with 

explainable AI (XAI) enhancing interpretability and encryption ensuring secure data transmission. Meanwhile, Awais 

et al. [26] demonstrated that combining AI, ML, and geostatistical methods improved soil texture and soil water 

content (SWC) predictions, providing better spatial soil property representation for sustainable agriculture. 

For NPK fertilizer prediction in Cassava crops, Munezero et al. [27] compared various models, including Linear 

Regression, Gradient Boosting, Random Forest, KNN, and Decision Tree. They reported that Decision Tree achieved 

the highest accuracy of 96.5% in training and 94.4% in testing, while Random Forest followed with 93.1% in training 

and 90% in testing, indicating that tree-based models perform well for soil nutrient classification. Additionally, 

Senapaty et al. [28] introduced an IoT-enabled soil nutrient analysis system using Multi-Class SVM with Directed 

Acyclic Graph (MSVM-DAG) optimized with Fruit Fly Optimization (FFO). Their MSVM-DAG-FFO model achieved 

the highest accuracy of 97.3%, outperforming SVM (93.2%), SVM Kernel (92.2%), and Decision Tree (91.4%), proving 

that optimization-based ML models can significantly improve classification accuracy. 

Compared to these studies, the proposed ViT-based model integrates self-attention mechanisms and convolutional 

feature extraction to enhance soil NPK classification from infrared images. Unlike conventional ML models, which 

rely on handcrafted features, and CNNs, which struggle with long-range dependencies, Vision Transformers (ViTs) 

effectively capture both local and global spatial relationships. The inclusion of modified MBConv-SE blocks 

strengthens feature extraction, improving representation learning for varying soil nutrient concentrations. 

Furthermore, attention-based encoding enables the model to focus on critical regions of infrared soil heatmaps, 

enhancing interpretability and classification performance. Compared to Adam-based training, GWO optimization 

accelerates convergence, ensuring more stable weight updates and higher predictive accuracy. Given the increasing 

adoption of IoT-driven soil analysis, integrating deep learning, optimization techniques, and explainable AI with real-

time infrared-based soil nutrient detection is expected to revolutionize precision agriculture and sustainable fertilizer 

management. 

4. DISCUSSION 

The comparative study of machine learning (ML), deep learning, and standard CNN models for soil nutrient 

classification and NPK-level detection highlights the advantages and limitations of different methodologies. Various 

ML models, such as Decision Tree, Random Forest, XGBoost, SVM, and KNN, have been widely applied for soil 

analysis. The work by Dey et al. [19] demonstrated that XGBoost outperformed other ML models, achieving high 
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accuracy in soil fertility classification. Similarly, Sarangi et al. [22] found that Decision Tree performed the best for 

soil fertility classification, achieving 89% accuracy. These findings indicate that tree-based and ensemble models 

provide strong predictive capabilities, especially when trained on well-structured soil datasets. However, these 

models often struggle with real-time variations in soil properties and require feature engineering for optimal 

performance. 

On the other hand, IoT-integrated ML models proposed by Mahapatrao et al. [21] and Senapaty et al. [25] introduced 

real-time soil monitoring and multi-nutrient analysis. The IoT-ML hybrid model by Mahapatrao et al. achieved 90% 

accuracy for water quality analysis, incorporating explainable AI (XAI) for improved interpretability. Similarly, 

Senapaty et al. [25] proposed MSVM-DAG-FFO, an optimization-driven model for soil nutrient classification, which 

achieved 97.3% accuracy, outperforming SVM (93.2%) and Decision Tree (91.4%). While these approaches enable 

real-time decision-making and enhanced soil fertility analysis, they rely on high computational resources and strong 

IoT connectivity, which may limit their use in resource-constrained agricultural environments. 

In contrast, deep learning models, particularly Convolutional Neural Networks (CNNs), have shown significant 

promise in soil image analysis. Standard CNN architectures such as VGG19, ResNet-50, Inception-V3, MobileNet-

V3, and EfficientNet-B2 have been evaluated for NPK classification from infrared soil images. EfficientNet-B2 

achieved the best accuracy among CNN models (91.4%), followed by Inception-V3 (90.1%), ResNet-50 (88.2%), and 

MobileNet-V3 (87.8%). While CNNs excel at feature extraction and spatial pattern recognition, their reliance on large 

labeled datasets and computationally intensive training can be a limiting factor. Additionally, CNNs struggle with 

temporal variations in soil properties, making them less adaptable to dynamic environmental changes. 

Comparing CNN models with the proposed ViT-based approach, Vision Transformers (ViTs) provide global feature 

attention, overcoming CNN limitations related to spatial bias and local receptive fields. Unlike CNNs, which use fixed-

size convolutional filters, ViTs apply self-attention mechanisms, allowing them to capture long-range dependencies 

in soil infrared images. The proposed ViT model achieved 94.2% accuracy, surpassing EfficientNet-B2, Inception-

V3, and other CNN models. This suggests that ViT-based architectures offer superior feature representation, making 

them ideal for NPK classification in soil analysis. 

Overall, while ML models (Decision Tree, XGBoost, and SVM) offer high interpretability and computational 

efficiency, they struggle with feature extraction and generalization. CNN models are powerful feature extractors, but 

they require large-scale labeled datasets and are less adaptable to dynamic soil conditions. The proposed BiLSTM-

based ViT model, optimized with GWO, overcomes these challenges by combining spatial and temporal feature 

extraction, making it the most robust approach for soil NPK classification. Future advancements should explore 

hybrid CNN-ViT architectures, self-supervised learning for unlabeled soil data, and IoT-integrated AI models for 

real-time precision soil nutrient detection. 

5. CONCLUSION 

This study presents a ViT-based model for soil NPK classification using infrared heatmap images, addressing the 

limitations of conventional ML and CNNs. Unlike traditional models that rely on manual feature extraction or 

localized receptive fields, the proposed ViT model incorporates self-attention mechanisms to capture global and local 

spatial dependencies in soil infrared images. The integration of MBConv-SE blocks further enhances feature 

extraction efficiency, making the model highly effective in detecting soil nutrient variations. 

The experimental evaluation demonstrates that the proposed model outperforms standard CNN architectures, such 

as VGG19, ResNet-50, Inception-V3, MobileNet-V3, and EfficientNet-B2, achieving the highest classification 

accuracy of 94.2%. Additionally, GWO-based optimization improves model convergence and classification 

performance, surpassing traditional Adam-based training. The results indicate that attention-based feature 

extraction, combined with deep learning and optimization techniques, can significantly enhance soil nutrient 

analysis. 

This work establishes a strong foundation for real-time soil fertility monitoring, with potential applications in 

precision agriculture. Future research could explore hybrid CNN-ViT architectures, self-supervised learning for 
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unlabeled soil data, and IoT-integrated AI models for real-time nutrient detection and adaptive fertilizer 

recommendation. 
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