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Genome-wide analysis of DNA promoters is essential for understanding gene regulation and 

transcriptional activity, providing insights into cellular function and disease mechanisms. 

Traditional promoter analysis methods often struggle with high-dimensional genomic data, 

leading to poor clustering accuracy and limited biological insight. Deep hierarchical 

clustering (DHC) offers a robust solution by leveraging deep learning techniques to uncover 

hidden patterns in complex promoter sequences. The proposed DHC model combines 

convolutional neural networks (CNN) with a hierarchical clustering framework to enhance 

clustering accuracy and biological interpretability. CNN extracts high-dimensional promoter 

features, which are then clustered using an agglomerative hierarchical clustering approach 

based on cosine similarity. This dual-stage architecture enables precise identification of 

promoter subtypes and regulatory elements. Experimental validation on publicly available 

genome-wide datasets shows that the proposed DHC model achieves improved clustering 

accuracy, silhouette score, and biological consistency compared to k-means, hierarchical 

clustering, and Gaussian mixture models. The model demonstrated an accuracy improvement 

of 7.3% over existing hierarchical clustering techniques. These findings highlight the potential 

of deep hierarchical clustering for large-scale genomic analysis and promoter classification, 

offering a powerful tool for exploring gene regulation mechanisms. 

Keywords: Deep hierarchical clustering, DNA promoters, convolutional neural networks, 

gene regulation, genome analysis. 

 

INTRODUCTION 

Genome-wide DNA promoter analysis is crucial for understanding gene regulation and transcriptional activity. 
Promoters are DNA sequences located upstream of genes that play a key role in the recruitment of transcription 
factors and RNA polymerase, ultimately initiating gene expression [1-3]. Identifying promoter regions 
accurately is essential for understanding gene regulatory mechanisms, genetic mutations, and epigenetic 
modifications associated with diseases such as cancer and neurological disorders. Traditional approaches to 
promoter analysis, including sequence alignment and motif-based methods, have shown limitations in handling 
high-dimensional genomic data and complex sequence variations [2]. Therefore, combining CNN-based feature 
extraction with advanced clustering techniques presents a promising approach for improving promoter analysis 
accuracy and robustness. 

CHALLENGES 

Genome-wide DNA promoter analysis presents several challenges. First, the high dimensionality and 
complexity of genomic sequences make it difficult to identify subtle promoter patterns accurately [4]. Promoters 
often contain overlapping motifs and variable lengths, adding to the complexity of sequence classification [5]. 
Second, existing clustering methods such as K-Means and DBSCAN struggle to handle irregular cluster shapes 
and high-dimensional data, resulting in poor separation between clusters [6]. Lastly, noise and sequencing 
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errors further complicate the analysis, leading to decreased clustering accuracy and increased false positives. 
These challenges necessitate a more sophisticated approach that integrates robust feature extraction and 
clustering methods. 

PROBLEM DEFINITION 

Current promoter analysis methods rely on either alignment-based or motif-based approaches, which are 
limited by sequence variability and the presence of non-coding regions [7]. Alignment-based methods are 
computationally intensive and less effective in handling large-scale genomic data. Motif-based methods depend 
on known motifs, making them less effective for discovering novel promoter sequences [8]. Additionally, 
existing clustering methods such as K-Means and DBSCAN are not well-suited for high-dimensional genomic 
data, resulting in poor clustering accuracy and sensitivity to noise [9]. The problem lies in developing an 
integrated approach that enhances promoter analysis by combining deep learning-based feature extraction with 
an effective clustering strategy. 

OBJECTIVES 

The primary objectives of this research are: 

1. To develop a CNN-based feature extraction framework for identifying promoter sequences from 
genome-wide data. 

2. To integrate hierarchical clustering with CNN-based feature extraction to improve clustering accuracy 
and separation of promoter sequences. 

NOVELTY AND CONTRIBUTIONS 

The novelty of the proposed method lies in the combination of CNN-based feature extraction with hierarchical 
clustering for promoter analysis. Unlike existing methods that rely solely on motif-based or alignment-based 
approaches, the proposed framework leverages deep learning to capture complex promoter patterns. CNN-
based feature extraction enables the identification of high-dimensional sequence features, while hierarchical 
clustering ensures effective separation and grouping of promoter sequences. 

The key contributions of this research are: 

• A CNN-based feature extraction framework designed specifically for promoter sequence analysis. 

• Integration of dimensionality reduction through principal component analysis (PCA) and max pooling 
to minimize computational complexity. 

• Development of a hierarchical clustering strategy based on cosine similarity to enhance cluster 
separation and cohesion. 

• Improved clustering accuracy, silhouette score, and Davies–Bouldin index compared to existing 
methods. 

RELATED WORKS 

Several methods have been proposed for promoter analysis and clustering, ranging from traditional sequence 
alignment techniques to deep learning-based approaches. 

Sequence Alignment-Based Methods 

Alignment-based methods have been widely used for promoter identification due to their ability to identify 
conserved promoter regions. ClustalW and MUSCLE are two popular sequence alignment algorithms that have 
been applied to promoter analysis [7]. These methods rely on comparing promoter sequences against known 
reference sequences to identify similarities and conserved motifs. However, alignment-based methods are 
computationally expensive and less effective in handling large-scale genomic data with high variability. MEME 
(Multiple Em for Motif Elicitation) is another alignment-based method that identifies overrepresented motifs 
in promoter sequences [8]. While MEME is effective in motif discovery, it depends on the presence of known 
motifs and may fail to detect novel promoter sequences with high variability. Alignment-based methods also 
struggle to handle the noise and complexity inherent in genome-wide data, leading to decreased sensitivity and 
increased false positives. 
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Motif-Based Methods 

Motif-based methods focus on identifying conserved patterns within promoter sequences. JASPAR and 
TRANSFAC are two widely used motif-based databases that provide information on transcription factor binding 
sites and promoter motifs [9]. Motif discovery algorithms such as MEME and Gibbs Sampling have been used 
to identify conserved motifs within promoter sequences [10]. While motif-based methods are useful for 
identifying known promoter elements, they are limited by the availability of known motifs and the variability of 
promoter sequences. A hybrid approach combining motif discovery with sequence alignment to improve 
promoter identification accuracy [11]. However, this method remains sensitive to noise and sequencing errors, 
limiting its performance on large-scale genomic datasets. 

Machine Learning-Based Methods 

Machine learning has been increasingly applied to promoter analysis, with models such as support vector 
machines (SVM) and random forests being used for promoter classification [12]. SVM-based approaches rely 
on manually engineered features, which may not capture the complex patterns present in promoter sequences. 
Random forests, while effective in handling large datasets, are prone to overfitting when applied to high-
dimensional genomic data. Deep learning models, particularly convolutional neural networks (CNNs), have 
shown promise in promoter analysis due to their ability to learn complex sequence patterns. Alipanahi et al. 
introduced DeepBind, a CNN-based model that predicts transcription factor binding sites based on DNA 
sequence data [13]. DeepBind demonstrated improved accuracy over traditional motif-based methods but 
struggled with handling promoter sequence variability and noise. 

Clustering-Based Methods 

Clustering methods such as K-Means, DBSCAN, and Gaussian Mixture have been used to group promoter 
sequences based on similarity. K-Means clustering is sensitive to initial cluster centers and struggles with 
irregular cluster shapes [7]. DBSCAN handles noise better than K-Means but struggles with high-dimensional 
data. Gaussian Mixture models rely on the assumption of normally distributed clusters, which may not hold for 
complex promoter sequences [8]. Recent studies have explored hybrid approaches combining deep learning 
with clustering. Deep Embedded Clustering (DEC), which integrates autoencoders with K-Means clustering to 
improve clustering accuracy [9]. However, DEC remains limited by the performance of K-Means and the 
complexity of genomic sequences. 

The limitations of existing methods highlight the need for an integrated approach that combines deep learning-
based feature extraction with an effective clustering strategy. CNN-based models offer improved feature 
representation, while hierarchical clustering ensures better separation and grouping of promoter sequences. 
The proposed method addresses the shortcomings of existing alignment-based, motif-based, and clustering-
based methods, providing a robust framework for genome-wide promoter analysis. 

PROPOSED METHOD 

The proposed Deep Hierarchical Clustering (DHC) model combines CNN-based feature extraction with 
hierarchical clustering to improve the analysis of genome-wide DNA promoters.  

 

Figure 1: Proposed Flow 
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The process involves two key stages: 

1. Feature Extraction Using CNN: 

o Input DNA promoter sequences are converted into one-hot encoded matrices. 

o A CNN model consisting of three convolutional layers with ReLU activation extracts spatial 
patterns and sequence motifs from promoter sequences. 

o Max pooling is applied to reduce dimensionality and retain critical information. 

2. Hierarchical Clustering: 

o The extracted feature vectors are normalized and input into an agglomerative hierarchical 
clustering framework. 

o Cosine similarity is used to measure the distance between feature vectors. 

o A bottom-up clustering approach merges clusters based on similarity until the optimal 
clustering configuration is achieved. 

DATA PREPROCESSING 

The data preprocessing stage involves converting raw DNA promoter sequences into a numerical format suitable 
for input into a CNN model. DNA sequences are composed of four nucleotides: adenine (A), cytosine (C), 
guanine (G), and thymine (T). Each nucleotide is encoded using a one-hot encoding scheme, where each 
nucleotide is represented as a binary vector of size four. For example, the DNA sequence: A, T, C, G, A would be 
converted into the following one-hot encoded matrix: 

Table 1: DNA Sequence 

Nucleotide A T C G 

A 1 0 0 0 

T 0 1 0 0 

C 0 0 1 0 

G 0 0 0 1 

A 1 0 0 0 

For a DNA sequence of length L, the one-hot encoded matrix would have dimensions (L × 4). For instance, a 
sequence of length 200 bp (base pairs) would result in a matrix of size 200 × 4. This matrix is then reshaped 
into a 3D tensor with dimensions (200, 4, 1) to make it compatible with the CNN input layer. Before feeding the 
data into the CNN, the matrix is normalized to ensure uniform scaling across features. Normalization is 
performed using: 

norm

X
X





−
=  

where: 

X = Input matrix 

  = Mean value of the input matrix 

σ = Standard deviation of the input matrix 

This ensures that the input data is scaled to have zero mean and unit variance, which enhances the training 
efficiency and model convergence. 

CNN-Based Feature Extraction 

Once the input matrix is prepared, it is passed through a Convolutional Neural Network (CNN) for feature 
extraction. The CNN consists of three convolutional layers, each designed to capture hierarchical patterns and 
motifs in DNA promoter sequences. 
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Step 1: First Convolutional Layer 

• Input shape: (200, 4, 1) 

• Filter size: 64 filters of size (3 × 4) 

• Activation: ReLU (Rectified Linear Unit) 

• Output shape: (198, 1, 64) 

For each convolution operation, the feature map is computed using: 

( )Z f W X b=  +  

where: 

W = Convolutional filter weights 

X = Input matrix 

b = Bias term 

f = ReLU activation function: 

Step 2: Max Pooling Layer 

• Pooling size: (2 × 1) 

• Reduces dimensionality and retains the most prominent features 

• Output shape: (99, 1, 64) 

Step 3: Second Convolutional Layer 

• Filter size: 128 filters of size (3 × 1) 

• Activation: ReLU 

• Output shape: (97, 1, 128) 

Step 4: Max Pooling Layer 

• Pooling size: (2 × 1) 

• Output shape: (48, 1, 128) 

Step 5: Third Convolutional Layer 

• Filter size: 256 filters of size (3 × 1) 

• Activation: ReLU 

• Output shape: (46, 1, 256) 

Step 6: Flattening and Feature Extraction 

• The final feature map is flattened to create a feature vector of size (46 × 256) = 11,776 

• These extracted high-dimensional feature vectors are used as input for hierarchical clustering 

An example of the output feature vector after CNN-based processing: 

Table 2: Output After CNN Feature Extraction 

Feature 1 Feature 2 Feature 3 … Feature 11,776 

0.67 -0.12 0.34 … 1.23 

These high-dimensional features represent complex patterns within promoter sequences, enabling accurate 
clustering using the hierarchical clustering algorithm. 

Dimensionality Reduction 

After feature extraction using the convolutional neural network (CNN), the resulting feature vector is high-
dimensional, often containing thousands of features. High-dimensional data increases computational 
complexity and may lead to overfitting or reduced clustering accuracy due to the curse of dimensionality. 



Journal of Information Systems Engineering and Management 
2025, 10(35s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

987 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Dimensionality reduction is applied to transform this high-dimensional feature space into a more compact 
representation while preserving critical information. 

Max Pooling is used as the primary dimensionality reduction technique in the CNN architecture. Max pooling 
reduces the size of the feature map while retaining the most important features by selecting the maximum value 
within each pooling window. For example, consider a feature map of size (6 × 4): 

Table 3: Feature Map 

0.2 0.5 0.8 0.1 

0.3 0.7 0.4 0.6 

0.5 0.1 0.2 0.9 

0.7 0.8 0.6 0.3 

0.4 0.9 0.3 0.5 

0.6 0.2 0.8 0.7 

Applying max pooling with a pooling size of (2 × 2) results in the following reduced matrix: 

Table 4: Max Pooling 

0.7 0.8 

0.7 0.9 

0.6 0.8 

The pooling operation reduces the size of the feature map by 75%, decreasing the computational load while 
preserving key patterns. The PCA transformation is defined as: 

Y=X⋅W 

where: 

X = Input feature matrix of size (n×d) 

W = Projection matrix obtained from the eigenvectors of the covariance matrix of X 

Y = Output matrix of size (n×k), where k<d 

In the proposed model, PCA reduces the feature dimension from 11,776 to 256 features, maintaining over 95% 
of the variance while simplifying the clustering process. 

Hierarchical Clustering 

After dimensionality reduction, hierarchical clustering is applied to group promoter sequences based on feature 
similarity. The proposed model uses agglomerative hierarchical clustering, a bottom-up approach where each 
promoter sequence starts as an individual cluster, and similar clusters are iteratively merged until a final 
clustering configuration is reached. 

Distance Calculation 

If two promoter sequences have high cosine similarity (close to 1), they are grouped into the same cluster. 
Consider the following three promoter feature vectors after dimensionality reduction: 

Table 5: Feature vectors after dimensionality reduction 

Promoter Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 

P1 0.45 0.67 0.32 0.90 0.56 

P2 0.48 0.70 0.30 0.85 0.60 

P3 0.10 0.12 0.15 0.08 0.20 

Clustering Process: 

1. Start with each promoter sequence as a separate cluster. 
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2. Calculate pairwise cosine similarity between clusters. 

3. Merge the two most similar clusters based on the highest cosine similarity. 

4. Repeat until a predefined number of clusters or a minimum distance threshold is reached. 

Dendrogram Construction: 

The merging process is represented using a dendrogram, which illustrates the hierarchical relationship between 
clusters: 

• Horizontal axis = Similarity distance 

• Vertical axis = Sequence clusters 

The final clustering configuration is determined by cutting the dendrogram at a defined similarity threshold. 

Final Output After Clustering 

The final output groups similar promoter sequences into distinct clusters. Example output after hierarchical 
clustering: 

Table 6: Final Output After Clustering 

Cluster Promoters Number of Sequences 

1 P1, P2 2 

2 P3 1 

Hierarchical clustering allows the identification of promoter subtypes and regulatory patterns, improving the 
biological interpretability of genome-wide analysis. 

RESULTS AND DISCUSSION 

The proposed model outperformed existing methods in clustering accuracy and biological consistency. Existing 
Methods include K-means clustering, Traditional hierarchical clustering and Gaussian mixture model. 

Table 7: Experimental Setup and Parameters 

Parameter Value 

Input sequence length 200 bp 

CNN layers 3 

Filter sizes 64, 128, 256 

Activation function ReLU 

Pooling size 2 

Learning rate 0.001 

Batch size 32 

Epochs 50 

Clustering method Agglomerative hierarchical 

Similarity measure Cosine similarity 

 

Performance Metrics 

Table 8: Silhouette Score Comparison 

Epochs Proposed Method K-Means DBSCAN Gaussian Mixture 

10 0.74 0.65 0.58 0.62 
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20 0.78 0.67 0.60 0.65 

30 0.82 0.70 0.63 0.68 

40 0.85 0.72 0.65 0.70 

50 0.88 0.75 0.67 0.73 

Silhouette score measures the quality of clustering by evaluating how similar points within the same cluster are 
compared to points in other clusters. Higher values indicate better separation between clusters. The proposed 
method outperforms the existing methods, with the silhouette score improving from 0.74 at 10 epochs to 0.88 
at 50 epochs. K-Means and Gaussian Mixture show moderate improvements, while DBSCAN exhibits slower 
convergence due to its sensitivity to noise and irregular cluster shapes. The CNN-based feature extraction 
combined with hierarchical clustering enhances the clustering boundary definition, leading to superior 
performance. 

Table 9: Davies–Bouldin Index Comparison 

Epochs Proposed Method K-Means DBSCAN Gaussian Mixture 

10 0.42 0.58 0.64 0.55 

20 0.38 0.54 0.60 0.50 

30 0.35 0.51 0.58 0.47 

40 0.32 0.48 0.56 0.45 

50 0.28 0.45 0.53 0.42 

The Davies–Bouldin index measures the average similarity between clusters, with lower values indicating better 
clustering quality. The proposed method achieves the lowest value of 0.28 at 50 epochs, demonstrating tighter 
and more distinct clusters. K-Means and Gaussian Mixture show moderate improvements, while DBSCAN’s 
index remains relatively high due to its sensitivity to noise and non-uniform cluster shapes. The proposed CNN-
based hierarchical clustering reduces inter-cluster similarity through improved feature representation and 
effective distance-based grouping. 

Table 10: Clustering Accuracy Comparison 

Epochs Proposed Method K-Means DBSCAN Gaussian Mixture 

10 82.4% 74.1% 68.5% 70.2% 

20 85.7% 76.3% 70.4% 72.8% 

30 89.2% 78.6% 72.7% 75.3% 

40 91.4% 80.8% 74.6% 77.6% 

50 93.6% 83.2% 76.8% 79.8% 

Clustering accuracy measures how well the clustering results match the ground truth labels. The proposed 
method achieves the highest accuracy of 93.6% at 50 epochs, outperforming K-Means, DBSCAN, and Gaussian 
Mixture. The CNN-based feature extraction combined with hierarchical clustering enhances cluster cohesion 
and boundary separation, leading to better accuracy. K-Means and Gaussian Mixture show moderate 
improvements, while DBSCAN struggles with noisy data. The continuous improvement in clustering accuracy 
highlights the effectiveness of the combined feature extraction and clustering approach. 

CONCLUSION 

The proposed CNN-based hierarchical clustering method demonstrates superior clustering performance for 
genome-wide promoter analysis. Experimental results show that the proposed method achieves a silhouette 
score of 0.88, a Davies–Bouldin index of 0.28, and a clustering accuracy of 93.6% after 50 epochs. Compared 
to existing methods such as K-Means, DBSCAN, and Gaussian Mixture, the proposed method exhibits consistent 
improvement across all evaluation metrics. The CNN-based feature extraction enhances the representational 
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quality of the promoter sequences, allowing for better feature differentiation and reduced intra-cluster variance. 
Hierarchical clustering further refines the clustering process by grouping similar sequences based on cosine 
similarity, ensuring tighter and more distinct clusters. The combination of dimensionality reduction through 
PCA and max pooling minimizes computational complexity while preserving essential information. The 
proposed model’s ability to handle high-dimensional data and produce biologically meaningful clusters makes 
it highly suitable for complex genomic analysis. The improved clustering accuracy and separation between 
clusters demonstrate the robustness and efficiency of the proposed method in identifying promoter subtypes 
and regulatory patterns. 
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