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This research investigates the impact of using swarm intelligence algorithms for feature 

selection in software defect prediction models. Leveraging the JM1 software dataset, 

comprising 10,000 records, the study evaluates the performance of three swarm intelligence 

algorithms—Firefly Algorithm, Cuckoo Search, and Particle Swarm Optimization (PSO)—in 

combination with Deep Neural Networks (DNN). The study focuses on three critical metrics: 

Recall, Precision, and F-measure. Results indicate that the Firefly + DNN model achieved the 

highest improvements, with a 7.5% increase in precision over PSO + DNN and 2.9% over 

Cuckoo + DNN. In terms of recall, Firefly + DNN outperformed PSO + DNN by 10.7% and 

Cuckoo + DNN by 6.3%. Furthermore, the F-measure of Firefly + DNN improved by 9.5% 

compared to PSO + DNN and 5.9% over Cuckoo + DNN. These refinements underscore the 

effectiveness of the Firefly Algorithm in selecting relevant features for defect prediction, 

resulting in more accurate, efficient models, and reliable. The study emphasizes the 

significance of feature selection in reducing overfitting, enhancing interpretability, and 

lowering computational costs. Overall, this research provides robust methods for improving 

software quality and reducing maintenance efforts through advanced defect prediction models, 

contributing significantly to the field of software engineering. 
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(PSO), Feature Selection, Firefly Algorithm, Cuckoo Search, Deep Neural Networks (DNN), 

Precision, Recall, F-measure, Software Quality, Machine Learning, Computational Efficiency. 

 

1. INTRODUCTION  

Software Defect Prediction (SDP) is a critical aspect of software development that seeks to determine defective 

modules or components in software before they reach the production stage. To determine which software 

components are most likely to have flaws this procedure makes use of machine learning techniques and historical 

data, thus allowing developers to prioritize their testing efforts and improve software quality. Effective SDP can 

lead to reduced maintenance costs, enhanced reliability, and improved user satisfaction[1-2]. 

Importance of Feature Selection 

Feature selection is a crucial step in SDP because not all features contribute equally to the prediction of defects. The 

primary reasons for feature selection are: 

1. Improving Model Performance: The model can concentrate on the most important features and 

improve accuracy and performance by removing superfluous or irrelevant ones [3]. 

2. Reducing Overfitting: Models with too many features can overfit the training data which reduces their 

ability to be applied to fresh data. Feature selection helps mitigate this risk. 

3. Enhancing Interpretability: Interpreting and comprehending simpler models with fewer features is 

simpler, making it easier for developers to gain insights from the predictions. 
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4. Reducing Computational Cost: Training and prediction require fewer computational resources when 

there are fewer features, leading to faster and more efficient models. 

Inspired by the collective behavior of social insects and other animals swarm intelligence is a branch of artificial 

intelligence. It has emerged as a powerful solution for feature selection in Software Defect Prediction (SDP) because 

of its capacity to effectively search through vast search spaces and identify ideal or nearly ideal solutions. Some 

popular swarm intelligence algorithms used for feature selection include Firefly Algorithm, Cuckoo Search, and 

Particle Swarm Optimization (PSO) [4]. Firefly Algorithm, inspired by the natural behaviour of fireflies, uses the 

concept of attractiveness based on the brightness of the fireflies; Every firefly is a possible solution and the quality 

of the solution is indicated by how bright it is, with fireflies moving towards brighter ones to converge on the best 

answers after exploring the search space. Based on the fact that certain cuckoo species lay their eggs in other birds' 

nests Cuckoo Search uses a population of solutions or nests, where each solution represents a subset of features, 

and new solutions (cuckoo eggs) can replace existing ones if they prove to be better. PSO, motivated by the social 

behaviour of fish schooling or birds flocking uses particles that represent potential solutions (feature subsets) 

influenced by their neighbors and their own experiences through the search space, adjusting their positions based 

on the best-known positions to converge towards an optimal solution. These algorithms provide robust, flexible, 

and efficient means of identifying the most relevant features, leading to improved software quality and reduced 

maintenance costs[5]. 

 

Figure 1: The general architecture of software defect prediction 

Once the appropriate features are selected, they are passed for training and classification. In this context, selecting 

the right features critical impacts the accuracy  and performance of the predictive models. This research work 

presents a comprehensive comparative analysis of feature selection based on various swarm intelligence (SI) 

algorithms, such as the Firefly Algorithm, Cuckoo Search, and PSO. These algorithms are used to reduce 

dimensionality and increase the training processs efficiency by identifying the datasets most pertinent features. 

Once the feature selection process is completed using these SI algorithms, the selected features are then fed into 

various classifiers for training. This step involves building predictive models that learn from the training data to 

identify patterns and make accurate predictions on new, unseen data. The classifiers could include machine 

learning (ML)techniques like Decision Trees, Support Vector Machines, Random Forests, and Neural Networks. 

The research aims to evaluate and compare the effectiveness of different SI-based feature selection methods in 

terms of their impact on classification performance. By systematically analyzing the results, this study provides 

insights into which SI algorithms are most effective for feature selection in the condition of Software Defect 

Prediction (SDP), ultimately leading to enhanced predictive accuracy and more reliable software development 

processes [6]. 
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2. RELATED WORK  

Malhotra et al. (2021) proposed a SDP model that utilized binary particle swarm optimization (BPSO) for the 

fitness function binary cross entropy. Their work demonstrated how BPSO could effectively handle the binary 

nature of defect prediction and optimize the selection of relevant features, resulting in improved prediction 

accuracy [7]. Abdi et al. (2015) proposed a swarm intelligence-based hybrid one-class rule learning method for 

predicting software errors. They combined the strengths of various swarm intelligence techniques to create a robust 

method for identifying defective software modules, showcasing the potential of hybrid approaches in enhancing 

defect prediction capabilities [8]. 

Akbar et al. (2024) focused on optimizing SDP models by integrating Hybrid Grey Wolf Optimization (GWO) and 

PSO for enhanced feature selection. By leveraging the exploration capabilities of GWO and the ability to exploit of 

PSO, they were able to improve the selection of significant features and enhance the performance of a gradient 

boosting algorithm used for classification [9]. Khalid et al. (2023) conducted an extensive analysis of SDP using a 

variety of ML techniques. Their research provided insights into the comparative effectiveness of different 

algorithms and highlighted the importance of selecting appropriate ML methods for defect prediction [10]. Anju 

and Judith (2023) developed an adaptive recurrent neural network (RNN) for SDP, incorporating quantum theory 

and particle swarm optimization (PSO). Their approach utilized the principles of quantum mechanics to enhance 

the exploration of the search space, while PSO helped in optimizing the model parameters, leading to significant 

improvements in prediction accuracy [11]. Khurma et al. (2021) proposed an enhanced evolutionary SDP method 

using island moth flame optimization (IMFO). This algorithm combined the evolutionary strategies of moth flame 

optimization with island models to maintain diversity in the population and avoid premature convergence, 

resulting in better prediction performance [12]. Anbu and Anandha Mala (2019) focused on feature selection using 

the firefly algorithm (FA) in SDP. By mimicking the bioluminescent communication of fireflies, FA was able to 

identify the most relevant features, reduce dimensionality, and upgrade the accuracy of defect prediction models 

[13]. Arora and Saha (2018) also employed the FA for software fault prediction, demonstrating its effectiveness in 

selecting relevant features and enhancing model performance. Their work highlighted the algorithms capacity to 

strike a balance between exploitation and exploration during the search process [14]. Maulida et al. (2023) utilized 

the FA in combination with tree-based classification techniques for SDP. Their approach leveraged the strengths of 

FA in feature selection and the robustness of tree-based classifiers, resulting in improved prediction models [15]. 

Finally, Kakkar et al. (2021) presented an optimized software defect prediction model based on PSO and Adaptive 

Neuro-Fuzzy Inference System (ANFIS). By combining the global search capabilities of PSO with the adaptive 

learning features of ANFIS, they were able to develop a highly accurate and reliable prediction model, 

demonstrating the effectiveness of integrating different optimization and learning techniques [16]. 

3. PROPOSED FRAMEWORK  

The proposed work is structured into two comprehensive segments, each designed to enhance the software defect 

prediction process through the effective use of swarm intelligence (SI) algorithms and subsequent model training 

and classification. 

The overall workflow can be presented as follows. 
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Figure 2: Overall Workflow Model 

The first segment is dedicated to feature selection, a crucial step in the prediction process. This phase employs 

different SI-based algorithms, specifically the Firefly Algorithm, Cuckoo Search, and PSO. Each of these algorithms 

brings unique strengths to the table, leveraging the principles of swarm intelligence to effectively search the dataset 

and find the most pertinent features. The Firefly Algorithm, inspired by the bioluminescent communication of 

fireflies, excels in balancing exploration and exploitation, thereby selecting features that significantly impact 

prediction accuracy. Cuckoo Search, based on the brood parasitism strategy of certain cuckoo species, is good at 

avoiding local optima and making sure the feature space is thoroughly searched. Using particles that modify their 

positions based on both individual and collective experiences PSO converges towards optimal feature subsets 

drawing inspiration from the social behavior of fish schools and flocks of birds. Through these algorithms, the first 

segment aims to decrease the dimensionality of the dataset, retain essential information, and irrelevant features or 

eliminate redundant. 

 

In the context of feature selection, the Firefly Algorithm (FA) treats each firefly as a potential solution, where the 

position of the firefly represents a specific subset of features. The classification accuracy, calculated using the 

selected features, determines the "light intensity" of each firefly. Brighter fireflies, which correspond to better 



Journal of Information Systems Engineering and Management 
2025, 10(3) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 847 

 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

feature subsets with higher classification accuracy, attract the others. During the optimization process, fireflies 

move towards more attractive ones based on their brightness, and their positions (i.e., feature subsets) are updated 

accordingly. The algorithm iteratively refines the feature subsets by making less optimal fireflies adopt the features 

of more optimal ones, while also incorporating random perturbations for exploration. At the end of the process, the 

firefly with the highest light intensity yields the optimal feature subset that maximizes classification accuracy. 

The proposed algorithm is based on the idea that fireflies are interestedin each other based on their brightness, 

which in the context of feature selection, corresponds to the classification accuracy obtained using the subset of 

features that each firefly show. The firefly with higher brightness (better feature subset) attracts others, and they 

move toward it. The movement of fireflies is influenced by three main factors: attractiveness, distance between 

fireflies, and randomness. 

The proposed work can be illustrated using the following example set. 

Initialization: 

Let the positions of the fireflies represent their feature subsets:  

- F1 selects features [1, 1, 0, 0] (features 1 and 2). 

- F2 selects features [0, 1, 1, 0] (features 2 and 3). 

- F3 selects features [1, 0, 0, 1] (features 1 and 4). 

2. Objective Function: 

Let's assume the classification accuracy (light intensity I) for each firefly based on its selected features is as follows:  

- I1 = 0.85 for F1 (features 1, 2). 

- I2 = 0.80 for F2 (features 2, 3). 

- I3 = 0.90 for F3 (features 1, 4). 

3. Distance Calculation: 

The Euclidean distance r_ij between firefly i and firefly j is calculated based on their feature selections:  

- Distance between F1 and F2:  

  𝑟12 =  √((1 − 0)2 + (1 − 1)2 +  (0 − 1)2 +  (0 − 0)2) 

- Distance between F1 and F3:  

  𝑟13 =  √((1 − 1)^2 +  (1 − 0)^2 +  (0 − 0)^2 +  (0 − 1)^2)  

- Distance between F2 and F3:  

  𝑟23 = √((0 − 1)^2 + (1 − 0)^2 + (1 − 0)^2 + (0 − 1)^2)  

4. Attractiveness and Movement: 

Now, fireflies with lower intensity (classification accuracy) will move towards the fireflies with higher intensity. 

Let β_0 = 1, γ = 1, and α = 0.2. 

- F1 (with intensity 0.85) moves towards F3 (with intensity 0.90) using the movement equation: 

𝑥1 =  𝑥1 +  𝛽0𝑒{−𝛾𝑟{13}
2 }(𝑥3− 𝑥1)

+  𝛼𝜀  

Plugging in the values: 

− 𝑥1 =  𝑥1 +  1 ∗  𝑒{−1 ∗ (𝑠𝑞𝑟𝑡(2))
2

}(𝑥3− 𝑥1)
+  0.2 ∗  𝜀  

− 𝑥1 =  𝑥1 +  1 ∗  𝑒{−2}(𝑥3− 𝑥1) +  0.2 ∗  𝜀  

- The factor 𝑒{−2} is approximately 0.135, so the update becomes:  

− 𝑥1 =  𝑥1 +  0.135(𝑥3 −  𝑥1) +  0.2 ∗   𝜀      

Assuming a random small value for ε, say ε = 0.05, we get: 

− 𝑥1 =  𝑥1 +  0.135(𝑥3 −  𝑥1) +  0.01   

If x_1 = [1, 1, 0, 0] and x_3 = [1, 0, 0, 1], the movement would change the feature selection of F1 slightly towards F3, 

resulting in a new set of features for F1. 



Journal of Information Systems Engineering and Management 
2025, 10(3) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 848 

 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

5. Update Light Intensity: 

After the movement, the firefly's feature subset is updated and the classification accuracy is re-evaluated. If the 

accuracy improves, the firefly's new light intensity is updated. 

6. Iteration: 

This process repeats for all fireflies, iteratively improving their feature subsets until the algorithm converges to the 

optimal set of features with the best classification accuracy. 

 

For feature selection, PSO operates by treating each particle as a candidate solution, where the position of the 

particle in the research space represents a subset of features. Each particle evaluates the classification accuracy 

based on the current features it selects. The algorithm keeps track of two key aspects: the personal best (the best 

subset of features a particle has found until now) and the global best (the best subset found by the entire swarm). 

The swarms collective experience (global best) and individual experience (personal best) are both used by particles 

to update their positions, gradually refining the feature subsets they select. The algorithm adjusts particle velocities 

and positions, promoting exploitation and exploration of the search space. After multiple iterations, the particle 

with the highest classification accuracy provides the final set of optimal features. 
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Cuckoo Search (CS), each nest represents a potential solution, i.e., a subset of selected features. The classification 

accuracy of each subset is evaluated to determine its fitness. The algorithm generates new feature subsets by 

performing Levy flights, which allows for significant jumps across the search space, increasing the likelihood of 

finding better features. If a new feature subset (generated by Levy flight) provides better classification accuracy 

than the current one, the new subset replaces the old one. Additionally, a fraction of the worst-performing nests 

(feature subsets) are abandoned and replaced with new randomly generated nests to enhance exploration. This 

process continues until the best subset of features is identified, which corresponds to the nest with the highest 

classification accuracy. Thus, CS effectively explores the feature space, balancing exploration and exploitation, to 

determine the best collection of characteristics for classification. 

The use of the chosen features for training and classification is the main topic of the second section. Once the 

optimal features are identified, they are used to train various machine learning models. This phase involves 

building predictive models that learn from the training data to identify patterns and make accurate predictions on 

new, unseen data. 

3.1 Deep Neural Networks(DNN) 

An artificial neural network class known as Deep Neural Networks (DNN) is very good at extracting intricate 

patterns from big datasets because it has several hidden layers between the input and output layers. The diagram 

given in Figure 3 illustrates this multi-layered architecture of DNN showing position of input layer, multiple hidden 

layers and the output layer. Each layer here is represented by a collection of neurons depicted by nodes. These are 

connected by weighted edges that represent the flow of the information in the network. The word deep in DNN 

depicts the existence of several layers that gradually extract higher-level characteristics from the unprocessed input 

data. Each layer is made up of interconnected nodes or neurons which transform the input data using an activation 

function and a weighted sum. For illustration the diagram also highlights the flow of data via each layer that starts 

from the raw input to the final output layer. This flow further illustrates how the raw data under goes series of 

transformations at each layer progressively and results in highly structured outcome. This enables the network to 

discover non-linear relationships data.The hidden layers are not visible in traditional machine learning modes as 
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they allow the DNN modes to model complex patterns that cannot be captured by simpler algorithms.This 

hierarchical structure enables DNNs to automatically extract features from the data, with initial layers learning 

basic patterns (such as edges in image data or simple correlations in numerical data), while deeper layers learn 

more abstract and complex features (such as object recognition or intricate dependencies in time series). 

Hidden Layer

Input Layer

Output Layer

 

Figure 3: DNN multi-layered Architecture 

DNNs have the advantage of scalability, meaning they can handle large datasets effectively, and their performance 

improves with more data, enabling them to be used for a range of tasks including, natural language processing, and 

picture recognition, and predictive analytics. Training a DNN involves techniques like backpropagation, which 

determines the error gradient for each network weight and uses gradient descent to modify the weights in order to 

minimize the error. This iterative process allows DNNs to fine-tune their parameters for optimal performance. 

Advanced optimization methods, such as Adam or RMSprop, can further enhance the training process by 

dynamically adjusting the learning rate based on the gradients' behaviour. Regularization methods like batch 

normalization and dropout also aid in preventing overfitting guaranteeing that the model performs well when 

applied to new data. 

The ability of DNNs to learn and model complex relationships makes them a powerful tool for tasks where 

traditional machine learning algorithms may struggle to achieve high accuracy. In cases where the data exhibits 

non-linear patterns, interdependencies, or high-dimensionality, DNNs excel by utilizing their deep architecture to 

capture subtle variations and extract meaningful features. This capability has led to breakthroughs in various fields, 

positioning DNNs as a cornerstone of modern artificial intelligence, driving advancements in automation, decision-

making, and predictive modeling across industries. 

The proposed work leverages (DNN) for software defect prediction by combining their powerful feature extraction 

capabilities with swarm intelligence algorithms for optimal feature selection. The DNN is designed to process the 

JM1 software dataset, which contains high-dimensional and complex data. To enhance the prediction accuracy, the 

DNN model is trained on features selected by algorithms such as Firefly, Cuckoo Search, and PSO, ensuring that 

only the most relevant features are used for classification. 



Journal of Information Systems Engineering and Management 
2025, 10(3) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 851 

 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

The DNN architecture consists of an input layer, multiple hidden layers, and an output layer. The input layer 

corresponds to the selected features from the dataset. Each hidden layer applies non-linear transformations to the 

input data through activation functions, such as ReLU, to capture complex patterns and relationships. The final 

output layer uses a softmax activation function for binary classification, indicating whether a software module is 

defective or not. 

The training process involves: 

1. Initializing the network weights randomly. 

2. Forward propagating the input data through the network to calculate the output. 

3. Comparing the output with the ground truth labels using a loss function (binary cross-entropy in this case). 

4. Backpropagating the error to update the weights using gradient descent optimization. 

5. Repeating this process for multiple epochs until the model achieves optimal performance. 

 

3.2 Simulation Setup  

In this experimental setup, MATLAB serves as the primary software environment for implementing the algorithms 

and training the models. MATLAB, known for its high-level programming capabilities, provides a versatile system 

for analyzing data, machine learning, and deep learning, making it well-suited for tasks such as software defect 

prediction. The environment offers built-in tools for implementing Deep Neural Networks (DNN) and supports the 

integration of swarm intelligence algorithms like Firefly, Cuckoo Search, and PSO. With the help of MATLAB's 

Deep Learning Toolbox, researchers can design and train DNNs effectively by defining network architectures, 

tuning hyperparameters, and employing sophisticated optimization methods like backpropagation and gradient 

descent. 
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The dataset utilized in this work is the JM1 software dataset, a well-known benchmark in software defect prediction 

research. The JM1 dataset is derived from the NASA Metrics Data Program, consisting of software metrics and 

defect labels from a large-scale software project. It contains 21 features representing various software attributes, 

like code complexity, lines of code, and other software metrics, along with a binary classification label indicating 

whether a software module is defective or not. With 10,000 records, the JM1 dataset provides a diverse and realistic 

set of data for evaluating the performance of the proposed models. This dataset is chosen due to its relevance in 

defect prediction studies and its ability to reflect real-world software development challenges, making it an ideal 

benchmark for testing the effectiveness of DNN combined with swarm intelligence algorithms in classification tasks 

and feature selection. 

4. RESULTS AND ANALYSIS  

The proposed work has been evaluated using the JM1 software dataset, which contains 10,000 records. This dataset 

serves as an extensive benchmark for evaluating the performance of feature selection methods and the subsequent 

classification models. The evaluation emphasizes multiple essential performance metrics, such as recall, precision, 

and F-measure, to deliver an in-depth assessment of the model's effectiveness. 

Precision, F-measure, and Recall are essential indicators in the framework of SDP: 

• Precision: This metric evaluates the ratio of true positive predictions to the total positive predictions 

generated by the model. It indicates the model's accuracy in identifying actual defects without including too 

many false positives. High precision indicates that the model is reliable in predicting defects, minimizing 

the cost and effort of investigating false alarms. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑

𝑡𝑟𝑢𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑+𝑓𝑎𝑙𝑠𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑
    (1) 

• Recall: Recall gauges the ratio of true positive predictions to all actual positive instances in the dataset. It 

demonstrates the model's capability to detect all pertinent instances of defects. High recall ensures that 

most of the actual defects are detected, which is crucial for maintaining software quality and reducing the 

risk of undetected defects causing issues in the production environment. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑

𝑡𝑟𝑢𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑+𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 
   (2) 

• F-measure: The F-measure, or The F1-score, calculated as the harmonic mean of precision and recall, 

offers a unified metric that integrates both precision and recall, providing an overall perspective on the 

model’s effectiveness. A high F1-score suggests that the model achieves a strong balance between precision 

and recall, supporting both accuracy and thoroughness in defect prediction. 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
    (3) 

Table 1: Precision Comparison  

0 Firefly + 

DNN 

Cuckoo + 

DNN 

PSO + DNN 

1,000 0.862 0.814 0.802 

2,000 0.8598 0.8127 0.8051 

3,000 0.8642 0.8155 0.8009 

4,000 0.8671 0.8173 0.8043 

5,000 0.8655 0.8161 0.8097 

6,000 0.8694 0.8188 0.8064 

7,000 0.8702 0.8212 0.8079 

8,000 0.8687 0.8204 0.8103 

9,000 0.8725 0.823 0.8112 

10,000 0.871 0.8221 0.8088 
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The Firefly + DNN algorithm consistently outperforms both Cuckoo + DNN and PSO + DNN in terms of 

precision across all record sizes. It maintains a higher precision starting from 0.8620 for 1,000 records and 

gradually improving to 0.8710 for 10,000 records. The Cuckoo + DNN algorithm follows closely behind but has 

slightly lower precision, starting at 0.8140 and reaching 0.8230 for 10,000 records. PSO + DNN, while also 

showing improvement, lags behind the other two, starting at 0.8020 and ending at 0.8110. The proposed Firefly 

+ DNN shows a distinct advantage in maintaining higher precision across various data sizes, demonstrating its 

better capability to minimize false positives compared to the other algorithms. 

 

Figure 4: Comparative Analysis of precision  

Table 2: Recall Comparison  

Number of 

Records 

Firefly + 

DNN 

Cuckoo + 

DNN 

PSO + 

DNN 

1,000 0.875 0.822 0.787 

2,000 0.8731 0.8213 0.7908 

3,000 0.8764 0.8242 0.7885 

4,000 0.8787 0.8251 0.7917 

5,000 0.8793 0.8269 0.7944 

6,000 0.8805 0.8277 0.7959 

7,000 0.8812 0.8289 0.7933 

8,000 0.883 0.8302 0.7971 

9,000 0.8844 0.8296 0.7964 

10,000 0.8851 0.8311 0.798 

 

For recall, Firefly + DNN once again takes the lead, starting at 0.8750 and improving to 0.8851 as the number of 

records increases to 10,000. Cuckoo + DNN performs decently, but its recall remains lower, ranging from 

0.8220 to 0.8311. PSO + DNN has a comparatively lower recall, starting at 0.7870 for 1,000 records and 

improving to 0.7980 for 10,000 records. The proposed Firefly + DNN demonstrates its superiority in recall 
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performance, consistently achieving higher values, indicating its effectiveness in correctly identifying true 

positives while maintaining fewer instances of false negatives compared to the other algorithms. 

 

Figure 5: Comparative Analysis of recall  

Table 3: F-measure Comparison  

Number of 

Records 

Firefly + DNN Cuckoo + DNN PSO + DNN 

1,000 0.8685 0.818 0.7945 

2,000 0.8663 0.817 0.7979 

3,000 0.8697 0.8195 0.7952 

4,000 0.8729 0.8205 0.798 

5,000 0.871 0.8217 0.801 

6,000 0.8737 0.8233 0.7997 

7,000 0.8746 0.8245 0.7975 

8,000 0.8758 0.8261 0.8008 

9,000 0.8769 0.8253 0.7994 

10,000 0.878 0.827 0.8016 
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Figure 6: Comparative Analysis of f-measure 

Regarding the F-measure, which represents the harmonic mean of precision and recall, Firefly + DNN shows the 

best overall performance, beginning at 0.8685 for 1,000 records and gradually improving to 0.8780 for 10,000 

records. Cuckoo + DNN stays somewhat close but falls behind, with F-measure values ranging from 0.8180 to 

0.8270. PSO + DNN consistently remains the lowest, with values starting at 0.7945 and reaching 0.8016. The 

proposed Firefly + DNN excels in balancing precision and recall, making it the most reliable in terms of both 

robustness and accuracy over the other algorithms, which have difficulty maintaining a balance between these two 

key metrics. 

The proposed Firefly + DNN algorithm shows significant improvement over the other algorithms in all key 

performance metrics. In terms of precision, Firefly + DNN achieves an average of 2.9% higher precision than 

Cuckoo + DNN and around 7.5% higher than PSO + DNN across different record sizes. For recall, the 

improvement is even more pronounced, with Firefly + DNN outperforming Cuckoo + DNN by approximately 

6.3% and PSO + DNN by around 10.7%. When looking at the F-measure, which balances  recall and precision, 

Firefly + DNN shows an improvement of around 5.9% over Cuckoo + DNN and a substantial 9.5% improvement 

over PSO + DNN. These improvements demonstrate that Firefly + DNN provides more accurate and reliable 

performance, making it the superior choice for classification tasks compared to the other algorithms. 

5. CONCLUSION  

This research demonstrates the substantial benefits of employing swarm intelligence algorithms for feature 

selection in SDP. By using the JM1 software dataset with 10,000 records, the study evaluated the effectiveness of 

the Firefly Algorithm, Cuckoo Search, and PSO combined with DNN. The results revealed significant improvements 

in recall, F-measure, and precision. The Firefly + DNN model exhibited the most notable improvements, with a 

7.5% increase in precision over PSO + DNN and 2.9% over Cuckoo + DNN. In terms of recall, Firefly + 

DNN showed an improvement of 10.7% over PSO + DNN and 6.3% over Cuckoo + DNN. Additionally, the 

F-measure of the Firefly + DNN model demonstrated a 9.5% improvement compared to PSO + DNN and a 

5.9% improvement over Cuckoo + DNN. These results highlight the superiority of Firefly + DNN in 

balancing precision and recall, making it the most robust approach for feature selection in defect prediction. The 

study also showed significant performance improvements for the Cuckoo + DNN model, albeit slightly behind 

Firefly. These findings underscore the efficacy of the Firefly Algorithm in identifying relevant features, leading to 

more accurate, interpretable, and efficient models. Overall, this research contributes toward the creation of more 

reliable SDP models, which will contribute to improving software quality, minimizing maintenance efforts, and 

advance the field of software engineering. 
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