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Food product quality and safety are critical in the global supply chain, necessitating new 

techniques of effective monitoring. This paper presents an integrated system for real-time food 

quality monitoring based on advanced analytical algorithms and IoT-enabled smart sensors. The 

proposed methodology asks for the selection and deployment of sensors to monitor critical 

quality indicators such as temperature, humidity, pH levels, and gas concentrations across the 

food supply chain, from manufacturing to sale. These sensors collect data, which is wirelessly 

transmitted to a centralized computer for sophisticated processing and analysis using machine 

learning techniques and agricultural chemistry principles. The technology uses models like 

Random Forest, Support Vector Machines (SVM), and Neural Networks to effectively estimate 

food quality. In forecasting shelf life, the Random Forest model has an accuracy of 0.92, recall of 

0.89, and F1-score of 0.90, with a mean absolute error (MAE) of 1.5 days. Additional study will 

concentrate on lowering installation costs, improving real-time response capabilities, and 

customizing the system to different food types and supply chain circumstances. To improve the 

system's accuracy and dependability, new data fusion techniques and evaluation criteria must be 

adopted. This study represents a significant advancement in the integration of computer science, 

chemical agriculture, and Internet of Things technologies for improving food safety and reducing 

waste in the supply chain. 

Keywords: IoT-enabled Sensors, Real-Time Monitoring, Food Quality, Machine Learning, 

Agricultural Chemistry, Predictive Analytics. 

1. INTRODUCTION 

The crucial problem of guaranteeing food safety and quality across the supply chain has a direct impact on the general 

public's health as well as the effectiveness of the economy. This defect has the potential to cause food spoilage, 

increased waste, and potentially health risks. Recent developments in Internet of Things (IoT) technology provide 

creative solutions to these constraints. Intelligent sensors enabled by the Internet of Things (IoT) provide real-time 

tracking of temperature, humidity, gas concentrations, pH levels, and other indications of food quality (Bertolini & 

Bogdanov 2017). It need constant monitoring to identify potential issues quickly and take action against threats 

before they get out of character. 
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The integration of sensor data with machine learning techniques has significantly advanced food quality monitoring 

systems. Employing algorithms such as Random Forest, Support Vector Machines (SVM), and Neural Networks has 

greatly improved accuracy and data analysis in this field (Zhao et al. 2019; Wang et al. 2020). These machine learning 

approaches excel at detecting intricate patterns and anomalies within extensive datasets, which traditional methods 

might overlook. As a result, they enhance the precision of forecasts and classifications related to food quality, thereby 

boosting the effectiveness of these monitoring systems. 

Incorporating agricultural chemistry concepts further enriches these monitoring systems. By understanding 

chemical processes like oxidation and fermentation that impact food quality, researchers can better interpret sensor 

data and relate it to actual quality changes (Huang & Zhang 2019). This integration provides a more comprehensive 

view of food conditions by connecting raw sensor data with meaningful quality assessments. 

Despite the advancements, several challenges and limitations persist. IoT sensors, while providing valuable data, are 

vulnerable to environmental influences and calibration issues that can affect their precision and reliability (Cheng et 

al. 2020). The complexity of machine learning algorithms can also complicate their implementation and upkeep, 

requiring substantial time and expertise in computing (Smith et al. 2021). Moreover, the cost of deploying and 

maintaining IoT technology can be prohibitively high, particularly for smaller participants in the supply chain (Lee 

et al. 2019). Additionally, the performance of these systems can vary widely depending on the type of food products 

and specific conditions within the supply chain, necessitating extensive validation and adjustments (Nguyen et al. 

2021). 

Despite these advancements, several issues and limitations remain. While IoT sensors offer valuable insights, they 

are susceptible to environmental factors and calibration errors, which can undermine their accuracy and reliability 

(Cheng et al. 2020). The intricate nature of machine learning algorithms, which demands considerable time and 

computational expertise, can make both their implementation and maintenance more challenging (Smith et al. 2021). 

Additionally, the expense associated with deploying and maintaining IoT technology can be excessively high, 

especially for smaller entities within the supply chain (Lee et al. 2019). Furthermore, the generalizability of these 

systems is often limited because their performance can vary depending on the type of food products and specific 

supply chain conditions, requiring substantial validation and modification (Nguyen et al.). 

2. LITERATURE SURVEY 

2.1. IoT-Enabled Smart Sensors for Food Quality Monitoring 

Because of its potential to improve real-time data gathering and processing, the application of IoT technology in food 

quality monitoring has received a lot of attention. The benefits of IoT sensors in collecting temperature and humidity, 

two factors that are essential for preserving food safety along the supply chain, are covered by Bertolini and Bogdanov 

(2017). Cheng et al. (2020) address potential difficulties such environmental interference and calibration issues as 

they further examine the accuracy and reliability of these sensors. Parallel to this, Dey et al. (2020) investigate how 

IoT sensors can be used in smart agriculture, emphasizing how they can be used to monitor environmental factors 

and how they affect the taste of food. 

2.2. Machine Learning Techniques in Food Quality Prediction 

For the purpose of monitoring food quality, machine learning techniques have become essential for evaluating data 

gathered from IoT devices. Based on sensor data, Zhao et al. (2019) show how well Random Forest and Support 

Vector Machines (SVM) anticipate spoiling and quality degradation. Neural Networks may greatly increase the 

predicted accuracy of food quality assessments, as demonstrated by Wang et al. (2020). Furthermore, Huang et al. 

(2021) offer a thorough analysis of machine learning techniques, highlighting their potential for managing intricate 

and non-linear interactions in sensor data. These methods include Deep Learning and Ensemble Methods in the 

prediction of nutritional value. 

2.3. Integration of Agricultural Chemistry 

The application of agricultural chemistry principles to food quality monitoring systems adds depth to data 

interpretation. Huang and Zhang (2019) discuss how understanding chemical processes like oxidation can enhance 
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the correlation between sensor data and food quality changes. Similarly, Al-Maqdadi et al. (2020) explore the role of 

chemical indicators in detecting spoilage, emphasizing how chemical reactions can be monitored through sensor 

data. This integration helps bridge the gap between raw sensor readings and practical quality assessments. 

2.4. Challenges and Limitations 

Despite the advancements, several challenges remain in implementing IoT and machine learning for food quality 

monitoring. Morris et al. (2016) outline the limitations of traditional methods and the necessity for continuous real-

time solutions. Lee and Kim (2019) analyze the costs associated with IoT deployment, noting significant expenses 

related to initial investment and maintenance. Smith et al. (2021) address the complexity of machine learning 

algorithms, which can be resource-intensive and challenging to implement. In addition, Yang et al. (2021) discuss 

the limitations of current sensor technologies and the need for more robust and accurate sensors to improve 

reliability. 

2.5. Generalizability and Adaptation 

The adaptability of monitoring systems to different food types and supply chain conditions is crucial for their 

effectiveness. Nguyen and Kim (2021) review the generalizability of food quality monitoring systems and stress the 

importance of extensive testing to ensure applicability across various scenarios. Additionally, Zhang et al. (2021) 

explore the challenges of adapting monitoring systems to diverse food products and supply chain environments, 

emphasizing the need for customizable solutions to address specific requirements. 

3. PROPOSED WORK 

The proposed work in this research focuses on developing an integrated system that enhances real-time food quality 

monitoring by leveraging IoT-enabled smart sensors, machine learning models, and agricultural chemistry 

principles. This system aims to address the existing challenges in food quality monitoring, such as the need for 

accurate, real-time data collection and analysis, sensor calibration issues, and the adaptability of monitoring systems 

to various food types and supply chain conditions. 

 

Fig1: Illustrating the enhanced colorful IoT-Enabled Food Quality Monitoring Architecture 

3.1. System Overview 

● IoT-Enabled Smart Sensors: The system will deploy a network of IoT-enabled sensors across various 

stages of the food supply chain, including production, storage, transportation, and retail. These sensors will 
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monitor key food quality indicators such as temperature, humidity, pH levels, and gas concentrations (e.g., 

ethylene). 

● Data Collection and Transmission: Data collected by the sensors will be transmitted wirelessly to a 

centralized server using secure communication protocols such as MQTT or HTTP. This data will be stored in 

a time-series database for further processing and analysis. 

● Machine Learning Integration: The system will utilize advanced machine learning models, including 

Random Forest, Support Vector Machines (SVM), and Neural Networks, to analyze the collected data and 

predict food quality and shelf life. These models will be trained on historical data and fine-tuned to improve 

their predictive accuracy. 

 

Fig2: IoT-Enabled Food Quality Monitoring Workflow 

3.2. Feature Extraction and Data Processing 

The system will preprocess the sensor data to handle noise, missing values, and inconsistencies. Feature extraction 

techniques will be applied to derive meaningful metrics such as average temperature trends, humidity fluctuations, 

and gas concentration changes, which will serve as inputs for the machine learning models. 

● Model Training and Validation: The machine learning models will be trained on a labeled dataset that 

includes known quality statuses (e.g., fresh, ripe, spoiled). The models will be validated using a separate test 

set to evaluate their performance across different metrics, including accuracy, precision, recall, and mean 

absolute error (MAE). 

3.3. Real-Time Monitoring and Alert System 

● Real-Time Processing: The system will process incoming data in real-time, with an average processing 

time target of 1.2 seconds per data point. Based on the model predictions, the system will generate alerts 

within 3 minutes of detecting potential quality issues. 
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● Alert Generation: Alerts will be sent to relevant stakeholders, such as farmers, distributors, and retailers, 

via email, SMS, or a dedicated mobile application. The alerts will include details on the affected product, 

predicted quality status, and recommended actions. 

3.4. System Scalability and Adaptability 

The system will be designed to scale across different food types and supply chain environments. This includes 

adapting the machine learning models to handle a broader range of food products, environmental conditions, and 

operational scenarios. 

● Sensor Calibration and Maintenance: Regular calibration of the IoT sensors will be conducted to 

maintain data accuracy. The system will include automated routines for sensor calibration checks and 

anomaly detection to ensure consistent performance. 

3.5. Integration with Blockchain Technology 

To enhance data security and traceability, the system will explore the integration of blockchain technology. This will 

provide immutable records of sensor data and model predictions, ensuring that all stakeholders can trust the quality 

assessments and the integrity of the data. 

3.6. Future Work 

Future research will focus on improving sensor technology, expanding the range of detectable quality indicators, and 

exploring advanced machine learning techniques such as reinforcement learning and ensemble methods. Extensive 

field trials will be conducted to validate the system's performance in diverse real-world conditions. The ultimate goal 

is to create a versatile, reliable, and cost-effective solution for real-time food quality monitoring across the global 

supply chain. 

3.7. Comparative Analysis 

Table 1: Comparative Analysis of Machine Learning Models for Real-Time Food Quality Monitoring 

Criteria Neural Networks Random Forest Support Vector 

Machines (SVM) 

Accuracy Highest (94%) Robust (92%) Moderate (89%) 

Strengths Captures complex patterns; 

High accuracy 

Handles diverse input 

features; Reduces 

overfitting 

Effective for classification; 

Clear decision boundaries 

Weaknesses High computational cost; Risk 

of overfitting 

Less effective for high-

dimensional data 

Struggles with large 

datasets; Parameter tuning 

needed 

Real-Time 

Processing 

Rapid but resource-intensive Efficient processing Quick for small datasets, 

less so for larger ones 

Scalability Limited by computational 

demands 

More easily scalable Limited scalability due to 

computational cost 

Interpretability Low (black-box) Moderate (feature 

importance) 

Higher (clear decision 

boundaries) 

Cost of 

Implementation 

High Moderate Low to Moderate 

Use Cases High-precision tasks requiring 

complex pattern recognition 

Balanced accuracy and 

efficiency; Suitable for 

various applications 

Simple classification tasks 

with clear boundaries 

Overall Suitability Best for applications requiring 

the highest accuracy and 

complex pattern detection 

Good for general-purpose 

use where both accuracy 

and efficiency are needed 

Suitable for smaller-scale 

applications where 

interpretability is key 
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Alogrithm: BEGIN 
 1. **Initialize System** 
 - Initialize IoT sensors (temperature, humidity, pH, gas concentration)  
- Connect sensors to the IoT gateway 
 - Set up a centralized server for data processing 
 2. **Sensor Deployment**  
- Deploy sensors across different stages of the food supply chain (production, storage, transport, retail) 3. **Data 
Collection** 
 - FOR each sensor in the system: 
 - Collect data at regular intervals (e.g., every 10 minutes) 
 - Record timestamp for each data point  
- Store data in a local buffer 
 4. **Data Transmission** 
 - FOR each sensor in the system: 
 - Transmit buffered data to the centralized server using MQTT/HTTP protocols 
 - Clear the local buffer after successful transmission 
 5. **Data Processing** 
 - FOR each data point received by the server:  
- Preprocess the data (e.g., normalize values, handle missing data) 
 - Store preprocessed data in a time-series database  
6. **Feature Extraction**  
- FOR each data point in the time-series database:  
- Extract relevant features (e.g., average temperature, humidity trends, gas concentration changes)  
- Use feature engineering techniques to create additional features if needed 
 7. **Model Prediction** 
 - Load the trained machine learning model (e.g., Neural Network, Random Forest, SVM) 
 - FOR each set of features extracted:  
- Feed features into the model - Predict the food quality status (e.g., Fresh, Ripe, Spoiled)  
- Predict shelf life if applicable 
 8. **Decision-Making** 
 - FOR each prediction:  
- IF predicted quality status indicates potential spoilage or degradation:  
- Generate an alert (e.g., send notification to stakeholders)  
- ELSE:  
- Continue monitoring without action  
9. **Alert and Reporting** 
 - FOR each alert generated:  
- Log the event with relevant details (timestamp, affected product, predicted status) 
 - Notify stakeholders (e.g., farmers, distributors, retailers) via email/SMS/app  
10. **Data Storage and Analysis** 
 - Store all collected and processed data in the server database 
 - Periodically analyze historical data to update models and improve prediction accuracy  
11. **Model Updating** 
 - IF new data is available for retraining: 
 - Retrain the machine learning models using the latest data 
 - Validate the updated models using a separate validation dataset 
 - Deploy the updated models for future predictions  
12. **System Maintenance** 
 - Regularly check sensor calibration and functionality 
 - Perform routine server maintenance and updates 
 END 

4. RESULTS 

4.1. Sensor Data Collection 

The IoT-enabled smart sensors successfully collected a comprehensive dataset of food quality indicators across 

various stages of the supply chain. The dataset includes temperature, humidity, pH levels, and gas concentrations 

(such as ethylene) for multiple food products over several weeks. The sensors recorded data at intervals of 30 minutes, 
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resulting in a total of approximately 15,000 data points per product type. The data collected from each sensor node 

was transmitted reliably to the centralized server using the MQTT protocol, with an average transmission success 

rate of 98%.The data collected by the IoT sensors can be modeled as a time series. For a sensor S i collecting data at 

time t, the recorded value xi(t) can be expressed as: 

𝑥𝑖  (𝑡) = 𝑓(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦, 𝑝𝐻 𝑙𝑒𝑣𝑒𝑙, 𝑔𝑎𝑠 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛, … . ) + 𝜀          (1) 

Where 𝜀 represents noise or measurement error. This equation models the data collected by the IoT sensors as a time 

series. 

4.2. Machine Learning Model Performance 

The performance of the machine learning models was evaluated using a set of metrics, including accuracy, precision, 

recall, F1-score, and mean absolute error (MAE). The models were trained on a labeled dataset with known quality 

statuses (e.g., fresh, ripe, spoiled) and validated using a separate test set. 

● Random Forest Model: Achieved an overall accuracy of 92% in classifying food quality. The model 

exhibited high precision (0.93) and recall (0.91) for identifying spoiled products, making it effective in 

detecting spoilage early. 

● Support Vector Machines (SVM): Delivered an accuracy of 89%, with a precision of 0.90 and recall of 

0.88. While slightly less accurate than Random Forest, SVM performed well in distinguishing between fresh 

and ripe categories. 

● Neural Networks: The Neural Network model demonstrated the highest accuracy at 94%, with a precision 

of 0.95 and recall of 0.93. The model was particularly effective in predicting continuous quality indicators 

such as shelf life, showing significant improvement over traditional methods. 

4.3. Predictive Algorithms 

● Regression Analysis: Used to predict continuous variables such as shelf life. The Neural Network 

regression model achieved a mean absolute error (MAE) of 0.4 days, indicating high accuracy in predicting 

the remaining shelf life of products. 

● Classification Algorithms: Applied to discrete indicators (e.g., safe vs. unsafe for consumption). The 

Random Forest classifier achieved an F1-score of 0.92, effectively balancing precision and recall in 

identifying products that are unsafe for consumption. 

4.4. Real-Time Response and Alerts 

The system demonstrated robust real-time capabilities, with an average data processing time of 1.2 seconds per data 

point. Alerts were generated within 3 minutes of detecting potential quality issues, ensuring timely interventions. 

The alert system successfully notified stakeholders, including farmers and retailers, with a 95% accuracy rate in 

triggering alerts for critical issues such as spoilage or abnormal gas concentrations. 

4.5. Reliability and Cost-Efficiency 

● Reliability: The system’s uptime was 99%, with consistent sensor readings and data transmission. The 

sensors were calibrated every month to maintain accuracy and reliability. 

● Cost-Efficiency: The overall cost of deploying and maintaining the IoT-enabled smart sensors was found 

to be economically viable, especially when considering the reduction in food waste and improvement in 

quality control. The cost-benefit analysis indicated that the system's benefits in enhancing food safety and 

reducing spoilage justified the initial investment. 

4.6. Validation with Chemical Tests 

The system’s predictions were validated against chemical tests and sensory evaluations. The accuracy of the model’s 

predictions was confirmed through parallel chemical analyses, which matched the predicted quality statuses in 93% 
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of the cases. Sensory evaluations corroborated the model’s effectiveness, particularly in assessing freshness and 

spoilage. 

Table 2: Performance Metrics of Machine Learning Models for Food Quality Monitoring 

Model Accuracy 

(%) 

Precision Recall F1-

Score 

Mean 

Absolute 

Error (MAE) 

(days) 

Comments 

Random Forest 89 0.90 0.88 0.89 N/A Effective in classifying food quality 

with high accuracy. Particularly 

strong in detecting spoilage early, 

which is crucial for timely 

interventions. 

Support Vector 

Machines 

(SVM) 

89 0.90 0.88 0.89 N/A Good performance in distinguishing 

between fresh and ripe categories, 

though slightly less accurate than 

Random Forest. 

Neural 

Networks 

94 0.95 0.93 0.94 0.4 Highest accuracy among models. 

Effective in predicting both discrete 

and continuous quality indicators, 

including shelf life. 

Regression 

Analysis 

N/A N/A N/A N/A 0.4 Used to predict shelf life with high 

accuracy. Low MAE indicates strong 

performance in estimating the 

remaining shelf life of products. 

Classification 

Algorithms 

N/A N/A N/A 0.92 N/A Effective in classifying food products 

as safe or unsafe for consumption. 

Balanced Precision and Recall. 

Real-Time 

Response 

N/A N/A N/A N/A N/A Average data processing time of 1.2 

seconds per data point. Alerts 

generated within 3 minutes of 

detecting quality issues, ensuring 

timely notifications. 

Reliability 99 N/A N/A N/A N/A System uptime of 99%. Consistent 

sensor readings and reliable data 

transmission. Regular calibration 

ensures accuracy. 

Cost-Efficiency N/A N/A N/A N/A N/A Initial investment and maintenance 

costs justified by benefits in reducing 

food waste and improving quality 

control. 

Validation with 

Chemical Tests 

93 N/A N/A N/A N/A Predictions validated through 

chemical tests and sensory 

evaluations, matching predicted 

quality statuses in 93% of cases. 

The performance of machine learning models in classifying food quality was assessed using several metrics, including 

Accuracy, Precision, Recall, and F1-Score. The Neural Network model excelled in these areas, demonstrating superior 

accuracy, precision, and recall, thus proving its effectiveness in predicting food quality. The Random Forest model 

also showed commendable results, particularly in detecting spoilage. For regression analysis, the Mean Absolute 

Error of 0.4 days indicated that the model was highly effective in estimating the remaining shelf life of products, with 
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a lower MAE signifying improved performance in predicting continuous variables. The system's real-time response 

capabilities were also evaluated, showing an average processing time of 1.2 seconds and alert generation within 3 

minutes, underscoring its efficiency in food quality monitoring. Reliability was another strong suit, with the system 

achieving 99% uptime, bolstered by regular sensor calibration. Cost-efficiency was demonstrated through the 

system's ability to balance implementation and maintenance costs with benefits like reduced food waste and 

enhanced quality control. Additionally, validation through chemical tests showed a high match rate of 93% between 

predicted and actual quality statuses, confirming the system’s effectiveness in practical applications. 

5. DISCUSSION 

5.1. Interpretations 

Neural Networks demonstrated exceptional performance with an accuracy of 94%, highlighting their ability to model 

complex relationships between sensor data and food quality indicators. A significant aspect of this model's 

effectiveness is its ability to predict the ripening process of fruits by monitoring the concentration of ethylene (C2H4

), a key ripening agent. The oxidation of ethylene to ethylene oxide (C2H4O) is a critical reaction that influences the 

ripening process: 

∁2𝐻4 +
1

2
𝑂2 → ∁2𝐻4 𝑂                                   (2) 

This chemical process, monitored through the sensor data, contributes to the precise predictions of remaining shelf 

life, as evidenced by the Neural Networks' low Mean Absolute Error (MAE) of 0.4 days, making them ideal for high-

stakes food safety scenarios. This reaction is well-documented in agricultural chemistry and is crucial for 

understanding fruit ripening dynamics (Huang & Zhang, 2019).  

Similarly, Random Forest, with a 92% accuracy, showed strong performance in classifying food quality and detecting 

spoilage. This model excels in scenarios where the detection of fermentation processes is essential, such as in dairy 

and bakery products. The conversion of glucose (C6H12O6) to ethanol (C2H5OH) and carbon dioxide (CO2) during 

fermentation is a primary indicator of spoilage: 

 ∁6 𝐻12 𝑂6 → 2  ∁2 𝐻5𝑂𝐻 + 2∁𝑂2          (3) 

Support Vector Machines (SVM) achieved an accuracy of 89%, demonstrating proficiency in classification tasks by 

finding optimal boundaries between different food quality categories. While not as accurate as Neural Networks or 

Random Forest, SVMs effectively utilize data on well-defined chemical processes like the breakdown of sugars during 

fermentation to maintain reliable classification in structured datasets (Huang et al., 2021). 

 Their low Mean Absolute Error (MAE) of 0.4 days indicates precise predictions of remaining shelf life, making them 

ideal for high-stakes food safety scenarios. Random Forest, with a 92% accuracy, also showed strong performance in 

classifying food quality and detecting spoilage. Its effectiveness stems from its capability to manage diverse input 

features and interactions, though it is slightly less accurate than Neural Networks. Nonetheless, Random Forest is 

particularly valuable where model interpretability and feature importance are crucial. Support Vector Machines 

(SVM) achieved an accuracy of 89%, demonstrating their proficiency in classification tasks by finding optimal 

boundaries between different food quality categories. While SVMs are not as accurate as Neural Networks or Random 

Forest, they remain effective for specific classification issues, particularly when the dataset has a clear structure. 

5.2. Limitations 

The performance of machine learning models in food quality monitoring is heavily dependent on various factors. 

Data quality and completeness are critical, as missing or inconsistent data can lead to reduced model accuracy and 

overfitting. Complex models, such as Neural Networks, may face scalability challenges and require substantial 

resources for training and inference. Additionally, sensor calibration issues and drift can affect accuracy, 

necessitating regular maintenance. Advanced models often lack interpretability, making it hard to understand and 

trust their predictions. Models trained on specific food types might not generalize well to others, and environmental 

conditions can impact sensor readings and model performance. Ensuring data privacy and security is crucial to 
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prevent breaches and maintain system integrity. Integrating these models with existing systems can be complex, and 

high costs may limit widespread adoption, especially in resource-limited settings. 

6. CONCLUSION 

The integration of IoT-enabled smart sensors with machine learning models and principles from agricultural 

chemistry has led to significant advancements in real-time food quality monitoring. The study developed a 

comprehensive system that utilizes smart sensors to collect data on temperature, humidity, pH levels, and gas 

concentrations, which is then analyzed using machine learning algorithms to assess food quality. Neural Networks 

emerged as the most accurate model, achieving a high accuracy of 94% and a mean absolute error (MAE) of 0.4 days 

in predicting shelf life. Random Forest and Support Vector Machines (SVM) also demonstrated robust performance, 

with accuracies of 92% and 89%, respectively, offering effective classification for spoilage and quality indicators. The 

system’s capability to process data rapidly and generate timely alerts ensures effective monitoring and intervention. 

However, the study highlights notable limitations, including challenges related to data quality, model generalization, 

sensor calibration, and scalability. Future work should address these limitations by improving sensor technology, 

expanding detectable quality indicators, and exploring advanced machine learning techniques. Additionally, 

integrating blockchain for data security, scaling the system for broader application, and conducting extensive field 

trials will be crucial for advancing the system’s effectiveness and ensuring its broader adoption in diverse food supply 

chains. 

7. FUTURE WORK 

Future work should focus on several key areas to enhance the system’s effectiveness and applicability. Improvements 

in sensor technology and the expansion of detectable quality indicators will provide a more comprehensive 

assessment of food quality. Exploring advanced machine learning techniques such as reinforcement learning and 

ensemble methods could further refine predictive accuracy. Integrating the system with block chain technology may 

enhance data security and traceability, while scaling the system to handle a wider range of food products and 

conditions will improve its versatility. Additionally, addressing the challenges of model interpretability and ensuring 

cost-efficiency will be crucial for broader adoption. Extensive field trials and real-world testing will validate the 

system’s performance and guide future optimizations. By pursuing these directions, future research can build on the 

current findings to advance the state-of-the-art in food quality monitoring, contributing to more effective and 

sustainable food supply chains. 
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