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Early detection and diagnosis of Cerebral Palsy (CP) are crucial for minimizing its impact. 

Previous studies have used pose estimation techniques called the OpenPose for CP detection, but 

these methods have limitations in annotating large infant movement datasets. To address this, a 

new method called Pose Sequence-aware Generative Adversarial Network (PS-GAN) has been 

developed to create high-quality skeleton images, followed by the Convolutional Neural Network 

(CNN) with softmax classifier for CP detection. However, pose estimation techniques can still 

have recognition errors in the left upper limbs since the left upper limbs have extra movements 

and a few movements were rigorously obstructed with the torso segment. This results in missing 

values in the Feature Matrix (FM) used for CP classification. To solve this, this article proposes 

an Occlusion-Robust PS-GAN-CNN (OR-PSGAN-CNN) model for detecting CP in infants from 

video. First, it uses an OpenPose model to estimate infant skeletal joint positions, which are then 

augmented through the PS-GAN. Then, the coordinates of the infant's joints are extracted into 

FM based on the matrix encoding, along with the extraction of joint motion complexity and joint 

motion correlation features. These extracted FM are fed to the CNN with a softmax classifier to 

detect CP. Thus, this model handles occlusion by transforming the skeletons into the FM, 

substituting the missing coordinates with zeros, resulting in high accuracy. Finally, experiments 

results show that the OR-PSGAN-CNN model achieves 93.7%, 93.3%, and 93.2% accuracy on the 

MINI-RGBD, babyPose, and MIA datasets, respectively, outperforming existing CP detection 

models. 

Keywords: Cerebral palsy, PS-GAN, Occlusion, Matrix encoding, Joint motion complexity, 

Joint motion correlation 

 

I. INTRODUCTION 

Cerebral Palsy is a brain damage condition affecting muscle control in infants, affecting movement, posture, and 

communication. It affects 17 million people worldwide, with higher incidences in preterm newborns, with 32.4 cases 

per 1000 births between 28-32 weeks [1-2]. Timely recognition of CP is crucial for the early intervention and brain 

adaptation [3]. Pose estimation and GMA are primary CP prevention strategies. Two types of newborn posture 

estimation are RGB-based and depth information-based [4]. Deep learning models like CNN can predict infant 2D 

poses [5]. However, using Kinect for motion capture in similar positions is challenging [6]. A Model-based Recursive 

Matching (MRM) approach has been developed for learning-free posture estimation but has limited computational 

effectiveness [7]. 

The General Movement Assessment (GMA) is a reliable and cost-effective method used to detect abnormal movement 

patterns in infants. It identifies potential risks by detecting the absence or infrequency of fidgety movements [8]. 

However, manual analysis can be time-consuming and inaccessible for many infants. Automated GMA methods, 

using machine learning models, have been explored for diagnosing cerebral palsy [9]. In normal development, body 

movements remain coordinated, with muscle contractions and relaxations controlling overall movements. To address 

the challenges of pose estimation and GMA techniques, Wu et al. [10] developed a novel approach using RGB-D 
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videos to predict cerebral palsy in newborns. This method combines RGB images with depth information to generate 

3D coordinates of an infant in a prone position, allowing for a comprehensive assessment of the infant's CP risk. 

However, the Part Affinity Field (PAF) technique used in this approach had limitations in estimating skeletal images, 

and annotating a large dataset of newborn movements was challenging. Various GAN model variations were explored 

[11], but they encountered limitations in capturing spatial relationships among joints and temporal characteristics 

across frames without an expensive pre-learning stage. To create high-quality skeleton images for CP identification, 

a PS-GAN was developed [12]. The PS-GAN utilized self-attention to capture long-range dependencies in continuous 

frames and a Graph Convolutional Network (GCN) to encode spatial joints and temporal properties. The selection of 

the best PS-GAN structure was optimized using Reinforcement Learning (RL). Finally, the CNN with a softmax 

classifier was trained to detect CP using the generated skeleton images. 

1.1 Problem Description 

While this pose estimation module is efficient at estimating the infant pose, it still has a few detection inaccuracies. 

For example, occlusion can affect the CP detection performance. Occlusion occurs when the human body is partially 

obscured on the screen by other people or objects. The PS-GAN-CNN model, which is skeleton-based, encounters 

occlusion when the infant's body skeleton information is not fully visible. Current CP detection models do not have a 

specific strategy for handling occlusion and endure calculation with the unoccluded segment. This results in a huge 

amount of absent values in the FM, which can lead to insufficient features for the subsequent classifier to accurately 

classify CP infants. 

1.2 Major Contributions of the Paper 

This paper proposes the OR-PSGAN-CNN model for detecting CP infants from video sequences. The main aim is to 

address the occlusion issue in extracting FM without missing values during pose estimation and to significantly 

increase the detection accuracy. The primary contributions of this paper include: 

1. Initially, RGB-D videos of infant movements are collected, and the OpenPose technique is applied for infant 

pose estimation. This allows the estimation of joint positions or the skeleton of the infant from the RGB-D 

videos. The estimated skeleton images are augmented by the PS-GAN, which generates high-quality skeleton 

images. 

2. Then, the skeleton images are transformed into the FM by extracting the coordinates of the infant’s joints 

based on the matrix encoding approach. Additionally, joint motion complexity and joint motion correlation 

features are extracted, which can differentiate the infant's spontaneous motion patterns. 

3. Moreover, those extracted FM are fed to the CNN followed by a softmax classifier for detecting infants with 

CP disorder. According to these pose estimation and feature extraction, the occlusion problem can be 

resolved, and the detection accuracy can be increased with the help of adequate features. 

4. Finally, extensive experiments demonstrate that the proposed model outperforms existing CP detection 

models using various datasets. Accordingly, this model could improve automated monitoring of CP and other 

movement disorders in infants when full body visibility cannot be guaranteed. 

The following article is prepared as follows: Section II covers literature survey. Section III explains the OR-PSGAN-

CNN and Section IV discusses its efficacy. Section V précises the study and offers suggestions for future 

developments. 

II. LITERATURE SURVEY 

This section discusses recent deep-learning models for detecting CP using video sequences of normal and CP infants. 

These models analyze infant movements and poses from video data to enable early detection of CP. Sakkos et al. [13] 

developed a CNN-Long Short-Term Memory (LSTM) model to categorize infant body movements related to CP using 

pose characteristics from RGB video frames. They also used a visualization feature to identify body parts most 

relevant for CP recognition. But the model's performance was hindered by issues such as camera movements, 

illumination changes, noise, and occlusion, leading to low sensitivity in estimating infant motion and detecting CP. 
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A new Spatio-Temporal Attention-based Model (STAM) [14] was developed to detect CP by analyzing fidgety 

motions. Initially, individual postures were extracted from video clips and the spatiotemporal GCN was applied to 

represent newborn movements. A spatiotemporal attention mechanism was then applied to select body areas 

containing discriminatory features related to nerve movements for CP prediction. However, the accuracy of the pose 

estimation algorithm was crucial since limb occlusion can introduce noise and reduce effectiveness. 

Wu et al. [15] developed an innovative technique using joint characteristic coding to predict infant pose from depth 

images captured with Kinect V2. The method encodes the offset vector in the confidence zone of all joints and exports 

joint locating and link encoding via CNN model. However, it only extracts the infant's 2D pose and did not fully utilize 

the spatial data in the depth picture. Zhang et al. [16] developed a Pytorch-based Attention-informed GCN called CP-

AGCN to recognize infants at risk of CP using skeletal information from RGB videos. They created a frequency-

binning unit to capture CP movements in the frequency domain and filter out noise. Additionally, they developed a 

Frequency Attention-Informed GCN (FAI-GCN) [17] to utilize the frequency information of infant’s movement for 

CP prediction. However, the accuracy of the pose estimation task, which can be affected by occlusion or camera 

movements, impacts the model performance. 

Li et al. [18] developed a Knowledge-Based Recurrent Neural Network (KBRNN) using the CP information graph. 

They used an evolution scheme to extract knowledge from the graph and then fed the data into an RNN with tensor 

embedding to determine the relationship between symptoms and disorders in medical records for CP prediction. 

However, the model's accuracy was affected by noise, missing values, and limited labeled data. 

Gao et al. [19] developed a deep learning motion assessment model that uses infant videos and basic characteristics 

to analyze the GMA at the fidgety movements stage. The model employs 3D pose estimation to predict joint 

coordinates and a distance representation approach to capture motion patterns. However, the model's performance 

was impacted by noise and occlusion. Also, it only included high-risk infants, so the model's effectiveness on normal 

infants was unknown. 

Wu et al. [20] introduced an innovative learning-free technique for quantifying infant impulsive movements to 

predict CP from videos. The technique involved extracting the joints of the infant using a pose estimation scheme, 

segmenting the skeleton sequence into several clips using a sliding window, and clustering them to recognize infant 

CP. However, its accuracy was affected by noise or occlusion errors that occurred during the pose estimation of input 

infants. 

Recent research has focused on using deep learning models such as CNN-LSTM, attention mechanisms, and GCNs 

to analyze infant movements and poses from video data to detect early signs of CP. These models extract important 

spatiotemporal features from the input infants' videos. However, challenges such as noise, occlusion, camera 

movement, and limited labeled training data can hinder performance. Therefore, a more robust model is needed to 

accurately analyze subtle infant motions for reliable early CP prediction. 

III. PROPOSED METHODOLOGY 

This section delivers a detailed description of the OR-PSGAN-CNN framework. The presented study is outlined in 

Figure 1. 

 

Figure 1. An Outline of the Presented Study 
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3.1 Data Collection 

This study utilizes three publicly available infant motion analysis datasets: 

1. MINI-RGBD dataset [21]: A collection of 12 RGB-D video sequences of 6-month-old infants, providing 

accurate silhouette, texture, and motion data. It anonymizes information and labels videos using the GMA 

scheme to determine nervous motions. 

2. BabyPose dataset [22]: Contains sixteen depth videos of preterm infants' motion in NICUs, with annotated 

limb-joint positions for twelve joints. 

3. Motion Infant Analysis (MIA) dataset [23]: Comprises state vector and timestamp data derived from depth 

measurements from an RGB-D sensor positioned above the child in a supine position on the crib. 

After acquiring the dataset, OpenPose [24] is used to estimate the coordinates of infant joints, resulting in skeleton 

images, which are then given as input to the PS-GAN [12] for augmenting the number of infant skeleton images. 

Then, the skeleton information is encoded into the FM using the matrix encoding approach. Additionally, features 

such as joint angle, joint motion complexity, and joint motion correlation are extracted. Finally, these characteristics 

are fed to the CNN with a softmax categorizer to detect infant CP. The following sections provide the details of feature 

extraction and detection. 

3.2 Feature Extraction 

3.2.1 Skeleton to Matrix Encoding Approach 

The model uses the GCN to learn features and determine skeleton coordinates. While the body is obstructed, the GCN 

is unable to determine coordinates owing to missing features. Infants' lower body skeleton coordinates are occluded 

by right/left limbs, as shown in Figure 2. To address this issue, the study adopts an encoding approach that can 

convert skeleton information into the FM, making it easier for the GCN to handle missing information. 

   

Figure 2. Infant Movement Images under Occlusion 

As depicted in Figure 3, the encoding approach utilizes the following types of features: (i) skeleton length 𝛾𝑖
𝑡, signifies 

the length of 2 nearby joints, (ii) skeleton cosine 𝜆𝑖
𝑡, signifies the cosine angle between the skeleton and the horizontal 

direction, (iii) the length vector between the head and all joints 𝜍𝑖
𝑡, signifies the distance between the head and all 

joints, and (iv) the cosine of the vector between the head and all joints 𝜅𝑖
𝑡, signifies the cosine angle from the line of 

head and all joints and the horizontal direction. The certain conversions of such different types of characteristics are 

presented in Eqns. (1) – (11). 
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Figure 3. Schematic Representation of Skeleton Features 

The skeleton length is defined by 

𝛾𝑖
𝑡 = ‖(𝑥𝑖

𝑡 , 𝑦𝑖
𝑡) − (𝑥𝑗

𝑡 , 𝑦𝑗
𝑡)‖       (1) 

The length vector is defined by 

𝐹𝛾
𝑡 = [𝛾1

𝑡  𝛾2
𝑡 … 𝛾𝑛

𝑡]        (2) 

To avoid innumerable, 𝜆𝑖
𝑡 = 0 when 𝛾𝑖

𝑡 = 0, therefore the skeleton angle is given as: 

𝜆𝑖
𝑡 =

|𝑥𝑖
𝑡−𝑥𝑗

𝑡|

𝛾𝑖
𝑡          (3) 

The angle feature vector is provided by 

𝐹𝜆
𝑡 = [𝜆1

𝑡  𝜆2
𝑡 … 𝜆𝑛

𝑡 ]        (4) 

The length feature of the head to the body joints is given as: 

𝜍𝑖
𝑡 = ‖(𝑥𝑖

𝑡 , 𝑦𝑖
𝑡) − (𝑥0

𝑡 , 𝑦0
𝑡)‖       (5) 

The length feature vector is defined as: 

𝐹𝜍
𝑡 = [𝜍1

𝑡  𝜍2
𝑡 … 𝜍𝑛

𝑡 ]        (6) 

To avoid innumerable, 𝜅𝑖
𝑡 = 0 when 𝜍𝑖

𝑡 = 0, therefore 𝜍𝑖
𝑡 is given by 

𝜅𝑖
𝑡 =

|𝑥𝑖
𝑡−𝑥0

𝑡 |

𝜍𝑖
𝑡+𝑒𝛽          (7) 

The angle feature vector is defined as: 

𝐹𝜅
𝑡 = [𝜅1

𝑡  𝜅2
𝑡 … 𝜅𝑛

𝑡 ]        (8) 

Therefore, the total FM is defined by 

𝐹 = [𝐹1 𝐹2  ⋮  𝐹𝑡  ]         (9) 

In conclusion, four distinct FMs such as 𝐹𝜆, 𝐹𝛾, 𝐹𝜍, and 𝐹𝜅 are created. The Sobel operator is used to calculate the 

gradient matrix of four FMs by multiplying them together. The operator is defined in Eq. (10) and is used to determine 

the level of skeleton data between two frames. 
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𝐺𝑦 = [1 2 1 0 0 0 − 1 − 2 − 1 ]       (10) 

The absolute FM utilized for detection is 𝐹̂, as given by 

𝐹̂ = [𝐹𝜆 𝐹𝛾 𝐹𝜍 𝐹𝜅 𝐺𝜆 𝐺𝛾  𝐺𝜍  𝐺𝜅]       (11) 

3.2.2 Joint Motion Complexity Features 

When identifying infant CP, angle parameters are more accurate than position parameters. Limb length differences 

can cause people to move differently, but angle changes will always be the same. To deal with specific variations, joint 

angle is used as the features for further processing. Figure 4 illustrates the delineation of joint angles. The left 

subfigure shows the joints and the vector link among them (in red), while the right subfigure defines the angle 

characteristics {𝜆𝑖 , 𝑖 = 1, … ,14} among vectors.  

 

Figure 4. Delineation of Joint Angles in Infant Skeleton 

Using angle characteristics can help reduce the impact of individual variations in limb length. In this study, the 

angular feature time series {[𝜆𝑖]𝑡} includes the following independent variables: interval 𝑡 and keypoint number 𝑖. 

The performance of joint motion features in motion patterns varies, with simple repeated motions being 

straightforward and complex motions resulting in diverse and unpredictable performances. The system's nonlinear 

complexity characterizes these ordered, changeable, and simple traits. Normal spontaneous movement is complex 

due to its changeability and irregularity, while aberrant spontaneous movement lacks complexity and is monotonous. 

So, the GP time-series relationship is used to quantity the nonlinear difficulty of movement forms. 

The time-series 𝐽𝑡 = {[𝜆𝑖]𝑡 , 𝑖 = 1, … ,14; 𝑡 = 1, … , 𝑁} is reconstructed and embedded in an 𝑚-dimensional Euclidean 

space 𝑅𝑚 to obtain a vector set 𝐽(𝑚). The components of 𝐽(𝑚) are represented by 

𝑋𝑛(𝑚, 𝜏) = ([𝜆𝑖]𝑛 , [𝜆𝑖]𝑛+𝜏 , … , [𝜆𝑖]𝑛+(𝑚−1)𝜏), 𝑛 = 1, … , 𝑁𝑚   (12) 

In Eq. (12), 𝜏 denotes the delay, which is an integer multiple of 2 nearby sampling periods 𝑁𝑚 = 𝑁 − (𝑚 − 1)𝜏. The 

𝑋𝑖 is selected from 𝑋𝑛 as a reference point, and the distance from another 𝑁𝑚 − 1 point to 𝑋𝑖 is calculated as: 

𝑑𝑖𝑗 = 𝑑(𝑋𝑖, 𝑋𝑗) = ‖𝑋𝑖 − 𝑋𝑗‖2      (13) 

For each data point, this procedure is repeated. After that, the correlation integral function is calculated as follows: 

𝐶𝑚(𝑟) =
2

𝑁𝑚(𝑁𝑚−1)
∑𝑁𝑚

𝑖,𝑗=1 𝐻(𝑟 − 𝑑𝑖𝑗), 𝑟 > 0     (14) 
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In Eq. (14), 𝐻 is Heaviside function and represented by 

𝐻(𝑥) = {1, 𝑥 > 0 0, 𝑥 ≤ 0         (15) 

After that, 𝑚-dimensional time-related dimension is defined by 

𝐷2(𝑚) =
𝑙𝑛𝑙𝑛 𝐶𝑚(𝑟) 

𝑙𝑛𝑙𝑛 𝑟 
         (16) 

If 𝐷2(𝑚) doesn’t modify with an increase in the phase space element 𝑚, then it indicates that the complexity of the 

full-body movement of the joint characteristics {[𝜆𝑖]𝑡} is becoming stable. In this case, 𝐷2 represents the dimension 

related to the sequence. 

𝐷2 = 𝐷2(𝑚)         (17) 

3.2.3 Joint Motion Correlation Features 

For 𝐽𝑖 = {[𝜆𝑡]𝑖 , 𝑖 = 1, … ,14}, the Spearman Correlation Coefficient Matrix (SCCM) is computed among all feature 

dimensions 𝜃𝑡. The SCCM is utilized to define the relationship among joints in body movement. Consider that 

multiple keypoint feature sequences [𝜆𝑡]𝑖 and [𝜆𝑡]𝑗 have an equal rank, then the SCC (𝜌𝑖,𝑗) between [𝜆𝑡]𝑖 and [𝜆𝑡]𝑗 is 

determined as follows: 

𝜌𝑖,𝑗 =
∑𝑡 ([𝜆𝑡]𝑖−[𝜆𝑡]𝑖)([𝜆𝑡]𝑗−[𝜆𝑡]𝑗)

√∑𝑡 ([𝜆𝑡]𝑖−[𝜆𝑡]𝑖)
2

∑𝑡 ([𝜆𝑡]𝑗−[𝜆𝑡]𝑗)
2
      (18) 

In Eq. (18), [𝜆𝑡]𝑖 refers to the mean of 𝑖𝑡ℎ 𝜆𝑖 in 𝑡 sequence. By computing the cross-correlation factor among each 

feature, the SCCM is obtained. If the infant's movements are complex, the connections between the angle 

characteristics are moderately fragile, indicating that the SCCM can efficiently reveal the relationship among the 

movement feature sequences of each joint in the infant's body. 

3.3 Infant Cerebral Palsy Detection Using CNN-Softmax Classifier 

Moreover, the extracted features such as 𝐹̂, 𝐷2, and relative SCCM are given to the CNN-Softmax classifier. The CNN-

Softmax classifier architecture is illustrated in Figure 5, containing 3 convolutional (conv) units, 3 pooling units, 2 

Fully Connected (FC) units and a softmax. Table 1 presents more information about the CNN-Softmax classifier 

design. 

 

Figure 5. Structure of CNN-Softmax for Infant CP Detection 

Table 1. Architecture of CNN-Softmax Classifier 

Layers Output size Filter size/Stride 

Input 128×64×1 - 

Conv 1 128×64×64 3×3/1 
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Pooling 1 64×32×64 2×2/2 

Conv 2 64×32×128 3×3/1 

Pooling 2 32×16×128 2×2/2 

Conv 3 32×16×256 3×3/1 

Pooling 3 16×8×256 2×2/2 

FC 1 1×1×512 - 

FC 2 1×1×256 - 

Softmax 2 - 

 

This CNN-Softmax classifier is trained using the parameters listed in Table 2 to detect infant CP even under occlusion 

conditions. 

Table 2. Training Parameters for CNN-Softmax Classifier 

Parameter Value 

Training rate 0.001 

Batch size 64 

Epochs 120 

Optimizer Adam 

Momentum 0.99 

Dropout rate 0.5 

Weight decay 0.0005 

Loss function Mean square error 

 

Algorithm 1: OR-PSGAN-CNN Model for Infant CP Detection 

Input: RGB-D videos of infant movements 

Output: CP detection 

1. Begin 

2. Collect RGB-D video dataset of infant movements; 

3. 𝑓𝑜𝑟(𝑒𝑎𝑐ℎ 𝑣𝑖𝑑𝑒𝑜) 

4.    Apply OpenPose to estimate infant skeletal joint positions; 

5.    Get skeleton joint coordinates; 

6.    Augment the estimated skeleton images using the PS-GAN; 

7. 𝑒𝑛𝑑 𝑓𝑜𝑟 

8. 𝑓𝑜𝑟(𝑒𝑎𝑐ℎ 𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛 𝑖𝑚𝑎𝑔𝑒) 

9.    Convert skeleton to FM 𝐹̂ using the matrix encoding approach; 

10.    Compute the joint motion complexity feature 𝐷2; 
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11.    Calculate the joint motion correlation features SCCM; 

12. 𝑒𝑛𝑑 𝑓𝑜𝑟 

13. Feed the extracted features to the CNN-Softmax classifier; 

14. Train the classifier to detect normal and CP infants; 

15. Evaluate the model performance; 

16. End 

The time complexity of the OR-PSGAN-CNN model is 𝑂(𝑛 × 𝑗2), where 𝑛 represents the amount of frames, 𝑗 

represents the amount of skeleton joints. This is dominated by the matrix encoding process. The space complexity is 

𝑂(𝑛𝑚), where 𝑚 is the feature dimension,.  

IV. EXPERIMENTAL RESULTS 

The efficiency of the OR-PSGAN-CNN is evaluated with existing models such as PS-GAN-CNN [12], STAM [14], CP-

AGCN [16], and FAI-GCN [17]. All models are implemented in Python 3.7.8 using three distinct datasets as described 

in Section 3.1 for evaluation. 

4.1 Performance Evaluation Metrics 

● Accuracy: It is the proportion of properly detected CP infants to the overall infants tested. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑃+𝑇𝑁+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
    (19) 

In Eq. (19), TP represents CP infants correctly detected as CP, TN represents healthy infants correctly 

identified as healthy, FP represents healthy infants incorrectly identified as CP, and FN represents CP infants 

incorrectly recognized as healthy. 

● Precision: It is calculated by 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
        (20) 

● Recall: It is calculated by 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
        (21) 

● F1-score (F1): It is determined as: 

𝐹1 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
        (22) 

4.2 Analysis of Various CP Detection Models on MINI-RGBD Dataset 

Table 3 presents the test results of various models on the MINI-RGBD dataset for CP detection. 

Table 3. Comparison of Different CP Detection Models on MINI-RGBD Dataset 

Metrics STAM FAI-GCN CP-AGCN PS-GAN-CNN OR-PSGAN-CNN 

Accuracy (%) 88.0 89.5 91.0 92.2 93.7 

Precision (%) 87.1 88.3 89.9 91.6 92.8 

Recall (%) 87.6 89.1 90.9 92.0 93.5 

F-score (%) 87.4 88.7 90.4 91.8 93.2 
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Figure 6. Comparison of OR-PSGAN-CNN Model against Existing CP Detection Models on MINI-

RGBD Dataset 

Figure 6 compares the proposed OR-PSGAN-CNN model with the conventional models for infant CP detection on 

the MINI-RGBD dataset. The OR-PSGAN-CNN model achieves the highest accuracy of 93.7%, outperforming STAM, 

FAI-GCN, CP-AGCN, and PS-GAN-CNN by margins of 6.48%, 4.69%, 2.97%, and 1.63% respectively. This 

demonstrates the occlusion handling capability of the proposed model through robust skeleton feature encoding. For 

precision, OR-PSGAN-CNN obtains 92.8% compared to 87.7%, 89.1%, 90.9%, and 92.9% for the other methods. The 

recall follows a similar trend with OR-PSGAN-CNN achieving 93.5%, highlighting the improved TP rate. The F1-score 

of OR-PSGAN-CNN is 93.2%, which is 6.64%, 5.07%, 3.1%, and 1.53% higher than the STAM, FAI-GCN, CP-AGCN, 

and PS-GAN-CNN models, respectively. 

4.3 Analysis of Various CP Detection Models on babyPose Dataset 

Table 4 displays the test results of various models on the babyPose dataset for CP detection. 

Table 4. Comparison of Different CP Detection Models on babyPose Dataset 

Metrics STAM FAI-GCN CP-AGCN PS-GAN-CNN OR-PSGAN-CNN 

Accuracy (%) 88.2 89.6 91.0 92.5 93.3 

Precision (%) 87.5 88.8 90.2 91.8 92.6 

Recall (%) 88.1 89.4 90.9 92.2 93.0 

F-score (%) 87.8 89.1 90.6 92.0 92.8 
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Figure 7. Comparison of OR-PSGAN-CNN Model against Existing CP Detection Models on babyPose 

Dataset 
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Figure 7 shows the efficiency of the OR-PSGAN-CNN compared to conventional models for CP detection in infants 

on the babyPose dataset. The OR-PSGAN-CNN model achieves the highest accuracy of 93.3%, outperforming STAM, 

FAI-GCN, CP-AGCN, and PS-GAN-CNN by margins of 5.78%, 4.13%, 2.53%, and 0.86% respectively. The precision 

of OR-PSGAN-CNN is 92.6%, which is 5.83%, 4.28%, 2.66%, and 0.87% higher than the other models, demonstrating 

its lower FP rate. The OR-PSGAN-CNN also achieves a recall of 93%, compared to 88.1%, 89.4%, 90.9%, and 92% 

for the other models, showing an improved TP rate. The F1-score gained by the OR-PSGAN-CNN is 92.8%, exceeding 

STAM, FAI-GCN, CP-AGCN, and PS-GAN-CNN models by 5.69%, 4.15%, 2.43%, and 0.87% correspondingly. Such 

outcomes highlight the efficiency of the suggested occlusion-handling model in extracting discriminative features 

from infant skeletal motions for reliable CP detection on the babyPose dataset. 

4.3 Analysis of Various CP Detection Models on MIA Dataset 

Table 5 presents the performance outcomes of various models on the MIA dataset for CP detection. 

Table 5. Comparison of Different CP Detection Models on MIA Dataset 

Metrics STAM FAI-GCN CP-AGCN PS-GAN-CNN OR-PSGAN-CNN 

Accuracy (%) 87.6 89.0 90.8 92.0 93.2 

Precision (%) 86.9 88.2 89.9 90.9 92.0 

Recall (%) 87.4 88.7 90.5 91.6 92.8 

F-score (%) 87.2 88.5 90.2 91.3 92.4 
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Figure 8. Comparison of OR-PSGAN-CNN Model against Existing CP Detection Models on MIA 

Dataset 

Figure 8 illustrates the performance evaluation of the proposed OR-PSGAN-CNN and state-of-the-art models using 

the MIA database for CP detection. The OR-PSGAN-CNN achieves the highest accuracy of 93.2%, outperforming 

STAM, FAI-GCN, CP-AGCN, and PS-GAN-CNN by margins of 6.39%, 4.72%, 2.64%, and 1.3% respectively, 

demonstrating the robustness of the proposed model respectively. For precision, the OR-PSGAN-CNN obtains 92% 

compared to 86.9%, 88.2%, 89.9%, and 90.9% for other models, showing reduced FP rates. Similarly, the OR-

PSGAN-CNN has the top recall of 92.8%, exceeding STAM, FAI-GCN, CP-AGCN, and PS-GAN-CNN by 6.18%, 4.62%, 

2.54%, and 1.31%, highlighting detection of more TP rates. The F1-score achieved by the OR-PSGAN-CNN is 92.4%, 

which is 5.96%, 4.41%, 2.44% and 1.2% higher than the STAM, FAI-GCN, CP-AGCN and PS-GAN-CNN respectively. 

V. CONCLUSION 

This paper presents the OR-PSGAN-CNN model for improved detection of cerebral palsy in infants using video data. 

The model applies PS-GAN for skeleton image augmentation and uses a matrix encoding approach to transform joint 

coordinates into FMs. It also extracts joint motion complexity and correlation features. The CNN-Softmax classifier 

then learns these features to detect CP infants. Extensive experiments show that the OR-PSGAN-CNN model 
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outperforms existing models on various datasets. The results demonstrate 93.7%, 93.3%, and 93.2% accuracy on the 

MINI-RGBD, babyPose, and MIA datasets, respectively, outstanding other models. The algorithmic complexity is 

quadratic in the number of video frames and linear in the number of CNN layers. As future work, this occlusion-

robust framework can be extended to related problems of detecting developmental disorders using full-body motion 

analysis under imperfect visibility, enabling automated screening of high-risk infants for timely intervention through 

intelligent video analysis techniques. 
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