
Journal of Information Systems Engineering and Management
2025, 10(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 843

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A Framework of Software Defect Prediction using Machine

Learning with Updated Firefly Algorithm and Neural

Networks

Naveen Monga, Parveen Sehgal
Email:navmoni70@gmail.com, parveensehgal@gmail.com

Department of Computer Science & Engineering, Om Sterling Global University, Hisar (Haryana), India

ARTICLE INFO ABSTRACT

Received: 14 Nov 2024

Revised: 20 Dec 2024

Accepted: 24 Jan 2025

This research investigates the impact of using swarm intelligence algorithms for feature

selection in software defect prediction models. Leveraging the JM1 software dataset,

comprising 10,000 records, the study evaluates the performance of three swarm intelligence

algorithms—Firefly Algorithm, Cuckoo Search, and Particle Swarm Optimization (PSO)—in

combination with Deep Neural Networks (DNN). The study focuses on three critical metrics:

Recall, Precision, and F-measure. Results indicate that the Firefly + DNN model achieved the

highest improvements, with a 7.5% increase in precision over PSO + DNN and 2.9% over

Cuckoo + DNN. In terms of recall, Firefly + DNN outperformed PSO + DNN by 10.7% and

Cuckoo + DNN by 6.3%. Furthermore, the F-measure of Firefly + DNN improved by 9.5%

compared to PSO + DNN and 5.9% over Cuckoo + DNN. These refinements underscore the

effectiveness of the Firefly Algorithm in selecting relevant features for defect prediction,

resulting in more accurate, efficient models, and reliable. The study emphasizes the

significance of feature selection in reducing overfitting, enhancing interpretability, and

lowering computational costs. Overall, this research provides robust methods for improving

software quality and reducing maintenance efforts through advanced defect prediction models,

contributing significantly to the field of software engineering.

Keywords: Software Defect Prediction, Swarm Intelligence, Particle Swarm Optimization

(PSO), Feature Selection, Firefly Algorithm, Cuckoo Search, Deep Neural Networks (DNN),

Precision, Recall, F-measure, Software Quality, Machine Learning, Computational Efficiency.

1. INTRODUCTION

Software Defect Prediction (SDP) is a critical aspect of software development that seeks to determine defective

modules or components in software before they reach the production stage. To determine which software

components are most likely to have flaws this procedure makes use of machine learning techniques and historical

data, thus allowing developers to prioritize their testing efforts and improve software quality. Effective SDP can

lead to reduced maintenance costs, enhanced reliability, and improved user satisfaction[1-2].

Importance of Feature Selection

Feature selection is a crucial step in SDP because not all features contribute equally to the prediction of defects. The

primary reasons for feature selection are:

1. Improving Model Performance: The model can concentrate on the most important features and

improve accuracy and performance by removing superfluous or irrelevant ones [3].

2. Reducing Overfitting: Models with too many features can overfit the training data which reduces their

ability to be applied to fresh data. Feature selection helps mitigate this risk.

3. Enhancing Interpretability: Interpreting and comprehending simpler models with fewer features is

simpler, making it easier for developers to gain insights from the predictions.

Journal of Information Systems Engineering and Management
2025, 10(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 844

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

4. Reducing Computational Cost: Training and prediction require fewer computational resources when

there are fewer features, leading to faster and more efficient models.

Inspired by the collective behavior of social insects and other animals swarm intelligence is a branch of artificial

intelligence. It has emerged as a powerful solution for feature selection in Software Defect Prediction (SDP) because

of its capacity to effectively search through vast search spaces and identify ideal or nearly ideal solutions. Some

popular swarm intelligence algorithms used for feature selection include Firefly Algorithm, Cuckoo Search, and

Particle Swarm Optimization (PSO) [4]. Firefly Algorithm, inspired by the natural behaviour of fireflies, uses the

concept of attractiveness based on the brightness of the fireflies; Every firefly is a possible solution and the quality

of the solution is indicated by how bright it is, with fireflies moving towards brighter ones to converge on the best

answers after exploring the search space. Based on the fact that certain cuckoo species lay their eggs in other birds'

nests Cuckoo Search uses a population of solutions or nests, where each solution represents a subset of features,

and new solutions (cuckoo eggs) can replace existing ones if they prove to be better. PSO, motivated by the social

behaviour of fish schooling or birds flocking uses particles that represent potential solutions (feature subsets)

influenced by their neighbors and their own experiences through the search space, adjusting their positions based

on the best-known positions to converge towards an optimal solution. These algorithms provide robust, flexible,

and efficient means of identifying the most relevant features, leading to improved software quality and reduced

maintenance costs[5].

Figure 1: The general architecture of software defect prediction

Once the appropriate features are selected, they are passed for training and classification. In this context, selecting

the right features critical impacts the accuracy and performance of the predictive models. This research work

presents a comprehensive comparative analysis of feature selection based on various swarm intelligence (SI)

algorithms, such as the Firefly Algorithm, Cuckoo Search, and PSO. These algorithms are used to reduce

dimensionality and increase the training processs efficiency by identifying the datasets most pertinent features.

Once the feature selection process is completed using these SI algorithms, the selected features are then fed into

various classifiers for training. This step involves building predictive models that learn from the training data to

identify patterns and make accurate predictions on new, unseen data. The classifiers could include machine

learning (ML)techniques like Decision Trees, Support Vector Machines, Random Forests, and Neural Networks.

The research aims to evaluate and compare the effectiveness of different SI-based feature selection methods in

terms of their impact on classification performance. By systematically analyzing the results, this study provides

insights into which SI algorithms are most effective for feature selection in the condition of Software Defect

Prediction (SDP), ultimately leading to enhanced predictive accuracy and more reliable software development

processes [6].

Journal of Information Systems Engineering and Management
2025, 10(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 845

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

2. RELATED WORK

Malhotra et al. (2021) proposed a SDP model that utilized binary particle swarm optimization (BPSO) for the

fitness function binary cross entropy. Their work demonstrated how BPSO could effectively handle the binary

nature of defect prediction and optimize the selection of relevant features, resulting in improved prediction

accuracy [7]. Abdi et al. (2015) proposed a swarm intelligence-based hybrid one-class rule learning method for

predicting software errors. They combined the strengths of various swarm intelligence techniques to create a robust

method for identifying defective software modules, showcasing the potential of hybrid approaches in enhancing

defect prediction capabilities [8].

Akbar et al. (2024) focused on optimizing SDP models by integrating Hybrid Grey Wolf Optimization (GWO) and

PSO for enhanced feature selection. By leveraging the exploration capabilities of GWO and the ability to exploit of

PSO, they were able to improve the selection of significant features and enhance the performance of a gradient

boosting algorithm used for classification [9]. Khalid et al. (2023) conducted an extensive analysis of SDP using a

variety of ML techniques. Their research provided insights into the comparative effectiveness of different

algorithms and highlighted the importance of selecting appropriate ML methods for defect prediction [10]. Anju

and Judith (2023) developed an adaptive recurrent neural network (RNN) for SDP, incorporating quantum theory

and particle swarm optimization (PSO). Their approach utilized the principles of quantum mechanics to enhance

the exploration of the search space, while PSO helped in optimizing the model parameters, leading to significant

improvements in prediction accuracy [11]. Khurma et al. (2021) proposed an enhanced evolutionary SDP method

using island moth flame optimization (IMFO). This algorithm combined the evolutionary strategies of moth flame

optimization with island models to maintain diversity in the population and avoid premature convergence,

resulting in better prediction performance [12]. Anbu and Anandha Mala (2019) focused on feature selection using

the firefly algorithm (FA) in SDP. By mimicking the bioluminescent communication of fireflies, FA was able to

identify the most relevant features, reduce dimensionality, and upgrade the accuracy of defect prediction models

[13]. Arora and Saha (2018) also employed the FA for software fault prediction, demonstrating its effectiveness in

selecting relevant features and enhancing model performance. Their work highlighted the algorithms capacity to

strike a balance between exploitation and exploration during the search process [14]. Maulida et al. (2023) utilized

the FA in combination with tree-based classification techniques for SDP. Their approach leveraged the strengths of

FA in feature selection and the robustness of tree-based classifiers, resulting in improved prediction models [15].

Finally, Kakkar et al. (2021) presented an optimized software defect prediction model based on PSO and Adaptive

Neuro-Fuzzy Inference System (ANFIS). By combining the global search capabilities of PSO with the adaptive

learning features of ANFIS, they were able to develop a highly accurate and reliable prediction model,

demonstrating the effectiveness of integrating different optimization and learning techniques [16].

3. PROPOSED FRAMEWORK

The proposed work is structured into two comprehensive segments, each designed to enhance the software defect

prediction process through the effective use of swarm intelligence (SI) algorithms and subsequent model training

and classification.

The overall workflow can be presented as follows.

Journal of Information Systems Engineering and Management
2025, 10(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 846

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Figure 2: Overall Workflow Model

The first segment is dedicated to feature selection, a crucial step in the prediction process. This phase employs

different SI-based algorithms, specifically the Firefly Algorithm, Cuckoo Search, and PSO. Each of these algorithms

brings unique strengths to the table, leveraging the principles of swarm intelligence to effectively search the dataset

and find the most pertinent features. The Firefly Algorithm, inspired by the bioluminescent communication of

fireflies, excels in balancing exploration and exploitation, thereby selecting features that significantly impact

prediction accuracy. Cuckoo Search, based on the brood parasitism strategy of certain cuckoo species, is good at

avoiding local optima and making sure the feature space is thoroughly searched. Using particles that modify their

positions based on both individual and collective experiences PSO converges towards optimal feature subsets

drawing inspiration from the social behavior of fish schools and flocks of birds. Through these algorithms, the first

segment aims to decrease the dimensionality of the dataset, retain essential information, and irrelevant features or

eliminate redundant.

In the context of feature selection, the Firefly Algorithm (FA) treats each firefly as a potential solution, where the

position of the firefly represents a specific subset of features. The classification accuracy, calculated using the

selected features, determines the "light intensity" of each firefly. Brighter fireflies, which correspond to better

Journal of Information Systems Engineering and Management
2025, 10(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 847

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

feature subsets with higher classification accuracy, attract the others. During the optimization process, fireflies

move towards more attractive ones based on their brightness, and their positions (i.e., feature subsets) are updated

accordingly. The algorithm iteratively refines the feature subsets by making less optimal fireflies adopt the features

of more optimal ones, while also incorporating random perturbations for exploration. At the end of the process, the

firefly with the highest light intensity yields the optimal feature subset that maximizes classification accuracy.

The proposed algorithm is based on the idea that fireflies are interestedin each other based on their brightness,

which in the context of feature selection, corresponds to the classification accuracy obtained using the subset of

features that each firefly show. The firefly with higher brightness (better feature subset) attracts others, and they

move toward it. The movement of fireflies is influenced by three main factors: attractiveness, distance between

fireflies, and randomness.

The proposed work can be illustrated using the following example set.

Initialization:

Let the positions of the fireflies represent their feature subsets:

- F1 selects features [1, 1, 0, 0] (features 1 and 2).

- F2 selects features [0, 1, 1, 0] (features 2 and 3).

- F3 selects features [1, 0, 0, 1] (features 1 and 4).

2. Objective Function:

Let's assume the classification accuracy (light intensity I) for each firefly based on its selected features is as follows:

- I1 = 0.85 for F1 (features 1, 2).

- I2 = 0.80 for F2 (features 2, 3).

- I3 = 0.90 for F3 (features 1, 4).

3. Distance Calculation:

The Euclidean distance r_ij between firefly i and firefly j is calculated based on their feature selections:

- Distance between F1 and F2:

 𝑟12 = √((1 − 0)2 + (1 − 1)2 + (0 − 1)2 + (0 − 0)2)

- Distance between F1 and F3:

 𝑟13 = √((1 − 1)^2 + (1 − 0)^2 + (0 − 0)^2 + (0 − 1)^2)

- Distance between F2 and F3:

 𝑟23 = √((0 − 1)^2 + (1 − 0)^2 + (1 − 0)^2 + (0 − 1)^2)

4. Attractiveness and Movement:

Now, fireflies with lower intensity (classification accuracy) will move towards the fireflies with higher intensity.

Let β_0 = 1, γ = 1, and α = 0.2.

- F1 (with intensity 0.85) moves towards F3 (with intensity 0.90) using the movement equation:

𝑥1 = 𝑥1 + 𝛽0𝑒{−𝛾𝑟{13}
2 }(𝑥3− 𝑥1)

+ 𝛼𝜀

Plugging in the values:

− 𝑥1 = 𝑥1 + 1 ∗ 𝑒{−1 ∗ (𝑠𝑞𝑟𝑡(2))
2

}(𝑥3− 𝑥1)
+ 0.2 ∗ 𝜀

− 𝑥1 = 𝑥1 + 1 ∗ 𝑒{−2}(𝑥3− 𝑥1) + 0.2 ∗ 𝜀

- The factor 𝑒{−2} is approximately 0.135, so the update becomes:

− 𝑥1 = 𝑥1 + 0.135(𝑥3 − 𝑥1) + 0.2 ∗ 𝜀

Assuming a random small value for ε, say ε = 0.05, we get:

− 𝑥1 = 𝑥1 + 0.135(𝑥3 − 𝑥1) + 0.01

If x_1 = [1, 1, 0, 0] and x_3 = [1, 0, 0, 1], the movement would change the feature selection of F1 slightly towards F3,

resulting in a new set of features for F1.

Journal of Information Systems Engineering and Management
2025, 10(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 848

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

5. Update Light Intensity:

After the movement, the firefly's feature subset is updated and the classification accuracy is re-evaluated. If the

accuracy improves, the firefly's new light intensity is updated.

6. Iteration:

This process repeats for all fireflies, iteratively improving their feature subsets until the algorithm converges to the

optimal set of features with the best classification accuracy.

For feature selection, PSO operates by treating each particle as a candidate solution, where the position of the

particle in the research space represents a subset of features. Each particle evaluates the classification accuracy

based on the current features it selects. The algorithm keeps track of two key aspects: the personal best (the best

subset of features a particle has found until now) and the global best (the best subset found by the entire swarm).

The swarms collective experience (global best) and individual experience (personal best) are both used by particles

to update their positions, gradually refining the feature subsets they select. The algorithm adjusts particle velocities

and positions, promoting exploitation and exploration of the search space. After multiple iterations, the particle

with the highest classification accuracy provides the final set of optimal features.

Journal of Information Systems Engineering and Management
2025, 10(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 849

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cuckoo Search (CS), each nest represents a potential solution, i.e., a subset of selected features. The classification

accuracy of each subset is evaluated to determine its fitness. The algorithm generates new feature subsets by

performing Levy flights, which allows for significant jumps across the search space, increasing the likelihood of

finding better features. If a new feature subset (generated by Levy flight) provides better classification accuracy

than the current one, the new subset replaces the old one. Additionally, a fraction of the worst-performing nests

(feature subsets) are abandoned and replaced with new randomly generated nests to enhance exploration. This

process continues until the best subset of features is identified, which corresponds to the nest with the highest

classification accuracy. Thus, CS effectively explores the feature space, balancing exploration and exploitation, to

determine the best collection of characteristics for classification.

The use of the chosen features for training and classification is the main topic of the second section. Once the

optimal features are identified, they are used to train various machine learning models. This phase involves

building predictive models that learn from the training data to identify patterns and make accurate predictions on

new, unseen data.

3.1 Deep Neural Networks(DNN)

An artificial neural network class known as Deep Neural Networks (DNN) is very good at extracting intricate

patterns from big datasets because it has several hidden layers between the input and output layers. The diagram

given in Figure 3 illustrates this multi-layered architecture of DNN showing position of input layer, multiple hidden

layers and the output layer. Each layer here is represented by a collection of neurons depicted by nodes. These are

connected by weighted edges that represent the flow of the information in the network. The word deep in DNN

depicts the existence of several layers that gradually extract higher-level characteristics from the unprocessed input

data. Each layer is made up of interconnected nodes or neurons which transform the input data using an activation

function and a weighted sum. For illustration the diagram also highlights the flow of data via each layer that starts

from the raw input to the final output layer. This flow further illustrates how the raw data under goes series of

transformations at each layer progressively and results in highly structured outcome. This enables the network to

discover non-linear relationships data.The hidden layers are not visible in traditional machine learning modes as

Journal of Information Systems Engineering and Management
2025, 10(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 850

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

they allow the DNN modes to model complex patterns that cannot be captured by simpler algorithms.This

hierarchical structure enables DNNs to automatically extract features from the data, with initial layers learning

basic patterns (such as edges in image data or simple correlations in numerical data), while deeper layers learn

more abstract and complex features (such as object recognition or intricate dependencies in time series).

Hidden Layer

Input Layer

Output Layer

Figure 3: DNN multi-layered Architecture

DNNs have the advantage of scalability, meaning they can handle large datasets effectively, and their performance

improves with more data, enabling them to be used for a range of tasks including, natural language processing, and

picture recognition, and predictive analytics. Training a DNN involves techniques like backpropagation, which

determines the error gradient for each network weight and uses gradient descent to modify the weights in order to

minimize the error. This iterative process allows DNNs to fine-tune their parameters for optimal performance.

Advanced optimization methods, such as Adam or RMSprop, can further enhance the training process by

dynamically adjusting the learning rate based on the gradients' behaviour. Regularization methods like batch

normalization and dropout also aid in preventing overfitting guaranteeing that the model performs well when

applied to new data.

The ability of DNNs to learn and model complex relationships makes them a powerful tool for tasks where

traditional machine learning algorithms may struggle to achieve high accuracy. In cases where the data exhibits

non-linear patterns, interdependencies, or high-dimensionality, DNNs excel by utilizing their deep architecture to

capture subtle variations and extract meaningful features. This capability has led to breakthroughs in various fields,

positioning DNNs as a cornerstone of modern artificial intelligence, driving advancements in automation, decision-

making, and predictive modeling across industries.

The proposed work leverages (DNN) for software defect prediction by combining their powerful feature extraction

capabilities with swarm intelligence algorithms for optimal feature selection. The DNN is designed to process the

JM1 software dataset, which contains high-dimensional and complex data. To enhance the prediction accuracy, the

DNN model is trained on features selected by algorithms such as Firefly, Cuckoo Search, and PSO, ensuring that

only the most relevant features are used for classification.

Journal of Information Systems Engineering and Management
2025, 10(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 851

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The DNN architecture consists of an input layer, multiple hidden layers, and an output layer. The input layer

corresponds to the selected features from the dataset. Each hidden layer applies non-linear transformations to the

input data through activation functions, such as ReLU, to capture complex patterns and relationships. The final

output layer uses a softmax activation function for binary classification, indicating whether a software module is

defective or not.

The training process involves:

1. Initializing the network weights randomly.

2. Forward propagating the input data through the network to calculate the output.

3. Comparing the output with the ground truth labels using a loss function (binary cross-entropy in this case).

4. Backpropagating the error to update the weights using gradient descent optimization.

5. Repeating this process for multiple epochs until the model achieves optimal performance.

3.2 Simulation Setup

In this experimental setup, MATLAB serves as the primary software environment for implementing the algorithms

and training the models. MATLAB, known for its high-level programming capabilities, provides a versatile system

for analyzing data, machine learning, and deep learning, making it well-suited for tasks such as software defect

prediction. The environment offers built-in tools for implementing Deep Neural Networks (DNN) and supports the

integration of swarm intelligence algorithms like Firefly, Cuckoo Search, and PSO. With the help of MATLAB's

Deep Learning Toolbox, researchers can design and train DNNs effectively by defining network architectures,

tuning hyperparameters, and employing sophisticated optimization methods like backpropagation and gradient

descent.

Journal of Information Systems Engineering and Management
2025, 10(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 852

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The dataset utilized in this work is the JM1 software dataset, a well-known benchmark in software defect prediction

research. The JM1 dataset is derived from the NASA Metrics Data Program, consisting of software metrics and

defect labels from a large-scale software project. It contains 21 features representing various software attributes,

like code complexity, lines of code, and other software metrics, along with a binary classification label indicating

whether a software module is defective or not. With 10,000 records, the JM1 dataset provides a diverse and realistic

set of data for evaluating the performance of the proposed models. This dataset is chosen due to its relevance in

defect prediction studies and its ability to reflect real-world software development challenges, making it an ideal

benchmark for testing the effectiveness of DNN combined with swarm intelligence algorithms in classification tasks

and feature selection.

4. RESULTS AND ANALYSIS

The proposed work has been evaluated using the JM1 software dataset, which contains 10,000 records. This dataset

serves as an extensive benchmark for evaluating the performance of feature selection methods and the subsequent

classification models. The evaluation emphasizes multiple essential performance metrics, such as recall, precision,

and F-measure, to deliver an in-depth assessment of the model's effectiveness.

Precision, F-measure, and Recall are essential indicators in the framework of SDP:

• Precision: This metric evaluates the ratio of true positive predictions to the total positive predictions

generated by the model. It indicates the model's accuracy in identifying actual defects without including too

many false positives. High precision indicates that the model is reliable in predicting defects, minimizing

the cost and effort of investigating false alarms.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑

𝑡𝑟𝑢𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑+𝑓𝑎𝑙𝑠𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑
 (1)

• Recall: Recall gauges the ratio of true positive predictions to all actual positive instances in the dataset. It

demonstrates the model's capability to detect all pertinent instances of defects. High recall ensures that

most of the actual defects are detected, which is crucial for maintaining software quality and reducing the

risk of undetected defects causing issues in the production environment.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑

𝑡𝑟𝑢𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑+𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑
 (2)

• F-measure: The F-measure, or The F1-score, calculated as the harmonic mean of precision and recall,

offers a unified metric that integrates both precision and recall, providing an overall perspective on the

model’s effectiveness. A high F1-score suggests that the model achieves a strong balance between precision

and recall, supporting both accuracy and thoroughness in defect prediction.

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (3)

Table 1: Precision Comparison

0 Firefly +

DNN

Cuckoo +

DNN

PSO + DNN

1,000 0.862 0.814 0.802

2,000 0.8598 0.8127 0.8051

3,000 0.8642 0.8155 0.8009

4,000 0.8671 0.8173 0.8043

5,000 0.8655 0.8161 0.8097

6,000 0.8694 0.8188 0.8064

7,000 0.8702 0.8212 0.8079

8,000 0.8687 0.8204 0.8103

9,000 0.8725 0.823 0.8112

10,000 0.871 0.8221 0.8088

Journal of Information Systems Engineering and Management
2025, 10(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 853

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The Firefly + DNN algorithm consistently outperforms both Cuckoo + DNN and PSO + DNN in terms of

precision across all record sizes. It maintains a higher precision starting from 0.8620 for 1,000 records and

gradually improving to 0.8710 for 10,000 records. The Cuckoo + DNN algorithm follows closely behind but has

slightly lower precision, starting at 0.8140 and reaching 0.8230 for 10,000 records. PSO + DNN, while also

showing improvement, lags behind the other two, starting at 0.8020 and ending at 0.8110. The proposed Firefly

+ DNN shows a distinct advantage in maintaining higher precision across various data sizes, demonstrating its

better capability to minimize false positives compared to the other algorithms.

Figure 4: Comparative Analysis of precision

Table 2: Recall Comparison

Number of

Records

Firefly +

DNN

Cuckoo +

DNN

PSO +

DNN

1,000 0.875 0.822 0.787

2,000 0.8731 0.8213 0.7908

3,000 0.8764 0.8242 0.7885

4,000 0.8787 0.8251 0.7917

5,000 0.8793 0.8269 0.7944

6,000 0.8805 0.8277 0.7959

7,000 0.8812 0.8289 0.7933

8,000 0.883 0.8302 0.7971

9,000 0.8844 0.8296 0.7964

10,000 0.8851 0.8311 0.798

For recall, Firefly + DNN once again takes the lead, starting at 0.8750 and improving to 0.8851 as the number of

records increases to 10,000. Cuckoo + DNN performs decently, but its recall remains lower, ranging from

0.8220 to 0.8311. PSO + DNN has a comparatively lower recall, starting at 0.7870 for 1,000 records and

improving to 0.7980 for 10,000 records. The proposed Firefly + DNN demonstrates its superiority in recall

Journal of Information Systems Engineering and Management
2025, 10(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 854

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

performance, consistently achieving higher values, indicating its effectiveness in correctly identifying true

positives while maintaining fewer instances of false negatives compared to the other algorithms.

Figure 5: Comparative Analysis of recall

Table 3: F-measure Comparison

Number of

Records

Firefly + DNN Cuckoo + DNN PSO + DNN

1,000 0.8685 0.818 0.7945

2,000 0.8663 0.817 0.7979

3,000 0.8697 0.8195 0.7952

4,000 0.8729 0.8205 0.798

5,000 0.871 0.8217 0.801

6,000 0.8737 0.8233 0.7997

7,000 0.8746 0.8245 0.7975

8,000 0.8758 0.8261 0.8008

9,000 0.8769 0.8253 0.7994

10,000 0.878 0.827 0.8016

Journal of Information Systems Engineering and Management
2025, 10(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 855

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Figure 6: Comparative Analysis of f-measure

Regarding the F-measure, which represents the harmonic mean of precision and recall, Firefly + DNN shows the

best overall performance, beginning at 0.8685 for 1,000 records and gradually improving to 0.8780 for 10,000

records. Cuckoo + DNN stays somewhat close but falls behind, with F-measure values ranging from 0.8180 to

0.8270. PSO + DNN consistently remains the lowest, with values starting at 0.7945 and reaching 0.8016. The

proposed Firefly + DNN excels in balancing precision and recall, making it the most reliable in terms of both

robustness and accuracy over the other algorithms, which have difficulty maintaining a balance between these two

key metrics.

The proposed Firefly + DNN algorithm shows significant improvement over the other algorithms in all key

performance metrics. In terms of precision, Firefly + DNN achieves an average of 2.9% higher precision than

Cuckoo + DNN and around 7.5% higher than PSO + DNN across different record sizes. For recall, the

improvement is even more pronounced, with Firefly + DNN outperforming Cuckoo + DNN by approximately

6.3% and PSO + DNN by around 10.7%. When looking at the F-measure, which balances recall and precision,

Firefly + DNN shows an improvement of around 5.9% over Cuckoo + DNN and a substantial 9.5% improvement

over PSO + DNN. These improvements demonstrate that Firefly + DNN provides more accurate and reliable

performance, making it the superior choice for classification tasks compared to the other algorithms.

5. CONCLUSION

This research demonstrates the substantial benefits of employing swarm intelligence algorithms for feature

selection in SDP. By using the JM1 software dataset with 10,000 records, the study evaluated the effectiveness of

the Firefly Algorithm, Cuckoo Search, and PSO combined with DNN. The results revealed significant improvements

in recall, F-measure, and precision. The Firefly + DNN model exhibited the most notable improvements, with a

7.5% increase in precision over PSO + DNN and 2.9% over Cuckoo + DNN. In terms of recall, Firefly +

DNN showed an improvement of 10.7% over PSO + DNN and 6.3% over Cuckoo + DNN. Additionally, the

F-measure of the Firefly + DNN model demonstrated a 9.5% improvement compared to PSO + DNN and a

5.9% improvement over Cuckoo + DNN. These results highlight the superiority of Firefly + DNN in

balancing precision and recall, making it the most robust approach for feature selection in defect prediction. The

study also showed significant performance improvements for the Cuckoo + DNN model, albeit slightly behind

Firefly. These findings underscore the efficacy of the Firefly Algorithm in identifying relevant features, leading to

more accurate, interpretable, and efficient models. Overall, this research contributes toward the creation of more

reliable SDP models, which will contribute to improving software quality, minimizing maintenance efforts, and

advance the field of software engineering.

Journal of Information Systems Engineering and Management
2025, 10(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 856

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

REFERENCES:

[1] M. K. Thota, F. H. Shajin, and P. Rajesh, "Survey on SDP techniques," International Journal of Applied

Science and Engineering, vol. 17, no. 4, pp. 331-344, 2020.

[2] N. E. Fenton and M. Neil, "A critique of SDP models," IEEE Transactions on Software Engineering, vol. 25,

no. 5, pp. 675-689, 1999.

[3] X. Wang, H. Yan, and J. Li, "An improved supervised learning defect prediction model based on cat swarm

algorithm," in Journal of Physics: Conference Series, vol. 1087, no. 2, p. 022005, IOP Publishing, 2018.

[4] R. S. Wahono and N. Suryana, "Combining particle swarm optimization based feature selection and bagging

technique for software defect prediction," International Journal of Software Engineering and Its

Applications, vol. 7, no. 5, pp. 153-166, 2013.

[5] R. S. Wahono and N. Suryana, "Combining particle swarm optimization based feature selection and bagging

technique for software defect prediction," International Journal of Software Engineering and Its

Applications, vol. 7, no. 5, pp. 153-166, 2013.

[6] W. Zheng, T. Shen, X. Chen, and P. Deng, "Interpretability application of the Just-in-Time SDP model,"

Journal of Systems and Software, vol. 188, p. 111245, 2022.

[7] R. Malhotra, A. Shakya, R. Ranjan, and R. Banshi, "Software defect prediction using binary particle swarm

optimization with binary cross entropy as the fitness function," in Journal of Physics: Conference Series, vol.

1767, no. 1, p. 012003, IOP Publishing, 2021.

[8] Y. Abdi, S. Parsa, and Y. Seyfari, "A hybrid one-class rule learning approach based on swarm intelligence for

software fault prediction," Innovations in Systems and Software Engineering, vol. 11, pp. 289-301, 2015.

[9] A. M. Akbar, R. Herteno, S. W. Saputro, M. R. Faisal, and R. A. Nugroho, "Optimizing Software Defect

Prediction Models: Integrating Hybrid Grey Wolf and Particle Swarm Optimization for Enhanced Feature

Selection with Popular Gradient Boosting Algorithm," Journal of Electronics, Electromedical Engineering,

and Medical Informatics, vol. 6, no. 2, pp. 169-181, 2024.

[10] A. Khalid, G. Badshah, N. Ayub, M. Shiraz, and M. Ghouse, "Software defect prediction analysis using machine

learning techniques," Sustainability, vol. 15, no. 6, p. 5517, 2023.

[11] A. J. Anju and J. E. Judith, "Adaptive recurrent neural network for software defect prediction with the aid of

quantum theory-particle swarm optimization," Multimedia Tools and Applications, vol. 82, no. 11, pp. 16257-

16278, 2023.

[12] R. A. Khurma, H. Alsawalqah, I. Aljarah, M. A. Elaziz, and R. Damaševičius, "An enhanced evolutionary

software defect prediction method using island moth flame optimization," Mathematics, vol. 9, no. 15, p. 1722,

2021.

[13] M. Anbu and G. S. Anandha Mala, "Feature selection using firefly algorithm in software defect prediction,"

Cluster Computing, vol. 22, pp. 10925-10934, 2019.

[14] I. Arora and A. Saha, "Software fault prediction using firefly algorithm," International Journal of Intelligent

Engineering Informatics, vol. 6, no. 3-4, pp. 356-377, 2018.

[15] V. Maulida, R. Herteno, D. Kartini, F. Abadi, and M. R. Faisal, "Feature Selection Using Firefly Algorithm with

Tree-Based Classification in Software Defect Prediction," Journal of Electronics, Electromedical Engineering,

and Medical Informatics, vol. 5, no. 4, pp. 223-230, 2023.

[16] M. Kakkar, S. Jain, A. Bansal, and P. S. Grover, "An optimized software defect prediction model based on PSO-

ANFIS," Recent Advances in Computer Science and Communications (Formerly: Recent Patents on

Computer Science), vol. 14, no. 9, pp. 2732-2741, 2021

