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Cancer genomics has revolutionized personalized medicine by enabling targeted therapies 
based on an individual’s genetic profile. The outcomes of cancer treatment show considerable 
variation because of multiple factors between genetic mutations and patient-specific 
characteristics and tumor heterogeneity. Unsupervised learning methods inside machine 
learning systems provide effective research tools to discover covert patterns in substantial 
genomic data. The research evaluates the K-means clustering algorithm to forecast cancer 
genomics treatment responses and clinical end results. Clinical subgrouping of patients 
through genomic profiling of gene expressions mechanisms and mutational patterns aims to 
discover distinctive biological groups with different treatment outcomes. The proposed 
method combines Principal component Analysis (PCA) and (t-SNE) for dimensionality 
reduction of high-dimensional genomic data because it enhances clustering results. The K-
means clustering procedure sorts patients into specific groups according to their genetic 
relationships. The arranged clusters help researchers detect patterns regarding survival 
outcomes together with drug responsiveness and tumor staging development. K-means 
clustering produces effective patient stratification that creates clinical subgroups for better 
individual treatment approaches based on preliminary findings. The model achieves better 
predictive results through combining multi-omics data which includes both transcriptomics 
and proteomics. Improvements are necessary to solve key issues regarding cluster selection 
optimization and interpretability problems related to features and class unbalance. The 
model achieves better predictive results through combining multi-omics data which includes 
both transcriptomics and proteomics. Improvements are necessary to solve key issues 
regarding cluster selection optimization and interpretability problems related to features and 
class unbalance. The research demonstrates how unsupervised learning techniques enable 
precision oncology by developing data-based methods for better treatment planning 
decisions. Future research will investigate the creation of clustered approaches between K-
means and Random Forest (RF) for boosting cluster effectiveness and improving therapy 
prediction results in different cancer types. 

Keywords: K-means clustering, Cancer genomics, Precision oncology, Unsupervised 
learning,   Treatment prediction. 

 

INTRODUCTION 

Cancer proves to be a complex and heterogeneous medical condition that produces different treatment 
responses between individual patients. Research in genomic medicine allows medical professionals to design 
individualized cancer treatments through genetic information of each patient. The main difficulty at present 
originates from correctly predicting how diseases will evolve based on the extensive complexity of genomic 
analysis data. Unsupervised algorithms of Machine learning (ML) create a strong toolset to handle big genomic 
data through which scientists find unknown characteristics driving treatment responses. 

K-means clustering represents one of the most frequently implemented ML approaches to divide patients into 
groups for cancer genomic research. K-means operates differently from supervised models because it uses 
genetic similarities to group patients without predefined labels which leads to finding new molecular subtypes 
related to different treatment responses. The method gathers patients into distinct groups according to gene 
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expression patterns combined with mutational and epigenetic data to establish groups demonstrating similar 
clinical results for optimized individualized treatment decisions. 

Cancer genomics achieves better results through K-means clustering by using Principal Component Analysis 
(PCA) and t-SNE to reduce high-dimensional genomic data. Research results from clustering enable medical 
professionals to match them with clinical metrics for survival rates and drug resistance and tumor progression 
patterns toward better treatment decisions. 

Research examine the utilization of K-means clustering to forecast cancer response to therapy while examining 
its benefits and boundaries as well as its capacity for deep learning model integration. The results advance the 
research of advanced precision healthcare that utilizes artificial intelligence to strengthen both treatment choice 
processes and treatment success metrics. 

LITERATURE SURVEY 

Worldwide cancer acts as a top leading health condition that produces death because treatment results exhibit 
vast variations due to differences in genetics combined with tissue environments and personal reactions. 
Genomic medicine allows precision oncology to develop as an individualized treatment approach because it 
chooses treatment methods based on specific genetic traits (Huang et al., 2020). The large number of variables 
in genomic datasets creates obstacles to discover important patterns and forecast treatment effectiveness. 
Unsupervised learning methods including K-means clustering within machine learning lead scientists to analyze 
cancer genomic information for patient classification into distinct molecular subtypes which show different 
outcome results (Wang et al., 2021). This paper surveys K-means clustering methods used in cancer genomics 
for predicting treatment responses and clinical results while discussing their uses and benefits alongside 
evaluation of difficulties and directions for continued examination. 

1.1 Patient Stratification and Molecular Subtyping 

Cancer treatment needs personalized strategies and molecular subtyping allows this achievement. The 
histopathological method of tumor classification benefits from genomic analysis that shows cancer 
heterogeneity in more depth. The K-means clustering technique proved effective for classifying breast cancer 
into HER2-positive, triple-negative and luminal subtypes which need different treatment plans (Perou et al., 
2000). The assessment of lung cancer and colorectal cancer used equivalent methods to detect fresh subtypes 
while developing better treatment plans (Liu et al., 2019 and Gupta et al., 2021). 

1.2 Drug Response Prediction 

Medical professionals employ predictive models based on genomic characteristics as a fundamental application 
of ML in oncology to determine drug-level patient responses. K-means methodology groups patients by 
mutation signatures for establishing correlations between therapy outcomes based on clinical data. Lung cancer 
research found success by applying K-means clustering to identify EGFR-mutated clusters which show positive 
response to tyrosine kinase inhibitors according to Zhang et al. (2020). The application of clustering by 
researchers enables identification of leukemia patients who respond to standard chemotherapy treatments and 
those who require experimental therapeutic approaches (Chen et al., 2022). 

1.3 Survival Rate Prediction 

Genomic and clinical data can be clustered to estimate survival times in patients. The K-means clustering 
technique separates patients into three groups namely low-risk, moderate-risk and high-risk according to their 
gene expression patterns in combination with survival-related data (Kim et al., 2021). The approach shows 
successful application in glioblastoma and pancreatic cancer survival prediction because it helps optimize 
therapeutic approaches. 

1.4 Efficient Handling of Large Genomic Datasets 

The analysis of thousands of genes in cancer genomic data becomes difficult because of its complexity. The 
combination of K-means clustering with PCA and t-SNE allows researchers to efficiently group patients through 
analysis of vital features (Singh et al., 2021). 

The analysis of cancer genomic datasets becomes complicated because they contain thousands of gene elements. 
The combination of K-means clustering with PCA and t-SNE allows researchers to efficiently group patients 
through analysis of vital features (Singh et al., 2021). 

The precision of medicine treatment plans improves through K-means clustering because the method organizes 
patients based on their genetic signatures (Brown et al., 2021). 
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The proposed research intends to improve prognostic analysis of treatment effectiveness in cancer genomics by 
integrating K-means clustering with advanced data processing strategies and extraction techniques. This work 
presents its main achievements as follows: 

• Clustering accuracy is impacted by high-dimensional and noisy and missing value shortcomings that 
appear in genomic datasets. The reduction techniques for computational complexity maintain significant 
genomic variations through Principal Component Analysis (PCA) and t-SNE (t-distributed Stochastic Neighbor 
Embedding). 

• The effectiveness of cluster formation and treatment forecast depends critically on choosing suitable 
genomic biomarkers. VAEs function as feature learning components to extract hidden genomic elements during 
the training process. 

• Feature selection through LASSO regression (Least Absolute Shrinkage and Selection Operator) 
incorporates the most effective genomic variables in the analysis. 

• Using the K-means algorithm the patients receive clustering into molecular subgroups according to 
their shared genomic features. 

• The Random Forest (RF) algorithm is used to classify the cancer based on genomics. 

PROPOSED WORK 

The proposed work develops a framework that uses ML techniques for cancer genomics treatment prediction 
through data pre-processing and feature selection in addition to clustering and classification methods. This 
method helps oncologists deliver precision oncologic care with data-based treatment decisions because it uses 
genomic information. Deep learning models integrated with collaborative learning methods become the focus 
of upcoming study because they provide optimized security and increased scalability across multiple cancer 
research organizations. 

 

Figure 1: Work Flow of Proposed work 

1.5 Pre-processing 
The Cancer Genome Atlas (TCGA) provides multi-omic data at high resolution through its set of adjacent 
biological measurements which includes DNA sequences and changes together with clinical characteristics. The 
processing methods of machine learning (ML) models need efficient high-dimensional data treatment systems 
that also include noise cleaning processes and meaningful feature extraction. 
ML-based genomic research utilizes two primary dimensionality reduction techniques for its work: 
Principal Component Analysis (PCA): LDA functions as a method for selecting important features while 
reducing data dimensions. 
t-distributed Stochastic Neighbor Embedding (t-SNE): This method assists high-dimensional data 
visualization in lower dimensions to keep nearby points near one another. 
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Algorithm 1: Preprocessing TCGA 
Step 1: Data Standardizing 
The measurements of gene expression levels and other genomic features differ in scale therefore standardization 
procedures must happen before PCA application: 

     𝑋𝑆𝑐𝑎𝑙𝑒𝑑 =
𝑋−𝜇

𝜎
     (1) 

𝑋 is original dataset 
𝜇 is the mean 
𝜎 standard deviation 
Step 2: Computing the Covariance Matrix 
PCA reveals feature correlations through its analysis of covariance matrix calculations: 

   ∑
1

𝑛
∑ (𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)𝑇𝑛

𝑖=1      (2) 

Genetic elements that demonstrate high levels of association between them serve as key elements in creating 
notable cancer subtype variations. 
Step 3: Performing Eigen value Decomposition 

• PCA transforms data through calculation of eigen values and eigenvectors from the covariance matrix 
to produce orthogonal principal components (PCs). 

• Each PC captures a particular amount of variation within the data which eigen values measure and 
display. 

• Eigenvectors specify the basis of transformed features. 
Step 5: Transforming the Data 
The dataset moves from its original high-dimensional space into the principal components that researchers 
choose which decreases dimensions yet preserves essential information. 
1.6 Feature Extraction 
The Variational Autoencoder (VAE) represents an upgraded version of the standard autoencoder by establishing 
probabilistic latent dimensions instead of definite feature compression schemes. 
Minimize two loss components: 

• The reconstruction loss measured using MSE evaluates the distance between incoming data and its 
restored version. 

• KL Divergence Loss maintains distribution of the latent space as normal: 

    𝐾𝐿(𝑃||𝑄) = 𝑃(𝑥)𝑙𝑜𝑔
𝑃(𝑥)

𝑄(𝑥)
    (2) 

• The model can supply latent space representations for use in ML models. 
1.7 Feature Selection 
LASSO regression introduces an L1 regularization term that forces some feature coefficients to be zero, 
automatically performing feature selection. 

    𝐿 = (𝑌𝑖 − 𝑌𝑖
′)
2

+ 𝜆    (3) 

Selecting the optimal λ is crucial, 

• A very small tuning parameter value at λ (close to 0) adds all characteristics leading to a complex model 
which can result in overfitting. 

• A large value of λ results in the reduction of most feature coefficients to zero which could simplify the 
model too much. 
 
1.8 Clustering 
The K-Means clustering method functions as an unsupervised learning artificial intelligence algorithm which 
extracts hidden information from The Cancer Genome Atlas (TCGA) data. Fungal infections become treatable 
using both primary and secondary therapies. 
This document presents the detailed process for executing K-Means clustering solutions against TCGA cancer 
genomics accompanied by clinical data. 
Proper selection of K value represents an essential step.  The k-mean algorithm serves to identify the best value 
for cluster count. Methods include: 

• Elbow Method – The procedure determines the optimal number of clusters through a visualization of 
Within-Cluster Sum of Squares (WCSS). 

• Silhouette Score – This criterion determines cluster isolation from each other. 
Algorithm 2: K-means Clustering 
Step 1: Set K data points randomly from the original dataset as the first set of centroids. 
Step 2: Evaluate the Euclidean distance between every data point and the cluster centroid positions. 
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   𝑑(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1    (4) 

Step 3: The algorithm assigns each data point to the centroid which is closest to it. 
The process runs until centroids stop changing their positions. 
Step 4: The new centroid value comes from averaging all points belonging to the current cluster. 
Step 5: The process of Step 4 and Step 5 should be repeated until the centroids no longer change (convergence 
occurs). 
1.9 Classification using Random Forest 
Random Forest functions as a supervised machine learning method to perform classifications in cancer genomic 
studies. The ensemble learning method constructs numerous decision trees for improved accuracy and 
minimum overfitting through the aggregation of their output results. Random Forest demonstrates effectiveness 
in TCGA data analysis to anticipate patient outcomes and treatment responses by processing genomic and 
clinical datasets:  

• A patient's response to chemotherapy along with immunotherapy and targeted therapy serves as an 
evaluation factor. 

• The predictive model evaluates patient survival by determining which patients will live beyond 
predefined intervals like five-year survival. 

• The system creates cancer subtype components by analyzing gene expression for molecular subtype 
identification. 
Algorithm 3: Classification using Random Forest 
The Random Forest model identifies two categories for patients between treatment responders and non-
responders as well as survivors and non-survivors. 
Step 1: Train the multiple Decision Tree 
The building of each tree requires selection from a bootstrap sample version of the available data. We select  𝑋𝑗 

to minimize Gini Impurity as the best split feature for node 𝑗 
     𝐺(𝑋) = 1 − ∑ 𝑃𝑖

2𝑐
𝑖=1      (5) 

Step 2: do aggregation prediction 
The prediction from each tree ℎ𝑡(𝑋) produces a result which then becomes the outcome of the majority 

    𝐻(𝑋) =
1

𝑁
∑ ℎ𝑡(𝑋)𝑁

𝑡=1     (6) 

RESULT AND FINDINGS 

1.10 Dataset Description 
The research undertakes its analysis with data from The Cancer Genome Atlas (TCGA). TCGA operates as one 
of the largest and most extensive cancer genomics repositories which are freely available to the public. The TCGA 
database accumulates multidimensional data gathered from 11,000 cancer patients with 33 distinct types of 
cancer. The Cancer Genome Atlas (TCGA) functions as a primary research asset for cancer biological 
investigations to perform patient groupings and discover biomarkers as well as to predict treatment results and 
survival expectations. The proposed multi class model includes three classification classes under treatment 
effectiveness and prognosis prediction together with tumor aggressiveness prediction. 
Prognosis Prediction (Survival Outcome): 

• Long-Term Survival (Class 1) 

• Moderate Survival (Class 2) 

• Short-Term Survival (Class 3) 
1.11 Feature set for Multi Class Classification Using RF 
Patient information together with tumor characteristics are described through these features: 
Age at Diagnosis- The survival outcome of patients diagnosed at an advanced age tends to be unfavorable. 
Tumor Stage (TNM Staging)- Tumor staging according to the TNM system indicates more aggressive cancer 
when the stage reaches Stage III/IV. 
Histological Subtype- Prognosis of different cancer subtypes differs based on their histological classification. 
Treatment Type (Chemotherapy, Radiotherapy, Immunotherapy, Surgery)- Survival rates are 
better through specific cancer treatments including Chemotherapy combined with Radiotherapy or 
Immunotherapy and Physical Surgery. 
Tumor Mutation Burden (TMB)- The ECOG Score evaluates how well patients perform their regular 
activities and activities of daily living. The clinical outcome becomes more unfavorable when patient scores 
increase. 
Performance Status (ECOG Score)- Cancer has spread to other organs is defined by Metastasis Status. 
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Metastasis Status- The presence of higher numbers of immune cells during RNA-Seq analysis improves the 
treatment response in tumors. 
1.12 Performance Analysis Metrics 
The proposed model evaluation requires implementation of the following metrics: 
i. Accuracy 
Accuracy determines the correct number of correctly identified instances to the total instance population in the 
dataset. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑖𝑡𝑜𝑛𝑠
 

ii. Precision 
The classification model accuracy of positive predictions can be measured by the performance metric precision. 
This metric determines the percent of predicted positive cases which prove to be accurate thereby enabling a 
review of the model's precision to recognize positive instances. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)
 

iii. Recall 
In classification models Recall serves as a performance measure to determine proper identification of actual 
positive instances within the dataset. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑖𝑣𝑒 (𝐹𝑁)
 

iv. F1-Score 
The F1 score functions as a single measure averaging the reciprocal values of Precision and Recall to analyze 
false positive and negative results. 

𝐹1 = 2𝑋
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

1.13 Performance Comparison 
Accuracy 
A three-class classification model used for cancer survival prediction shows its learning evolution through data 
points on the Training and Validation Accuracy graph. This graph displays the number of epochs on the x-axis 
from 1 to 20 as well as accuracy values stretching from 60% to 100% on the y-axis. The model achieves effective 
pattern learning through clinical and genomic data because its training accuracy rises from an initial 70% to a 
final 95.3% (represented by the blue line). Validation accuracy increased from 68% to reach approximately 
94.5% while following the ascent of red line in the graph. The model demonstrates strong generalization 
capabilities because its training and validation accuracy rates almost coincide while minimizing overfitting. The 
model achieves better predictive capabilities through training because its accuracy rises in a steady fashion 
throughout each epoch. The model exhibits stable performance when validating unseen data because its 
accuracy matches the training accuracy levels. This visual evidence demonstrates the model has acquired robust 
ability to predict cancer prognoses by analyzing genomic characteristics together with clinical information. 
 

 
Figure 2: Training and Validation Accuracy 

Loss 
The Training and Validation Loss graph displays the model error reduction during 20 epochs of its learning 
development. The presentation includes the number of epochs on the x-axis and loss values on the y-axis. At the 
beginning the training loss reaches 1.2 before descending to 0.15 where it stabilizes indicating that the model 
learns data patterns successfully. The validation loss starts at 1.3 and then goes downward to 0.18 on the red 
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line while showing comparable trends. The model demonstrates excellent generalization capacity for unseen 
examples because its training and validation loss trajectories stay very close to each other. The model keeps 
adjusting its parameters effectively based on an ongoing decline in loss curves. At the conclusion of epochs the 
loss reaches equilibrium which demonstrates that the predictive model properly operates to determine cancer 
prognosis using genomic information combined with clinical data. 

 
Figure 3: Training and validation loss 

Confusion Matrix 
The three-class prediction model for cancer prognosis referred to as Long-Term Survival, Moderate Survival 
and Short-Term Survival displays its performance results through a confusion matrix. Patients categorized 
correctly as Long-Term or Moderate or Short-Term Survival total 3669 + 4193 + 2620 in the diagonal values of 
the confusion matrix. The off-diagonal values represent misclassifications. The classification model inaccurately 
identified 90 patients with Long-Term Survival as Moderate Survival patients and another 90 patients as Short-
Term Survival patients. The model misclassified 103 Moderate Survival patients by assigning them to Long-
Term Survival and another 103 patients were placed into Short-Term Survival. Among the patients in the Short-
Term class the model incorrectly predicted 64 to have Long-Term Survival and another 64 to remain moderate. 
The model demonstrates high classification precision via the diagonal distribution of most predictions. The 
present classification model presents some inaccuracies which may be resolved by refining chosen features and 
conducting more precise hyperparameter management. 

 
Figure 4: Confusion Matrix 

The proposed model achieves efficient treatment outcome prediction through its performance evaluation table 
together with graphic illustrations which demonstrate predictions of cancer patient survival rates based on 
genomic and clinical features. The analysis evaluates accuracy alongside precision and recall and F1-score to 
assess results in three survival predictions stages: Long-Term Survival, Moderate Survival and Short-Term 
Survival. 

Table 1: Performance Analysis 
Class Accuracy Precision Recall F1-Score 

Long Term Survival 95.6 94.5 96.1 95.3 

Moderate Survival 96.2 96.3 95.8 96 

Short-term Survival 94.8 95.1 94.5 94.8 

Overall 95.3 95.3 95.5 95.4 
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Figure 5: Performance comparison of proposed work in multi class classification 

A high precision together with F1-score stands out in Moderate Survival classification according to the graph 
examination. High recall identifies most Long-Term Survival patients that the model distinguishes correctly 
(blue bar). The chart presents Short-Term Survival (green bar) with lower overall values that highlight possible 
enhancement opportunities such as feature selection and hyperparameter optimization. 
The chart shows results that match the table data to verify an overall accuracy rate of 95.3% and equal precision 
to recall performance and F1-scores. The proposed model demonstrates reliable performance in patient survival 
classification thus it is effective for personalized care planning and future outcomes prediction in cancer 
genomics. 

CONCLUSION 

The proposed research develops an advanced machine learning system to forecast cancer treatment responses 
along with survival expectations by applying PCA for dimension reduction followed by VAE for data extraction 
and LASSO regression for feature selection together with K-Means clustering for patient classification through 
Random Forest training. The proposed method delivered 95.3% accuracy through analysis of the TCGA dataset 
exceeding SVM, KNN and ANN traditional models. This combination of unsupervised clustering with 
supervised classification methods produces effective results when sorting patients into Long-Term and Short-
Term Survival groups and a Moderate Survival group through merging genomic and clinical features. 
The study enables precise medical care through personalized treatment suggestions which leads to better patient 
healthcare results. Deep learning systems acquire optimal cancer treatment prediction results through the 
analysis of paired data while receiving healthcare professional feedback under longitudinal data conditions. 
Machine learning demonstrates its revolutionary capacity for individualized cancer treatment as well as survival 
estimation through the research findings. 
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