
Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

1101
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The Implications for a Hybrid Detection Technique Against

Malicious SQL Attacks on Web Applications

Sarajaldeen Akram Bahjat Arif1, Dr. Sharyar Wani2

1 Student Kulliyyah of Information and Communication Technology, International Islamic University Malaysia (IIUM)
2

Asst. Prof. Kulliyyah of Information and Communication Technology, International Islamic University Malaysia (IIUM)

ARTICLE INFO ABSTRACT

Received: 18 Dec 2024

Revised: 10 Feb 2025

Accepted: 28 Feb 2025

Today, most web applications are vulnerable to SQL-injection attacks. Malicious inputs by

unauthorized attackers causing the deletion, modification, or retrieval of confidential data

from remote database which creates huge losses of money and even affect the work of

commercial vendors and financial companies. Therefore, it is essential to develop a new

technique to authenticate access to database related to web applications and prevent SQL

injection vulnerabilities. But the large number of available prevention techniques make the

selection of the best solution a big challenge, because not every technique fit all types of web

application, hence a one technique for all is another issue and a difficult task. Accordingly,

the aim of this study is to identify the latest SQL injection attacks based on user’s inputs in

web application associated with remote server database, and to develop a new method based

on dynamic detection technique to prevent SQL injection attacks. The methodology is based

on JavaScript and PHP languages for developing a new technique called DetectCombined

capable of filtering queries using parameterized queries to protect against SQL injection

which is a safe method. It is a code with double shield protection that prevents unauthorized

extraction or damaging the remote database in the server side due to malicious SQL injection.

The proposed DetectCombined is an innovated technique that execute a protection code

based on a sequence of three stages: filtration-validation-history, this technique produces a

robust protection code that distinguish between safe SQL commands and malicious ones, and

reinforce the memory of detection procedure by saving previous SQL attacks in special tables

in the remote database, regardless of the types of users whether a general user of admin. The

outcome of this study will add to the body of knowledge the most important and recent

proposed solutions to mitigate SQL injection attack, in particular those based on machine

learning algorithm.

Keywords: SQL injection, Malicious Attack, SQL detection, Machine Learning.

INTRODUCTION

Today, web security and user privacy in database-driven web applications are extremely difficult tasks against
malicious users and web attackers. SQL-injection is one of the most hazardous cyber-attacks nowadays, causing
large losses of money and confidential data to commercial vendors and financial organizations (Kareem et al.,
2021). A successful web application attack allows a malicious attacker to delete, edit, or retrieve critical data
without being authenticated by the server and using hacked rights to access a remote database (Rai & Nagpal,
2019). The number of web application attacks is rapidly increasing. The availability of massive volumes of data
on the internet motivates hackers to launch novel forms of assaults. Extensive web application security research
has been conducted in this field. Structured Query Language Injection (SQLI) is the most deadly online
application attack. This attack is a serious threat to web applications (Ines et al., 2020). The majority of SQL
injection attacks are linked to unauthenticated password filling in order to retrieve crucial information related
to authorized users whose data is kept in a remote database. As a result, the SQL Injection attack allows
malicious individuals to read such information from the remote database. While secured systems will only allow
access to data that is publicly available. However, a badly built system is vulnerable to malicious SQL injection,
which allows external users to penetrate the database via the password entry field or hijack users' passwords
and use them to access the database (Madhusudhan & Ahsan, 2022). This can be accomplished by inserting a

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

1102
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

SQL statement injection query into the password field of the login interface page (Nithya et al., 2013). The lack
of security guarantee in online apps is the source of the majority of complaints. It has been discovered that a
lack of information security and the impact of malicious assaults on the performance of online apps have an
impact on their users (Gogoi et al., 2021). It is clear that the problem of lack of security in web applications eases
SQL injection risks and increases security, which is a major difficulty for practically all web developers nowadays
(Kareem et al., 2021; Hadabi et al., 2022). As a result, this article will classify current SQL injection methods
and compare them in order to develop a new technique for avoiding these assaults on the client side.
Furthermore, this study will emphasize the shortcomings and performance of each solution and will seek to
prevent them in the recommended solution by proposing a new technique to prevent SQL injection attacks.

THE CHALLENGES OF WEB SECURITY

One of the key issues of SQL injection is allowing users to customize their own text and symbols without many
constraints, which may cause the user to detest the input and abandon the application (Yadav & Kumar, 2022).
Because SQL statements are merely text, it is straightforward to dynamically update SQL statements using a
tiny bit of computer code to present the user with specified data (Yadav & Kumar, 2022). As a result, insufficient
input filtration and validation of input forms in dynamic online applications is a major issue that web developers
are still working to solve (Dasmohapatra & Priyadarshini, 2022). Furthermore, a web developer may make a
mistake when implementing validation code for certain parameters, such as SQL, making the online application
particularly vulnerable (Tafa & Resulaj, 2021). In this regard, Raniah (2019) identified the problems and
challenges that most web applications face when dealing with SQL injection attacks and securing the
applications, such as tracing the inputs from the first entry point to the SQL statement, securing existing web
applications at a low cost, securing saved procedures as well as dynamic SQL statements, and methods and
techniques for eliminating and modifying specific malicious inputs to modify them as needed.

A review of the literature reveals that several studies have been conducted in the past to address this issue, with
the majority of detection techniques and algorithms focusing on mitigating this SQL injection attack either by
preventing it at an early stage (on the client side) or detecting it when it occurs (on the server side). However,
all of these strategies and algorithms are still ineffective, and there is a small window for hackers to infiltrate the
database on the distant server via the web application, which the technique described in this study should fill.
Hackers have continued to utilize innovative approaches to attack the core security services, such as
authentication, confidentiality, integrity, authorization, and integrity, even in recent years (Deepa et al., 2018).
According to OWASP (2018) and SANS (2020), SQL injection vulnerabilities continue to be the most deadly
and widespread web assaults. As a result, despite the diversity of strategies and algorithms provided in the past,
and new techniques are emerging, algorithms to deal with SQL injection attacks are more important than ever
(Ines et al., 2020). While the enormous variety of available prevention approaches makes selecting the best
solution a tough effort, because not every algorithm and technique fits all sorts of online applications, having
one technique that works for all is another issue and a challenging undertaking. Furthermore, the majority of
existing SQL injection countermeasures used either syntax-based detection methods or a list of predefined rules
to detect SQL injection, making them vulnerable to advanced and sophisticated attacks because attackers create
new ways to evade detection by leveraging prior knowledge (Yazeed, 2021). As a result, this study will seek to
answer this later problem by providing a basic overview of all known approaches and algorithms and then
building on them to produce a new one suite all online apps, which will be the finest recently presented solutions
for this problem.

SQL INJECTION ATTACKS

Today SQL injection (SLQI) is a form of malicious attack that targets popular types of web applications and
increases the susceptibility of web application access. SQLI exists in specific online applications that do not filter
the input data. Thus, these websites exploit a high level of vulnerability, allowing a malicious attacker to
introduce malicious code, such as SQL commands, through input fields such as login and password (Statista,
2019). A hacker is someone who uses computer, networking, or other technical skills to solve a technological
problem or to commit malicious activities (Deepa et al., 2018). Web applications are heavily used in today's
culture, whether for shopping or financial transactions. It is vital to protect the security of these internet
programs. The majority of the transaction or consumer information is stored in the backend databases for these
web apps. SQL injection attacks are one of the drawbacks of these web apps (D'silva et al., 2017). Furthermore,
if the adversary acquires the session id, the web application sessions are susceptible to session hijacking
attempts. Online applications are especially vulnerable to session hijacking attacks due to the diversity of
mechanisms available to acquire session/HTTP cookies.

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

1103
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Although numerous ways for protecting databases from SQL injection attacks have been proposed, there is no
single answer or approach for preventing these types of cyber-attacks. As a result, SQL injection has become a
major threat for database-driven websites around the world. When a cybercriminal runs a SQL query and sends
it to a database, the data is sent from the client to the server through the input data. In data-plane input, the
SQL command is typically used in place of the password or login credentials. This allows the cybercriminal to
run their own SQL commands. Furthermore, if a SQL injection attack is successful, confidential information can
be read, stolen, edited, added, updated, or removed. Cyber attackers can also use the database to do
administrative activities such as shutting down the computer, recovering content from any file, and even
delivering commands to the operating system (Jemal et al., 2020). Cybercriminals' techniques are evolving in
lockstep with company technology and security solutions. Cybercrime cost businesses around the world $2.7
billion in 2018, and research conducted by infographic from Raconteur (2019) shows into the average damage
caused by cyberattacks on various industries as shown in Figure 1.

Figure-1: The average annual cost of cybercrimes by industry (Raconteur, 2019)

Another indicator on the value of risk on business is shown in Figure 2. It is found that 77% comes from direct
cyberattacks in the future, while 23% from indirect cyberattacks. The issues of SQLI this figure will continue to
rise for many years in the future. Vendors pay to developers in order to protect their business from these kinds
of attacks, more money spent on upgrades and repairs of current systems, and the costs associated with lost
clients and a tarnished brand are among the losses.

Figure-2: Global value of risks due to cyberattacks worldwide (Accenture, 2019)

The examination of the literature suggests that a SQLI attack is a common security breach that attacks the
database of an online application. With the number of methods for exploiting SQLIA vulnerabilities in online
applications rising all the time, there is no one-size-fits-all solution or tactic. As a result, multiple SQLI
procedures have to be devised and improved in order to mitigate the possible threats posed by these various
attack approaches. The majority of these methods, however, have yet to be investigated, and they are still only
theories that must be executed, assessed, and limited. Furthermore, the majority of existing SQL injection
countermeasures used either syntax-based detection methods or a set of predefined rules to detect SQL
injection, making them vulnerable to advanced and sophisticated attacks because attackers create new ways to

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

1104
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

evade detection by leveraging prior knowledge. Although semantic-based qualities can aid in identification, no
studies to our knowledge have focused on extracting semantic features from SQL statements (Yazeed, 2021).

DETECTION TECHNIQUES

The most mature and extensively used type of intrusion detection system (IDS) is signature-based IDS. And
Intrusion Detection Systems as suggested by Gupta and Sharma (2022) were one of the tactics used by certain
researchers to counter SQLI. However, because signature-based IDSs are static, they cannot detect new types of
attacks, and the attacker can easily avoid detection by changing the appearance of the attack (Panigrahi et al.,
2022). While IDSs alone cannot protect against all types of SQLI, a combination of optimal web server
configuration and the usage of parameterized queries during the coding phase can. Several SQLI detection
algorithms have been proposed in the literature, but none of them consider SQLI in stored procedures. Although
the SQLI method is the same for both stored procedures and application layer programs, due to their limited
programmability, as well as the technique's usability and deployment ability (Fang et al., 2018), the same
detection technique could not be utilized to stored procedures. In certain studies, stored procedures are
mentioned as a solution to SQLIs. Because stored procedures are saved in the database, the solutions they
provide cannot be utilized to protect the stored procedures themselves. Ke et al. (2006), for example, proposed
a novel way to protecting stored processes from SQLI assaults. Our solution combines static application code
analysis with runtime validation to prevent such attacks. In the static section, they develop a stored procedure
parser, which we use to instrument the necessary statements in order to compare the original SQL statement
structure to that integrating user inputs for any SQL statement that depends on user inputs. The implementation
of this technology can be automated and used only when necessary.

Existing techniques such as filtering, penetration testing, information-flow analysis, and defensive coding can
also detect and mitigate a fraction of SQLI vulnerabilities. However, it appears that filtering (input validation)
is the most efficient and straightforward technique. Although SQLI detection techniques that use input
validation are prone to a significant number of false positives, there is no guarantee of no false negatives. Input
validation is one of the most effective SQLI prevention methods. Checking for single quotes and dashes and
manually escaping them is a simple example of input validation. This may be easily avoided by using the ASCII
form of these characters, such as CHAR (0x27) for single quotes. Cook and Rai (2005) define safe query objects.
Ntagwabira and Kang (2010) proposed a method for identifying and avoiding SQLI attacks by looking for
changes in the intended outcome of the query induced by user inputs in the same context. They advised
employing Query tokenization, which the QueryParser function performs, to identify SQLI assaults. A hacker's
SQLI input should most likely include a space, single quotes, or double dashes.

Separately tokenizing the initial enquiry and a query with injection should be part of the SQLI solution.
Tokenization is accomplished by recognizing all strings preceding each sign, as well as a space, a single quote
mark, or two dashes. Following the formation of the tokens, they are combined to form an array, with each token
serving as an element. The lengths of two arrays returned by the first query and a query with injection are
compared to determine whether or not there is injection. As a result, access to data can be permitted or
prohibited depending on whether the array lengths are the same or different. The insufficient input validation
detection technique will allow code to be executed without being properly validated. This method has been
successful in several SQLIs in preventing hackers from exploiting inadequate input validation, which endangers
the target database and allows the attacker to easily launch attacks using malicious SQL code (Statista, 2019).
Table-1 summarizes the assessment and reveals the detection strategies and capabilities. The symbol denotes
systems that correctly detect all types of malicious assaults within a specific kind. The symbol denotes strategies
that are incapable of detecting all attacks of that type.

Table-1: A comparison between SQLI detection techniques based on the types of attacks.

Attacks

SAFE
LI

SQ
L-

IDS

Swaddl
er

SQL
Preve

nt

SQLr
an

SQLI
PA

DIWe
Da

Tautolo
gy

Checke
r

Removi
ng SQL
query

SQLCh
eck

SQL
Gua
rd

Tautolog
ies

× √ × √ √ √ × √ √ √ √

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

1105
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Piggy-
backed

√ √ × √ √ × × × √ √ √

Illegal/
Incorrec
t

√ √ × √ √ × × × √ √ √

Union √ √ × √ √ × × × √ √ √

Stored
Procedu
re

√ √ × √ × × × × √ × ×

Inferenc
e

√ √ × √ √ × √ × √ √ √

Alternat
e
Encodin
gs

√ √ × √ √ × × × √ √ √

RESEARCH METHODOLOGY

SQL statements are primarily text, and this text is the weak point of data validation throughout the routine
procedure, as well as transferring this text to the remote database on the server to extract some information or
perform other tasks the user desires when logging into his/her account. In this chapter, the researcher's devised
technique will demonstrate how data validation prevents the access of any type of malicious code using a double
shield to prevent unauthorized extraction or damage to the database. The initial stage in our technique is to
validate the prototype website's input fields. Website prototypes are usually interactive examples of a website
that are created early in the project's lifespan. They are used to test the efficacy of our technology and to show
how the detection process works and detects when a person attempts to access the distant database.

RESULTS AND FINDINGS

The review of literatures showed that when a web developer allows the users to enter data without restriction, a
malicious code maybe injected using SQL commands to harm the remote database in many ways. It is very
common that web developers neglect this point and let the users to input their own values for different purposes
such as login names or search for certain values in the database. The developed technique in this study will show
how data validation prevent the access of any kind of malicious code with double shield to prevent unauthorized
extraction or damaging the database.The technique proposed (DetecCombined) successfully tested a prototype
webpage filtering and validation to input fields and for new or previous SQL injection attempts of malicious
parameter to the database as text include SQL commands that can be used incorrectly to access the data stored
in all rows (records) of tables in the remote database. The webpages used to enter personal data of users and
admins could be shielded through DetecCombined code to protect a web application from any compromise to
the security of the database in the server side. For this purpose a front-end interface has been designed of
DetecCombined application, which is the layer the user will use to enter the username and password, as well as
see, and interact with the database through buttons, images, interactive elements, and text. In the front-end
interface, HTML was deployed as well as JavaScript. Our method will filter the entered username and password
through a temporary variable to check first if there is any parameter or text that can be used incorrectly to access
the data stored in all rows (records) in the remote database. This step is essential in DetectCombined technique
to prevent malicious users to inject SQL commands into an SQL statement through an intermediate variable via
web page input as well initiate a shield in client side to protect a web application from any compromise to the
security of the database in the server side. The flowchart in Figure 3 shows the flow of search steps as an admin
in red color path.

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

1106
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Figure-3: The flowchart of search for data as normal user (search/admin/level1)

The DetectCombined technique also allow for doing a search as an admin (Level 1) using the ID page. The same
procedure is be applied for non-admin user which imply the detection any SQL injection threat before showing
any result, in case there is any suspicion it will save threat attack in database history with specific message so
that to swiftly detect the same attack in the future, and if any the search result will show (0) as shown in Figure
4. But if there is no threat the DetectCombined will search the database safely and encrypted the data then do
decryption and show the search result without encryption so that the user can understand, i.e., ID, Name, Card
Number, Phone Number, Address. An example of this procedure is shown in Figure 4.

Figure-4: The output of valid and clear entry

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

1107
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We can do a test search by using the ID and then the search will begin without protection from SQL injection,
the attacks will be shown on the history stored in the database as shown in Figure 5.

Figur-5: The search result with protection against SQL injection

7 CONCLUSIONS

The review of literature and the results of the prototype technique (DetectCombined) reveal that malicious
SQL injection attacks can be effectively blocked if all vulnerable gaps in the validation protocol for input
fields are effectively filtered and encrypted before sending SQL queries to the target databases on the
remote server. The various techniques found in the literature show that SQL injection is one of the highest
threats to all kinds of industries, including banks, businesses, service companies, and government agencies.
The study highlights the risks of SQL injection attacks on the security and confidenti ality of data stored in
databases. The malicious SQL commands passed in each parameter to the query later can be effectively
mitigated using the method developed in this study.

The method used in this study is based on a new technique (filtration, validation, and history) that allows
the protection code to distinguish between safe SQL commands and malicious ones, regardless of whether
the user is a general user or an admin. It is evident that scholars in this field have emphasized that weak
filtering of input fields in any web form, especially for username and password, is potentially risky,
especially if the remote database stores confidential data like credit card information. Many developers
neglect adding a history of previous attacks to their techniques, which can help distinguish between a real
user and a malicious one in dynamic web applications such as e-commerce and banking web portals.
Neglecting these points permits hackers to execute malicious code and delete certain tables be longing to
the database or even the entire database, causing significant problems for organizations dealing with
critical and sensitive information.

To that end, the proposed DetectCombined technique developed and tested in this study is an innovative
method that executes a protection code based on a sequence of three stages: filtration -validation-history.
This technique produces a robust protection code that distinguishes between safe SQL commands and
malicious ones and reinforces the memory of the detection procedure by saving previous SQL attacks in
special tables in the remote database, regardless of whether the user is a general user or an admin.

8 RECOMMENDATIONS

Based on the findings and results of this paper, the study suggests the following recommendations for web
developers and vendors:

1. Use a history record of previous SQL attacks: This will enhance the security of webpages
that include input fields and are linked to a remote database.

2. Provide effective input validation, filtering, and encryption: Avoid any weaknesses in the
SQL server by implementing robust input validation, filtering, and encryption to discriminate against
malicious parameters used for SQL injection attacks that may damage the entire data in a target database.
Data sanitization and validation are crucial and should already be in place.

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

1108
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

3. Implement strong filtering of user input: Weak filtering of user input can enable a hacker
to insert malicious SQL code, depending on specific SQL statements, and permit the hacker to execute
malicious code.

4. Use multiple detection methods for SQL injection: Today, no single solution is sufficient
to defeat SQL injection attacks. This is due to the power and flexibility of SQL. The DetectCombined method
should address all the previous gaps in this domain.

By implementing these recommendations, web developers and vendors can significantly enhance the
security of their web applications and protect against SQL injection attacks, thereby safeguarding critical
and sensitive information.

REFERENCES

[1] Accenture. (2019). Global value of risks from direct and indirect cyberattacks, cumulative 2019 to 2023.
Retrieved April 16, 2000. https://res.cloudinary.com/yumyoshojin/image/upload/v1/pdf/fighting-
fraud-2019.pdf

[2] Cook, W. R., & Rai, S. (2005). Safe query objects: statically typed objects as remotely executable queries.
In Proceedings of the 27th International Conference on Software engineering (pp. 97-106).

[3] Dasmohapatra, S., & Priyadarshini, S. B. B. (2022). A Comprehensive Study on SQL Injection Attacks,
Their Mode, Detection and Prevention. In Proceedings of Second Doctoral Symposium on
Computational Intelligence (pp. 617-632). Springer, Singapore.

[4] Deepa, G., Thilagam, P. S., Khan, F. A., Praseed, A., Pais, A. R., & Palsetia, N. (2018). Black-box detection
of XQuery injection and parameter tampering vulnerabilities in web applications. International Journal
of Information Security, 17, 105-120.

[5] D'silva, K., Vanajakshi, J., Manjunath, K. N., & Prabhu, S. (2017). An effective method for preventing SQL
injection attack and session hijacking. In 2017 2nd IEEE International Conference on Recent Trends in
Electronics, Information & Communication Technology (RTEICT) (pp. 697-701). IEEE.

[6] Fang, Y., Peng, J., Liu, L., & Huang, C. (2018). WOVSQLI: Detection of SQL injection behaviors using
word vector and LSTM. In Proceedings of the 2nd international conference on cryptography, security
and privacy (pp. 170-174).

[7] Gogoi, B., Ahmed, T., & Dutta, A. (2021, December). Defending against SQL Injection Attacks in Web
Applications using Machine Learning and Natural Language Processing. In 2021 IEEE 18th India Council
International Conference (INDICON) (pp. 1-6). IEEE.

[8] Gupta, A., & Sharma, L. S. (2022). A Novel Approach for Detecting SQL Injection Attacks Using Snort.
Journal of The Institution of Engineers (India): Series B, 1-9.

[9] Hadabi, A., Elsamani, E., Abdallah, A., & Elhabob, R. (2022). An Efficient Model to Detect and Prevent
SQL Injection Attack. Journal of Karary University for Engineering and Science.

[10] Ines, J., Omar, C., Habib, H., & Adel, M. (2020). SQL Injection Attack Detection and Prevention
Techniques Using Machine Learning. International Journal of Applied Engineering Research, 15(6),
569-580.

[11] Jemal, I., Cheikhrouhou, O., Hamam, H., & Mahfoudhi, A. (2020). SQL injection attack detection and
prevention techniques using machine learning. International Journal of Applied Engineering
Research, 15(6), 569-580.

[12] Kareem, F. Q., Ameen, S. Y., Salih, A. A., Ahmed, D. M., Kak, S. F., Yasin, H. M., & Omar, N. (2021). SQL
injection attacks prevention system technology. Asian Journal of Research in Computer Science, 13, 32.

[13] Ke, W., Muthuprasanna, M., & Kothari, S. (2006, April). Preventing SQL injection attacks in stored
procedures. In Australian Software Engineering Conference (ASWEC'06) (pp. 8-pp). IEEE.

[14] Madhusudhan, R., & Ahsan, M. (2022). Prevention of SQL Injection Attacks Using Cryptography and
Pattern Matching. In International Conference on Advanced Information Networking and Applications
(pp. 624-634). Springer, Cham.

[15] Nithya, V., Regan, R., & Vijayaraghavan, J. (2013). A survey on SQL injection attacks, their detection and
prevention techniques. International Journal of Engineering and Computer Science, 2(4), 886-905.

[16] Ntagwabira, L., & Kang, S. L. (2010, July). Use of Query Tokenization to detect and prevent SQL Injection
Attacks. In 2010 3rd International Conference on Computer Science and Information Technology (Vol.
2, pp. 438-440). IEEE.

[17] OWASP. (2018). Owasp top ten project, https://www.owasp.org/index.php/Category:OWASP Top Ten
Project, 2019, accessed on March 2023.

Journal of Information Systems Engineering and Management
2025, 10(35s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

1109
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[18] Panigrahi, R., Borah, S., Pramanik, M., Bhoi, A. K., Barsocchi, P., Nayak, S. R., & Alnumay, W. (2022).
Intrusion detection in cyber–physical environment using hybrid Naïve Bayes-Decision table and multi-
objective evolutionary feature selection. Computer Communications, 188, 133-144.

[19] Raconteur. (2019). Cybercrime is learning from business, and it’s paying off. Available
at: https://www.raconteur.net/technology/cybercrime-business.

[20] Rai, S., & Nagpal, B. (2019). Detection & Prevention of SQL Injection Attacks: Developments of the
Decade.

[21] Raniah, A. (2019). SQL Injection Attacks: detection and prevention techniques. 3rd international
conference on reliability, INFOCOM technologies and optimization (ICRITO) (Trends and Future
Directions), Oct 8-10, 2014, AIIT, Amity University Uttar Pradesh, Noida, India

[22] Statista. (2019) Number of web attacks blocked daily worldwide 2015-2018. [Online]. Available:
https://www.statista.com/statistics/494961/web-attacksblocked-per-day-worldwide/

[23] Tafa, I., & Resulaj, E. (2021, December). SQL Injection Attacks: Its Types and Ways to Prevent Them. In
Book of Proceedings, 102.

[24] Yadav, A. K., & Kumar, A. (2022). String Matching Algorithm Based Filter for Preventing SQL Injection
and XSS Attacks. In Inventive Computation and Information Technologies (pp. 793-807). Springer,
Singapore.

[25] Yazeed, A. (2021). An Improved SQL Injection Attack Detection Model Using Machine Learning
Techniques. UTM International Journal of Innovative Computing, 11(1).

