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1 INTRODUCTION 

Agriculture is a major social issue as it is the primary source of food. Many countries still suffer from food 
deficiencies due to high population growth rates [1]. The increasing population, global warming, and soil 
erosion require solutions to encourage smart farming and appropriate harvesting practices [2]. To realize this, 
accurate crop yield prediction is crucial, which addresses emerging difficulties in nutrient security, specifically 
in an era of global warming. Precise crop yield predictions not only support cultivators make cost-effective 
decisions but also assist famine avoidance efforts. A major problem in plant pathology is basic crop yield 
prediction, which is to realize how crop phenotype is determined by different factors such as genotype, 
locality, soil feature, irrigation quality, and climatic conditions [3]. In the ancient days, cultivators mostly 
relied on their expertise and historical data to forecast crop yields and make informed harvesting decisions. 
However, the emergence of new techniques such as crop modeling and Artificial Intelligence (AI) has allowed 
more precise crop yield prediction in recent years [4-5]. 

Linear models, ML models, and crop models are the three main types of modern approaches to predicting 
agricultural yields. Linear models are understandable by measuring the additive weight of all factors. In 
contrast, their prediction accuracy was low because they could not learn innately nonlinear relationships 
among each factor. Crop models are a kind of nonlinear model developed to predict crop yield [6]. These 
models offer explicit correlations between yield factors and weather conditions in multiple phases of the crop 
growth cycle. However, gathering yield data and adjusting model parameters can be time-consuming and 
labor-intensive. Low forecast accuracy was also seen. Multiple linear regression, decision trees, random 
forests, and artificial neural networks are some of the ML methods that have been used to forecast agricultural 
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In agriculture, crop yield prediction is the process of making yield estimates using data from 
crops, soil, and weather. Although ML models have been utilized before, they frequently 
depend on features that were manually created. So, a DL model like a 1D Convolutional 
Neural Network (1DCNN) can be employed. However, it struggles to learn temporal relations 
amongtime-series data. Therefore, a Deep learning-based Crop Yield prediction Network 
(DeepCropYNet) was designed using Long Short-Term Memory (LSTM) and Temporal 
Convolutional Network (TCN). However, this model struggles to learn significant features 
from complex datasets that involve multimodal inputs like time-series and image data.Thus, 
this paper proposes a Deep learning-based Multi-Modal CropYNet (DeepMMCropYNet) for 
crop yield prediction, which utilizes both time-series and image data related to crop yields. 
First, the dataset is pre-processed using a normalization technique to remove missing values 
and outliers. Then, the DeepMMCropYNet is trained using the pre-processed data to predict 
crop yields. This model comprises two branches: (i) LSTM-TCN for time-series data and (ii) 
multi-dimensional CNN for soil image data. This multi-dimensional CNN model comprises 
static and temporal feature extraction modules. The static module learns the static features 
from the soil images using 18 parallel 1DCNNs. The temporal module employs 16 parallel 2-
dimensional CNNs (2DCNNs) to extract temporal features from soil images. The outputs of 
these modules are fused by the lateral connections. Moreover, each branch applies an 
attention strategy to assign the feature weights and find significant features. The features of 
each branch are then merged and given to a Fully Connected (FC) layer followed by an output 
layer to get a final prediction result of different crop yields.By comparing the 
DeepMMCropYNet model to previous models, the experimental findings demonstrate that it 
outperforms them in terms of Mean Square Error (MSE), Mean Absolute Error (MAE), Root 
Mean Square Error (RMSE), and Correlation Coefficient (R2). when it comes to predicting 
various crop yields. 

Keywords: Crop yield prediction, 1DCNN, DeepCropYNet, Static and temporal features, 
Lateral connection, Attention strategy. 
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yields [7]. However, the prediction accuracy of these algorithms was low for large datasets. These algorithms 
require different and independent algorithms for feature extraction and prediction tasks, leading to high 
computation time. Also, the missing values in the dataset can impact the training of these algorithms and lead 
to unreliable predictions.  

The use of DL models for crop yield prediction in recent years has helped alleviate these issues [8]. Scientists 
have compared the predictions made by ML algorithms with those made by Deep Neural Network (DNN) and 
Convolutional Neural Network (CNN) models when predicting various crop yields based on soil, weather, and 
yield data [9].DL models can unify feature learning and prediction tasks in a single framework. In this context, 
1DCNNs was applied to gather more intricate relationships among yield and other aspects, thus enhancing the 
discriminability of various features [10]. However, this model was not well-suited for handling time-series 
crop yield data because it has inability to capture significant temporal correlations between various factors 
over period. This is mostly significant in understanding long-term environmental (i.e., weather) patterns to 
predict crop yields.To combat these challenges, a novel DeepCropYNet model was developed [11] using a 
customized dataset comprising historical information on weather, soil, and crop yields. This model 
hierarchically combined the LSTM and TCN. The first step was to normalize the time series of past yield and 
atmospheric data. Next, the data were fed into the LSTM network to learn temporal dependencies. Also, the 
TCN was constructed to apply a hierarchy of temporal convolutions across the input data, capturing features 
at various time scales. The resulting feature vectors from the TCN were forwarded to the FC layer to predict 
crop yields after specific periods.The problem is that this model has a hard time learning useful features from 
complicated data sources with multimodal inputs, like image and time series data. 

As a result, this study proposes the DeepMMCropYNet model for crop yield prediction, that uses both time 
series and image data relevant to crop yields. First, the dataset is normalized to remove missing values and 
outliers. These data are used to train the DeepMMCropYNet, which predicts crop yield. This model has two 
branches: (i) LSTM-TCN for time-series data and (ii) multidimensional CNN for soil image data. This 
multidimensional CNN model includes static and temporal feature extraction modules. The static module 
applies 18 parallel 1DCNNs to learn static features from soil pictures, while the temporal module uses 16 
concurrent 2DCNNs to extract temporal data from soil images. The lateral connection fuses the outputs of 
these modules. Furthermore, each branch uses an attention strategy to assign feature weights and obtain 
important features for accurate prediction. Moreover, the features from each branch are merged and passed to 
the FC layer with an output layer to predict the final crop yield.The following is a breakdown of the sections: 
Related works are covered in Section 2. Section 3 explains the DeepMMCYNet model, while Section 4 
demonstrates how well it predicts crop yields. The complete study is summarized in Section 5. 

2. LITERATURE SURVEY 

This section discusses recent studies related to crop yield prediction using various ML and DL algorithms. A 
hybrid technique [12] based on the AquaCrop simulation model and regression algorithms was developed to 
predict tea crop yield from data related to weather, crop, and soil factors. However, the MAE and RMSE were 
high since these algorithms cannot capture the spatial and temporal relations among various factors. In [13], 
an ensemble ML algorithm was developed by the stacking regression and cascading regression using the wild 
blueberry dataset, comprising weather factors to predict wild blueberry yield. However, RMSE and MAE were 
very high. Also, it does not handle large datasets, comprising additional factors like soil and yield data. Extra 
Tree and AdaBoost algorithms [14] were employed to predict oil palm yield using the multisource data, 
consisting of soil moisture, weather, and oil palm fresh fruit bunch yield data. Conversely, R2 was less since 
these algorithms cannot capture complex relations between weather, soil, and yield data.  

In [15], a large dataset including meteorological, soil, and crop phenology variables was utilized to forecast 
winter wheat yields in several German nations using the CNN model. This model has a 1D convolution to 
extract the temporal dependencies of weather factors. However, the R2 value was low. In [16], hybrid DL 
models, such as CNN-XGBoost, CNN-DNN, CNN-LSTM, and CNN-Recurrent Neural Network (RNN) were 
developed to forecast soybean yield based on weather and soil factors. However, the R2 was low since these 
models may face challenges in seizing long-term dependencies from the noisy information. 

In [17], a Functional Artificial Neural Network (FLANN) model was developed using a time-series agricultural 
crop yield dataset to predict rice, maize, and finger millet yield in Karnataka, India. This model can learn an 
empirical nonlinear correlation between crop yield and weather factors for crop yield prediction. Nonetheless, 
RMSE was high, and correlation coefficient was low. In [18], theImproved Optimizer Function with LSTM 
(IOF-LSTM) model was presented using the agricultural crop yield dataset to predict red gram, sugarcane, 
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cereals, pulses, paddy, groundnut, and chilli crop yield in Andhra Pradesh, India. However, MAE and RMSE 
remained high.  

2.1 Research Gap 

In this literature, it can be observed that many studies emerged with various DL models for crop yield 
prediction using different factors.  However, there are significant gaps that have yet to be addressed. Most of 
the existing studies rely on time-series data related to soil, weather, and crop yield. They fail to integrate image 
data with time series data, which could enrich the feature learning process and improve prediction 
performance. Despite the ability of hybrid DL models like CNN-BiLSTM, MFA-BiLSTM, IOF-LSTM, etc., to 
learn temporal relationships among environmental aspects and crop yield, their integration of multimodal 
informationlike images and time-series data remains limited. Also, their incapacity to acquire significant 
features leads to poor prediction performance. To address these gaps, this study develops the 
DeepMMCropYNet model by combining multimodal information for crop yield prediction. 

3. PROPOSED METHODOLOGY 

This section describes the overall framework of the proposed DeepMMCYNet approach. A pictorial 
representation of this study is illustrated in Fig. 1. Initially, an agricultural crop yield dataset is acquired, 
which comprises soil images and time-series sequential data related to yield, weather, and soil for various 
crops. Next, the dataset undergoes pre-processing to handle missing values and filter out any anomalies. 
These data are given to the DeepMMCYNet model for yield prediction. The predicted values are used to 
evaluate the DeepMMCYNet efficiency. 

 

Figure 1.Diagrammatic Representation of this Study 

3.1 Pre-processing 

Data preprocessing plays a vital role in crop yield prediction, ensuring the DeepMMCYNet technique is trained 
effectively. It involves a normalization technique based on min-max scaling to convert the data to a specific 
range between 0 and 1 to handle missing values and ensure uniformityacross each feature (e.g., crop yield, 
soil, and weather data). It is defined in Eq. (1).  

𝑥̂𝑡
𝑖 =

𝑥𝑡
𝑖−𝑥𝑚𝑖𝑛

𝑖

𝑥𝑚𝑎𝑥
𝑖 −𝑥𝑚𝑖𝑛

𝑖        (1) 

In Eq. (1), 𝑥𝑡
𝑖 is the 𝑖𝑡ℎ feature at time 𝑡, 𝑥𝑚𝑎𝑥

𝑖  and 𝑥𝑚𝑖𝑛
𝑖  are the maximum and minimum ranges of the 

corresponding feature. Based on this procedure, the pre-processed time-series crop yield dataset is obtained. 
Then, both soil image dataset and time-series crop yield dataset aredivided into training and testing sets. The 
training set is used to develop the prediction model based on the supervised learning mechanism. After the 
model is developed, the testing set is used to evaluate the model efficiency in predicting crop yields. 
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3.2 Design of DeepMMCropYNet Model for Crop Yield Prediction 

 

Figure 2. Structure of DeepMMCropYNet model 

This DeepMMCropYNet model is designed by encompassing two branches: LSTM-TCN for the time-series 
crop yield dataset and multi-dimensional CNN for the soil image dataset. Also, an attention strategy is adopted 
to assign the feature weights and learn the significant features. These features are given to the FC with the 
output layer to obtain the final prediction results of crop yields. An entire structure of the DeepMMCropYNet 
is illustrated in Fig. 2. 

3.2.1 LSTM-TCN for Time-Series Dataset  

The LSTM-TCN aims to learn long-term temporal dependencies among time-series crop yield data. 
Considering crop yield, soil, and weather, their time series data of length 𝑁, represented by 𝑥𝑡−𝑁 , … , 𝑥𝑡 is used 
as the input for the LSTM-TCN [11]. Here, 𝑥𝑡 represents the observed values of yield, soil, and weather data 
during the specified period 𝑡. First, LSTMs are employed to capture temporal features, which are passed to the 
TCN for further processing. The TCN uses dilated causal convolutions on several residual blocks to 
learntemporal dependencies among crop yield, soil, and weather data at different time scales. This 
hierarchical approach enables the LSTM-TCN to efficiently learn both short-term and long-term 
dependencies, making it robust for handling complex temporal relationships in crop yield data. 

3.2.2 Multi-Dimensional CNN for Soil Image Dataset 

The multi-dimensional CNN involves two modules to extract static and temporal featuresfrom the soil image 
data related to crop yield. 

• Staticfeature extraction module: In the field of time-series soil image analysis, 1DCNNs are effective in 
extracting temporal features. For 𝑁 soil image inputs, 𝑁 parallel 1DCNNsare proposed, each with 4 1D 
convolutional layers and 3 max-pooling layers. These 𝑁parallel 1DCNNs process 𝑁 soil images to capture their 
respective features of each soil image. The 1DCNNs use a 1D convolution kernelfor static feature extraction, as 
defined in Eq. (2). 

𝑣𝑖𝑗
𝑥 = 𝑠𝑒𝑙𝑢 (𝑏𝑖𝑗 + ∑ ∑ 𝜔𝑖𝑗𝑚

𝑝
𝑣(𝑖−1)𝑚

(𝑥+𝑝)𝑃𝑖−1
𝑝=0𝑚 )    (2) 

In Eq. (2), 𝑃𝑖  is the dimension of 1D convolution filter applied over the time axis, 𝑝 is the total time steps, 𝜔𝑖𝑗𝑚
𝑝

 

is the𝑝𝑡ℎ kernel value linked to the 𝑚𝑡ℎ feature map in the previous layer and the unit value at the 𝑥𝑡ℎ time step 
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on the 𝑗𝑡ℎfeature map in layer 𝑖 (referred to as 𝑣𝑖𝑗
𝑥 ), 𝑏𝑖𝑗  is the feature map bias, and 𝑠𝑒𝑙𝑢(∙) is the Scaled 

Exponential Linear Unit (SELU) activation function. 

• Temporal feature extraction module: In this module, 𝑁 parallel 2DCNNs are utilized to extract 
temporal features from 𝑁soil image features over period, which consist of 2D convolution, SELU, max-
pooling, and FC layers, as illustrated in Fig. 2.Suppose there is a pixel with coordinates(𝑥, 𝑦)in a soil image at 
time𝑡, and its feature value is denoted as𝑓(𝑥, 𝑦). After a time interval ∆𝑡, the feature value at the new 
coordinate is represented as follows: 

𝑓(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) = 𝑓(𝑥, 𝑦)       (3) 

This indicates a temporal change in the feature distribution from (𝑥, 𝑦) to (𝑥 + ∆𝑥, 𝑦 + ∆𝑦), forming a temporal 
feature vector (∆𝑥, ∆𝑦, ∆𝑡). Projecting this temporal feature vector onto the 𝑥𝑦-plane yields the 2D vector 
(∆𝑥, ∆𝑦). By combining these temporal feature vectors across different positions in the soil image, a temporal 
feature field is represented as: 

𝐴(𝑀) = 𝐴(𝑥, 𝑦) = (𝑃(𝑥, 𝑦), 𝑄(𝑥, 𝑦))     (4) 

The temporal evolution of features at each position in the soil image between two time frames is represented 
using these vectors. Each vector is split into X-axis and Y-axis components. As multiple frames of soil images 
are analyzed, temporal features are extracted, which captures the temporal variations in the soil image feature 
distribution over period. 

• Lateral connections: These connections are utilized to concatenate the outputs of two modules in each 
stage. These connections are added afterwards SELU1, Pool1, and SELU2. The modules differ in data 
dimensions but share the same channel count, so the lateral connections concatenate the features of these 
modules. The feature dimensions are (𝐻, 𝐶) for the static features and {𝛼𝑊, 2, 𝐶} for the temporalfeatures. The 
{𝛼𝑊, 2, 𝐶} dimensions are reshaped and transposed to {2𝛼𝑊, 𝐶}. Next, the result of the adjacentnetworks is 
combined to the temporal features by fusion. 

3.2.3 Attention Strategy 

In this study, the attention strategy is adopted in each branch to allocate larger weights to the crop yield, 
weather and soil data features with a high contribution to prediction. Overall spatial data is compressed into a 
feature descriptor, while global mean pooling generates feature-wise statistics. Each feature creates a statistic 
𝑧 ∈ ℝ𝑐, by reducing 𝑈where the 𝑐𝑡ℎ element of 𝑧 is calculated as: 

𝑧𝑐 = 𝐹𝑠𝑞(𝑢𝑐) =
1

𝑁
∑ 𝑢𝑐(𝑖)𝑁

𝑖=1        (5) 

In Eq. (5), 𝐹𝑠𝑞(∙) is the Squeeze operation and 𝑢𝑐 is the 𝑐𝑡ℎelement. To generate weights for all features, a 

nonlinear correlation is learned. To ensure both complexity and generalizability, the model utilizes two fully 
connected layers and two sigmoid functions to measure the importance of each feature, expressed as: 

𝑆 = 𝐹𝑒𝑥(𝑍, 𝑊) = 𝜎(𝑔(𝑍, 𝑊)) = 𝜎(𝑊2𝛿(𝑊1𝑍))    (6) 

In Eq. (6), 𝐹𝑒𝑥(∙) is the excitation operation, 𝜎(𝑥) and 𝛿(𝑥) are the Sigmoid and Rectified Linear Unit (ReLU) 
activation functions. 𝑊1 and 𝑊2 represent the parameters of dimensionality-reducing and dimensionality-
increasing layers, respectively. The input feature is weighted accordingly to produce the final output as: 

𝑥̃𝑐 = 𝐹𝑠𝑐𝑎𝑙𝑒(𝑢𝑐, 𝑠𝑐) = 𝑠𝑐 ∙ 𝑢𝑐       (7) 

In Eq. (7), 𝑋̃ = [𝑥̃1, 𝑥̃2, … , 𝑥̃𝑐] and 𝐹𝑠𝑐𝑎𝑙𝑒(𝑢𝑐, 𝑠𝑐) is the feature-wise multiplication amid the scalar 𝑠𝑐  and feature 
map 𝑢𝑐 ∈ ℝ𝑐. 

3.2.4 Fully Connected Layer 

Moreover, the results from two different branches are concatenated and flattened into a 1D vector. The FC 
layer receives this unified vector before the output layer makes the final estimation. The output layer uses 
𝑁neurons to forecast crop yield. Thus, the DeepMMCropYNet model is trained and utilized to predict different 
kinds of crop yield. The predicted yield values are later compared with the observed yield values to determine 
the regression loss such as MAE, MSE, and RMSE values. 

Algorithm 1: Crop Yield Prediction Using DeepMMCropYNet Model 

Input:Time-series crop yield dataset (Weather, Soil, and Yield data) and soil image dataset 

Output:Predicted crop yields 



Journal of Information Systems Engineering and Management 
2025, 10(35s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

773 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

1. Begin 
2. Normalize time-series data using Eq. (1); 
3. Input the pre-processed data to the LSTM network for capturing long-term dependencies; 
4. Feed the output of LSTM into the TCN to extract multi-scale temporal features; 
5. Feed the soil image data to the multi-dimensional CNN; 
   Apply 18 parallel 1DCNN layers to capture static spatial features; 
   Use 16 parallel 2DCNN layers to capture temporal variations in soil images; 
Fuse static & temporal features using lateral connections; 
Apply global average pooling and use FC layers to learn feature importance; 
Multiply attention weights with extracted features; 
6. Merge features from LSTM-TCN and multi-dimensional CNN; 
7. Pass concatenated features through FC layers; 
8. Use the output layer with linear activation to predict crop yield; 
9. Train the DeepMMCropYNet model using Adam optimizer; 
10. Evaluate model performance by comparingthe predicted yield with actual yield; 
11. Use the trained model for future predictions; 
12. End 

4. EXPERIMENTAL RESULTS 

This section evaluates the efficiency of the DeepMMCropYNet model with existing models, such as 1DCNN 
[10], DeepCropYNet [11] 

4.1 Simulation Environment 

The crop yield prediction models were implemented in MATLAB 2019b. The experiments were carried out 
using a setup with an Intel® Core™ i5-4210 CPU (3GHz), 4GB RAM, and a 1TB HDD running Windows 10 
(64-bit).Table 1 outlines the parameter settings for training various models. 

4.2 Dataset Description 

This study mainly focuses on predicting yield values of five major crops in Tamil Nadu, including groundnut, 
maize, moong, rice, and urad.The datasets for these crop yields werecreated by using multiple sources. A 
publicly available website, such as https://data.gov.in/was utilized to create a custom agricultural crop yield 
dataset. This dataset includes weather, yield, and soil data for the considered crops from 2016 to 2022. Also, a 
Kaggle dataset [22] was used, which containscrop names, years, harvesting periods, states, farming regions, 
manufacturingcapacities, annual rainfall, manure use, pesticide use, and considered yields.Besides, this study 
includes a soil image dataset. To create this dataset, the https://data.gov.in/website was used to identify soil 
types in specific regions by accessing geospatial and agricultural datasets. Then, corresponding soil images 
were collected from Kaggle datasets to support the crop yield prediction. 

Thus, the collected soil image and time-series dataset for each crop contains 1012samples. By considering this, 
80% of the datawere utilized for training and 20% were utilized for testing. 

4.3 Evaluation Metrics 

MAE: It is the mean absolute dissimilarity between estimated and observed values. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛
𝑖=1       (8) 

In Eq. (8), 𝑛 denotes total observations, 𝑦𝑖  and 𝑦̂𝑖 denote the observed and estimated values of 𝑖𝑡ℎ data, 
respectively. 

MSE: It measures the mean squared dissimilarity between estimated and observed values using Eq. (9). 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1       (9) 

RMSE: It is the square root of the MSE, provided that a mean magnitude of losses in Eq. (10). 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1       (10) 

Correlation coefficient (R2): It is used to assess the degree of association between predicted crop yields 
and actual crop yields. 

𝑟 = √1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅𝑖)2𝑛
𝑖=1

       (11) 
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In Eq. (11), 𝑦̅𝑖 is the mean of the actual crop yield values. 

Accuracy: It is calculated Eq. (12) by 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
× 100    (12) 

Precision: It is the percentage of exactly estimated positive instances (True Positives (TP)) to the sum of 
instances predicted as positive (TP + False Positives (FP)) which is represented in Eq. (13). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100       (13) 

Recall: It is the percentage of exactly estimated positive instances (TP) to the sum of actual positive instances 
(TP + False Negatives (FN)). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100       (14) 

F-measure: It is determined by 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
× 100     (15) 

Figure 3 shows the time series comparisons of the DeepMMCropYNet model with existing models for crop 
yield prediction. The analysis reveals that the model closely aligns with the actual crop yield data, indicating its 
superior efficiency in predicting various crop yields. 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

Figure. 3 Comparison of proposed and existing modelsfor crop yield prediction (in tons) from 
2016 to 2024. (a)groundnut, (b) maize, (c) moong, (d) rice, and (e) urad 

Table 1. Comparison of Different Models for Different Crop Yield Prediction 

Crops Models 1DCNN DeepCropYNet DeepMMCropYNet 

Groundnut MAE 0.081 0.0513 0.049 

MSE 0.0728 0.0469 0.043 

RMSE 0.2705 0.2166 0.2024 

R 0.8329 0.8617 0.8835 

Precision (%) 79.6 88 91 

Recall (%) 80 89 91.2 

F-measure (%) 79.8 88.5 91.1 

Accuracy (%) 80.1 88 91.4 

Maize MAE 0.0904 0.0586 0.0525 

MSE 0.1 0.0719 0.0683 

RMSE 0.3151 0.2681 0.2576 

R 0.8155 0.8459 0.8532 

Precision(%) 77.1 92 93.7 

Recall(%) 79.5 89 91 

F-measure(%) 78.3 90.5 92.35 

Accuracy(%) 79.5 90 91.6 

Moong MAE 0.0921 0.0612 0.0577 

MSE 0.0865 0.06 0.049 
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RMSE 0.2911 0.2449 0.2381 

R 0.8364 0.8644 0.8712 

Precision(%) 75.5 85 87 

Recall(%) 80 88 88.4 

F-measure(%) 77.75 87 87.7 

Accuracy(%) 77 86 88.5 

Rice MAE 0.0894 0.0576 0.054 

MSE 0.089 0.0552 0.051 

RMSE 0.2956 0.2349 0.2296 

R 0.8281 0.86 0.868 

Precision(%) 74.4 82 85.7 

Recall(%) 81 88 89 

F-measure(%) 77.7 86 87.35 

Accuracy(%) 77 84 86.2 

Urad MAE 0.1006 0.0741 0.07 

MSE 0.0998 0.0709 0.065 

RMSE 0.3172 0.2663 0.255 

R 0.8273 0.8587 0.862 

Precision(%) 73 80 82.3 

Recall(%) 76.5 85 87 

F-measure(%) 74.75 83 84.65 

Accuracy(%) 74 82 85 

 

4.4 Performance Analysis for Groundnut Yield Prediction 

This section presents the effectiveness of DeepMMCropYNet technique for forecasting groundnut yield 
compared to the existing models. Fig. 4 presents a performance comparison of various models when 
predicting groundnut yield. Compared to the 1DCNN and DeepCropYNet models, the DeepMMCropYNet 
reduces the MAE by 39.51% and 4.48%, respectively. It reduces the MSE by 40.93% and 8.32% compared to 
the 1DCNN and DeepCropYNet, respectively. It minimizes the RMSE by 25.18%  and 6.56% compared to the 
1DCNN and DeepCropYNet, respectively. It increases the correlation coefficient value by 6.08% and 2.53% 
compared to the 1DCNN and DeepCropYNet models, respectively. 

 

Figure. 4Performance analysis of yieldprediction models for groundnut yield prediction 

Fig. 5 demonstrates that the DeepMMCropYNetincreases precision by 14.32% and 1.9% compared to the 
1DCNN and DeepCropYNet models,respectively. The recall is 14%,  and 1.33% higher than the 1DCNN and 
DeepCropYNet models, respectively. The f-measure is 14.16% and 1.62% higher than the 1DCNN and 
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DeepCropYNet models, respectively. The accuracy is 14.11 and 3.86% higher than 1DCNN and DeepCropYNet 
models respectively. 

Figure. 5 
Prediction efficiency of different yield prediction models for groundnut yield prediction 

4.5 Performance Analysis for Maize Yield Prediction 

This section presents the effectiveness of DeepMMCropYNet technique for forecasting maize yield compared 
to the existing models. 

 

Figure. 6Performance analysis of different yield prediction models for maize yield prediction 

Fig. 6 illustrates a performance comparison of various models for predicting maize yields. The MAE of 
DeepMMCropYNet is lowered by 41.92%, and 10.41% compared to the 1DCNN, and DeepCropYNet 
respectively. Similarly, the MSE is decreased by 31.7%, and 5.01%, respectively. The RMSE is lower than the 
1DCNN and DeepCropYNet by 18.25%, 17.62%, 16.47%, 10.96%, and 3.92%, respectively. Compared to the 
1DCNN, and DeepCropYNet, the correlation coefficient value increases by 4.62%, and 0.86%, respectively. 

 

Figure. 7 Prediction efficiency of different yield prediction models for maize yield prediction 
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Fig. 7 demonstrates that the DeepMMCropYNetincreases precision by 21.53%, and 1.41% compared to the 
1DCNN, and DeepCropYNet models,respectively. The recall is 14.47%,  and 1.45% greater than the 1DCNN and 
DeepCropYNet models,respectively. The f-measure is increased by 17.94%, and 1.43% compared to the 
1DCNN, and DeepCropYNet models, respectively. The accuracy is increased by 15.22%, and 1.78% compared 
to the 1DCNN, and DeepCropYNet models,respectively. 

4.6 Performance Analysis for Moong Yield Prediction 

This section presents the effectiveness of DeepMMCropYNet technique for forecasting moong yield compared 
to the existing models. 

 

Figure. 8 Performance analysis of different yield prediction models for moong yield prediction 

Fig. 8 shows a performance comparison of various models for predicting moong yields. Compared to the other 
models, the DeepMMCropYNet demonstrated superior prediction performance. The MAE is reduced by 
37.35%, and 5.72% compared to the 1DCNN, and DeepCropYNet models, respectively. The MSE is 43.35%, 
and 18.33% lower than the same models. The RMSE is 18.21%, and 2.78% lower than the 1DCNN, and 
DeepCropYNet, respectively. The correlation coefficientvalue is 4.16%, and 0.79% higher than the 1DCNN,  
and DeepCropYNet, respectively.  

Fig. 9 demonstrates that the DeepMMCropYNetincreases precision by 15.23%, and 2.35% compared to the 
1DCNN, and DeepCropYNet models,respectively. The recall is 10.5%, and 1.61% greater than the 1DCNN, and 
DeepCropYNet models,respectively. The f-measure is increased by 12.8%, and 1.98% compared to the 1DCNN, 
and DeepCropYNet models, respectively. The accuracy is increased by 14.94%, and 2.91% compared to the 
1DCNN, and DeepCropYNet models, respectively. 

 

Figure. 9 Prediction efficiency of different yield prediction models for moong yield prediction 

4.7 Performance Analysis for Rice Yield Prediction 

This section presents the effectiveness of DeepMMCropYNet technique for forecasting rice yield compared to 
the existing models. 
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Figure. 10 Performance analysis of different yield prediction models for rice yield prediction 

Fig. 10 illustrates a performance comparison of various models for predicting rice yields. It is noted that the 
DeepMMCropYNet achieved a higher performance compared to the others in rice yield prediction. The MAE 
of DeepMMCropYNet is 39.6%, and 6.25% lower than the 1DCNN, and DeepCropYNet, respectively. Similarly, 
the MSE is lowered by 42.7%,  and 7.61%, respectively. The RMSE is lower than the 1DCNN and 
DeepCropYNet models by 22.33%, and 2.26%, respectively. The correlation coefficient value is increased by 
4.82%, and 0.93% compared to the 1DCNN, and DeepCropYNet, respectively. 

 

Figure. 11 Prediction efficiency of different yield prediction models for rice yield prediction 

Fig. 11 demonstrates that the DeepMMCropYNetincreases precision by 15.19%, and 2.63% compared to the 
1DCNN, and DeepCropYNet models,respectively. The recall is 9.88%, and 2.3% greater than the 1DCNN, and 
DeepCropYNet models,respectively. The f-measure is increased by 12.42%,  and 2.46% compared to the 
1DCNN, and DeepCropYNet models, respectively. The accuracy is increased by 11.95%, and 2.62% compared 
to the 1DCNN, and DeepCropYNet models,respectively. 

4.8 Performance Analysis for Urad Yield Prediction 

This section presents the effectiveness of DeepMMCropYNet technique for forecasting urad yield compared to 
the existing models.Fig. 12 demonstrates a performance comparison of various models for predicting urad 
yields. Compared to the 1DCNN, and DeepCropYNet, respectively, the DeepMMCropYNet reduced the MAE 
by 30.42%, and 5.53%. The DeepMMCropYNet reduces the MSE by 34.87and 8.32% in comparison to the 
1DCNN, and DeepCropYNet, respectively. The RMSE is lower than the 1DCNN, and DeepCropYNet models by 
19.61%, 17.74%, 15.51%, 11.7%, and 4.24%, respectively. Compared to the 1DCNN, and DeepCropYNet models, 
the correlation coefficient value increases by 4.19%, 3.84%, 3.54%, 1.88%, and 0.38%, correspondingly. 
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Figure. 12 Performance analysis of different yield prediction models for urad yield prediction 

 

Figure. 13 Prediction efficiency of different yield prediction models for rice yield prediction 

Fig. 13 demonstrates that the DeepMMCropYNetincreases precision by 12.74and 2.88% compared to the 
1DCNN, and DeepCropYNet models,respectively. The recall is 13.73%, and 1.87% greater than the 1DCNN, and 
DeepCropYNet models,respectively. The f-measure is increased by 13.24%, and 2.36% compared to the 
1DCNN, and DeepCropYNet models, respectively. The accuracy is increased by 14.86%,  and 3.66% compared 
to the 1DCNN, and DeepCropYNet models,respectively. 

These analyses clearly indicate that the DeepMMCropYNet model outperforms other models in accurately 
predicting different crop yields. This is due to its ability to capture fixed and adaptive temporal dependencies 
among environmental data and crop yield at different periods. Therefore, this model can be beneficial for 
farmers in predicting yield productivity earlier based on weather and soil conditions. 

5. CONCLUSION 

This paper introduced the DeepMMCropYNet model for crop yield prediction using time series and image 
data. It involved two different networks such as LSTM-TCN for time-series and multi-dimensional CNN for 
soil images. The LSTM-TCN can extract long-term temporal features from the historical time-series crop yield 
data. The multi-dimensional CNN can extract static and temporal features from the soil images. In addition, 
an attention strategy was applied in each branch to allocate feature weights and learn significant features. 
Then, the FC with the output layer predicted the yields for different kinds of crops. Finally, experimental 
outcomes revealed that DeepMMCropYNet achieved a 0.049 MAE, 0.043 MSE, 0.2024 RMSE, and 0.8835 R2 
compared to the existing models in predicting groundnut yield. It attained 0.0525 MAE, 0.0683 MSE, 0.2576 
RMSE, and 0.8532 correlation coefficient compared to the existing models in predicting maize yield. It 
achieved 0.0577 MAE, 0.049 MSE, 0.2381 RMSE, and 0.8712 correlation coefficient compared to the existing 
models in predicting moong yield. It achieved 0.054 MAE, 0.051 MSE, 0.2296 RMSE, and 0.868 correlation 
coefficient compared to the existing models in predicting rice yield. It attained 0.07 MAE, 0.065 MSE, 0.255 
RMSE, and 0.862 correlation coefficient compared to the existing models in predicting urad 
yield.Forgroundnut, maize, moong, rice, and Urad crops,DeepMMCropYNet achieved precision values of 
91%,93.7%, 87%, 85.7%, and 82.3%, recall values of 91.2%,91%, 88.4%, 89%, and 87%, f-measure values 
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of91.1%, 92.35%, 87.7%, 87.35%, and 84.65%, and accuracy of91.4%, 91.6%, 88.5%, 86.2%, and 85%, 
respectively. 

However, the performance of the model is limited by overlapping data from multiple crops in feature space, 
temporal, and spatial dimensions. These overlaps make it challenging to learn distinct patterns for each crop, 
leading to inaccurate predictions. Future research will explore the application of reinforcement learning to 
address data overlaps and uncertainties in crop yield prediction. 
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