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In complex software systems, identification of parameter combinations that lead to failures is 

important for effective debugging and robust software quality assurance. Combinatorial testing 

(CT) can greatly reduce the number of test cases (TC) used for testing a complex system by 

generating TCs based on various parameter combinations, while still maintaining high fault-

detection capabilities. In this paper, a rule-based approach is presented that will aid in 

identifying Failure Inducing Combinations (FIC) of parameters that caused a fault in CT 

generated TCs. The approach uses heuristics to identify rules to methodically split parameter 

combinations into more likely or less probable combinations causing failure, thus reducing the 

set of failure sources. This approach is tested on two different case studies i) Three factor 

authentication system and ii) Existing literature-based input. The results obtained show 

significant accuracy and time saving for program debugging, thereby indicating applicability of 

the approach to real-world problems. The approach was found to be successful in identifying 

the pair-wise combinations of parameters that are likely to cause failure. 

Keywords: Failure Inducing Combinations, Combinatorial Testing, Rule-based approach, 

Fault Localization, Fault Characterization. 

 

INTRODUCTION 

CT is a technique for software testing that systematically generates test cases by using combinations of 
parameters. The test cases would have several parameters intermixed using different techniques so as 
to consider all possible interactions among these parameters. CT significantly reduces the number of 
TCs from exhaustive testing while maintaining high fault detection capability. This makes it particularly 
good at picking out failure cases caused due to the interaction of parameters, which is a common 
phenomenon for complex software systems. Since CT systematically tests all possible parameter 
interactions, it helps to detect faults not visible when the parameters are tested in isolation [1] [2]. A 
systematic review of the various CT approaches based on various criteria such as CT generation strategy, 
supported interactions, support constraints between parameters and others can be found in [3]. The 
process of determining the exact parameter combinations i.e. FICs that lead to a failure in a SUT is 
called Fault Localization (FL). Consequently, a failure in a test case may not necessarily be fully 
attributed to all parameters involved in that test case. What FL techniques attempt to do is trace the 
actual parameters or the combinations thereof that induce the fault. Debugging then becomes an 
important exercise as it identifies a smaller subset of causes for the failure, thereby increasing 
manageability in the correction of underlying issues [4] [5]. 

There are several reasons why identification of the FICs is critical such as: 

● Efficient debugging: By identifying exact combinations of parameters that are failure-inducing, 
developers can concentrate their debugging efforts efficiently. This decreases both the time and 
resources involved in the identification and fixing of bugs and accelerates resolution and efficient 
maintenance of the software [6] [7]. 

● Improved software quality: Precise understanding of the occurring failures boosts the 
robustness and reliability of software; therefore, quality is improved. Root causes of failures are 
eliminated, so their similar appearance in the future is reduced [2] [8]. 

● Cost reduction: Faults, if detected and removed at an early stage, then the cost of developing 
and maintaining software will be reduced considerably. Later found faults are expensive; hence, to keep 
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costs lower, the use of combinatorial testing techniques with effective fault localization techniques can 
be better performed [9] [10]. 

● Support for complex systems: Modern software systems are highly complex, consisting of a 
great deal of interrelated components and parameters. Traditional testing methods may not provide 
enough support for such complexity. Effective FL combined with CT provides a structured approach to 
manage such complexity and to achieve thorough testing of all significant interactions [11] [12]. 

Integration of CT and FL in a software development team can effectively, efficiently, and economically 
test for the production of high-quality software products. A rule-based approach is clear, effective, and 
systematic in the context of the same [13] [14]. This approach uses some predetermined set of rules or 
conditions for making decisions. 

2. RELATED WORK 

CT works on effectively combining parameters so as to reduce the TCs by efficiently combining the 
parameters of the SUT [15]. Upon executing the CT test suite, some TCs may fail due to the combination 
of parameters. These parameter combinations need to be analysed to identify the FICs. Several 
approaches to identifying FICs have been proposed till now. These approaches can be broadly classified 
into Non-adaptive and Adaptive approaches - based on generation and execution of additional TCs [16] 
[17]. Research work reported on these approaches from 2009 to 2024 are summarised in this section. 
The survey was done with focus on FL in CT. 

Adaptive approaches take CT results as inputs and generate additional TCs to help identify the FICs by 
using different techniques for these TCs generation. For generating additional TCs, some techniques 
use a single failed TC as input and additional TCs are generated by modifying the values of the 
parameters present in the failed TC. The techniques used here are OFOT [18] and the techniques based 
on Delta debugging [19]. Some techniques generate additional TCs by taking multiple failed TCs as 
input as discussed in [9] [20] [21] [22]. Other techniques take all failed TCs as input to generate 
additional TCs as discussed in [2] [7] [23] [24] [25] [26]. Some of the disadvantages of this approach is 
that a single failed test case or only a few of them would not be sufficient in identifying the additional 
TCs. [27] proposes a MIXTGTE technique in which the additional TCs are generated using the results 
of the previous tests executed. [28] proposes a greedy algorithm based Adaptive approach for 
identifying the FICs. 

Non-adaptive approaches take CT results as inputs and analyze the same to detect potential faulty 
interactions. These approaches mainly generate a Locating array to help design a Covering array. The 
approach based on SAT solving proposed by Zhang et.al [29], approach based on Error locating array 
as proposed in [30], partial covering array proposed by [31], generation (1,2) Locating array as given in 
[32] and Constrained Detecting arrays proposed in [33] are examples of this type of approach. Some of 
the disadvantages of this approach is the need for information about the failure inducing schemas to 
generate Locating arrays, assumptions on this number of faulty interactions and the increase in the size 
of the Locating array as compared to the original covering array thus contributing to increase in the 
execution cost. An effective use of covering arrays by utilising the prior knowledge of the SUT is shown 
in [34]. 

Some more work done on Fault Localization in Combinatorial testing is discussed here. 

Jin, et al., [35] proposes Constraint Detection Arrays (CDAs) as an extension of Detecting Arrays (DAs) 
which can be applied in Combinatorial Interaction Testing environments where systems have 
constraints on test parameters. They are particularly useful for identifying and localizing faults in 
complex systems where traditional detecting arrays may fail due to presence of constraints. The 
technique proposed here assigns weights to TCs and are then executed based on the priority given based 
on the weights. It also uses a greedy technique to help execute the TCs. 

Bonn, et al., [36] introduces COFFEe (COmbinatorial test and Fault characterization FramEwork), 
which integrates all activities necessary for combinatorial testing such as test input generation, TCs 
execution and also fault characterization. It can be used in any software testing environment requiring 
combinatorial testing and fault localization. It is particularly useful for systems that have complex input 
parameters and constraints, ensuring comprehensive test coverage and efficient FL. 

Kampel, et al., [37] introduces CT based FL approaches (CT-FLA) to enhance explainability in AI 
systems. The method uses CT to identify failure inducing interactions and applying these learnings to 
explain AI decisions. The core idea is to leverage combinatorial interaction testing (CIT) to map the AI 
system’s input to its outputs and identify feature combinations that influence these outputs. 
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Niu, et al., [20] introduces an interleaving approach that combines test case generation and failure-
inducing interaction identification. This framework integrates these two stages instead of treating them 
as separate processes. The key idea is to execute tests until a failure is observed, then immediately 
identify failure-inducing interactions, and use this information to guide subsequent test case 
generation. This framework is useful in a testing environment where efficient identification of failure-
inducing interactions is very important. It can be applied to complex systems with numerous 
interactions and configurations, hence making it suitable for both industrial and academic applications. 

Blue, et al., [38] talks about an end-to-end automated solution for Combinatorial Test Design (CTD) 
that is based on test optimization, TCs generation, TCs execution and FL. This solution is implemented 
on an industrial framework. The novelty of this solution is the Inverse CTD algorithm. This algorithm 
assumes that FICs have the maximum length of the strength of the test plan. It also assumes that every 
two FICs share at least one parameter. The Inverse CTD algorithm detects FICs efficiently by utilizing 
the executed test plan results and excluding values appearing in failing TCs. 

Qi, et al., [39] proposes a new algebraic system called Test Algebra (TA). This is designed to help identify 
faults in CT for software-as-a-service (SaaS) applications. The TA framework uses algebraic rules to 
combine test results from different servers in a cloud environment. This helps in parallel and distributed 
testing. 

Ghandehari, et al., [2] [7] presents an FL approach leveraging FICs identified through CT. The paper 
introduces BEN (Bug Exposing Node), a CT based FL tool which leverages CT results to rank statements 
based on their likelihood of being faulty. It is particularly useful for complex software systems with 
numerous configurations and interactions, providing a systematic approach to fault localization. 

Some more recent work on CT and FL can be found in 

2.1 Methodology  

From the literature survey and domain knowledge, specific heuristics for identifying the FICs in 
combinatorial testing have been identified. They are as follows: 

1) For every combinatorial test case with a strength “t” that fails, there exists a test case with strength t 
= 2 (pair-wise testcase) that will also fail. 

2) If a failed test case exhibits an interaction between parameter values that is also found in a passed 
test case, then this specific combination does not introduce failures, hence it can be termed as not 
failure-inducing. 

3) If the pair-wise parameter value combination is not found in any passed test case, it is more likely to 
be failure-inducing. 

From the above identified assumption, certain rules are derived to help identify the FICs. They are: 

Rule for CT: 

if (a combinatorial test case of test suite strength t is FAIL) 

 then (there exists a parameter combination of strength t = 2 in the failed TC); 

Rule for FL in CT: 

if (failed_TC_parameter_combination NOT_EQUAL_TO passed_TC_parameter_combination) 

 then (failed_TC_parameter_combination is LIKELY_FAILURE_INDUCING) 

else 

 check the next parameter combination 

2.2 Rule-Based Approach  

Using the above-mentioned rules, an approach was developed for identifying the Likely FICs which is 
given in Fig 1. The approach assumes that the FICs are always pair-wise combinations, in other words 
the combinations that are likely to cause a failure are always 2 parameter combinations. 
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Fig 1: Rule-based approach for identifying the Likely FICs. 

 

The proposed approach was implemented using Python and tested by giving different inputs. The 
complexity of the approach has been calculated and analysed in a way that is computationally viable for 
practical applications. The developed approach was further validated and is presented as case studies 
which is presented in section 3. 

3. CASE STUDIES 

The case study of the different inputs given and the analysis of the results obtained is as given. 

3.1 Case Study 1: Validating the rule-based approach on a sample input 

The first case study is taken from Nishiura Kinari, et.al, [24], where the parameter combinations 
identified are used to build a test suite which is then submitted as input to the two approaches proposed 
in the paper, namely- FROGa and FROGb. These algorithms were developed for localization of faulty 
interactions using logistic regression analysis. Since the proposed approach in the current paper is 
similar, we have used the same input here. 

The approaches proposed in [24] used a sample SUT with parameters and their values as CPU type, 
Network type, DBMS, Operating system, Browser. Table 1 depicts parameters and their values. 

Table 1.  Parameters and their values given as input for combinatorial testing [24] 

Parameter Description Values 

p1 CPU Intel (=1), AMD (=2) 

p2 Network Wifi (=1), LAN (=2) 

p3 DBMS MySQL (=1), Sybase (=2) 

p4 OS Win (=1), Linux (=2), Mac (=3) 

p5 Browser IE (=1), Firefox (=2), Chrome (=3) 

 

Certain constraints were applied for the valid test cases such as: 

1. If the OS is Mac, then the CPU cannot be AMD. 

2. If the Browser is IE, then the OS must be Win. 

3.1.1 Test Input with execution results 

The input from table 1 was used to build a Covering array that realises a 3 way test of the SUT - along 
with the results. The combinatorial test cases thus generated along with their results are shown in table 
2. This input was submitted to the Rule-based approach developed. 

Table 2.  CT test suite execution results of sample input [24] 

Test # p1 p2 p3 p4 p5 Status 

1 2 2 1 2 3 Pass 

2 1 2 2 1 1 Pass 

3 2 1 1 1 2 Pass 

4 1 2 2 3 2 Pass 
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5 2 1 2 1 1 Pass 

6 1 1 2 3 3 Pass 

7 2 2 2 1 2 Pass 

8 1 2 1 1 1 Fail 

9 1 1 1 3 2 Pass 

10 1 2 1 3 3 Pass 

11 1 1 2 2 2 Fail 

12 1 2 1 2 3 Fail 

13 2 2 2 1 3 Pass 

14 1 1 1 1 3 Pass 

15 2 1 2 2 3 Pass 

16 1 1 1 1 1 Pass 

17 1 2 1 1 2 Pass 

18 2 1 1 2 2 Pass 

19 2 2 2 2 2 Pass 

20 2 2 1 1 1 Fail 

 

3.1.2 Application of rules for identifying Likely FICs 

The approach developed was applied on the input given in table 2. The pairwise (t=2) parameter-value 
combinations present in the FAIL_KB but not in the PASS_KB were identified as: 

((Parameter1, value_Parameter1), (Parameter2, value_Parameter2)) 

((p1, 1), (p4, 2)) 

((p2, 2), (p5, 1)) 

These combinations didn’t show up in the PASS test cases. The rules suggested they might be Likely 
FICs. This case study validated how well the rule-based fault localization approach worked. The rule-
based approach gave a step-by-step effective way to identify failure inducing combinations. This 
validation also shows that the approach proposed is effective and could be used for other applications 
as well. 

3.2 Case Study 2: Three factor authentication system 

The case study involved a project on three-factor authentication [40]. The project incorporated facial 
recognition, eye blink detection and OTP generation as the 3 factors for authenticating a user. For this 
project, combinatorial test cases were generated using the Microsoft PICT tool. Generated test cases are 
automated with the aid of the pytest framework, which is one of the most commonly used frameworks 
to write simple and scalable test cases in Python. This way, the input combination test cases on the login 
and sign-up pages are tested exhaustively to ensure the proper functioning of the system. This was a 
real-world project which had different parameters interacting with each other to ensure successful 
authentication or not. This provided a good option to do CT. The results obtained after CT helped us in 
using them as an input to our proposed approach. The proposed approach successfully identified likely 
failure-inducing combinations for this case study. 

3.2.1 Test input with execution results 

Input data for the combinatorial test cases used were face recognition, keyboard loaded, cursor position, 
PIN entry, PIN verification, OTP sent, and OTP verification. Table 3 demonstrates the execution of 
various test cases to verify the functionality and robustness of the three-factor authentication system. 
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Table 3.  CT test suite for 3FA 

TC ID 
Face 

recognit
ion 

Keyboa
rd 

loaded 
Cursor 

PIN 
entry 

PIN 
verificat

ion 

OTP 
sent 

OTP 
verificat

ion 
Result 

1 TRUE TRUE TRUE TRUE Correct TRUE Correct Pass 

2 TRUE TRUE TRUE FALSE - - - Pass 

3 TRUE TRUE FALSE TRUE Incorrect FALSE - Fail 

4 TRUE FALSE FALSE FALSE - - - Pass 

5 FALSE TRUE FALSE FALSE - - - Fail 

6 TRUE TRUE TRUE TRUE Incorrect FALSE - Pass 

7 FALSE TRUE FALSE FALSE - - - Pass 

8 TRUE TRUE TRUE TRUE Correct FALSE - Fail 

9 TRUE TRUE TRUE TRUE Correct TRUE Incorrect Pass 

10 TRUE TRUE FALSE TRUE Correct TRUE Correct Pass 

 

3.2.2 Application of rules for identifying Likely FICs 

For the input identified in table 3, the rule-based approach was applied to identify the Likely FICs. The 
pairwise combinations that are likely FICs thus identified are: 

((Parameter1, value_Parameter1), (Parameter2, value_Parameter2)) 

((Cursor, FALSE), (PIN verification, Incorrect)) 

((Cursor, FALSE), (OTP sent, FALSE)) 

((PIN Verification, OTP sent), (Correct_PIN verification, FALSE)) 

These combinations were found to be likely causing the failures, helping to narrow down the debugging 
efforts effectively. The FICs judged as such according to the rules did not appear in the passing TCs. In 
this paper, the rule-based approach for identifying the likely FICs has been successfully applied to a 
three-factor authentication system. The combinatorial TCs, which are generated by Microsoft PICT and 
automated with pytest, are effective at finding FICs. The rule-based approach permitted FL in a 
systematic and effective way, making the authentication system more robust and reliable. This case 
study provides proof of the effectiveness of the developed approach in practice and points toward its 
potential for more general use within CT. 

4. DISCUSSION 

The efficacy of the rule-based approach for identifying the Likely FICs has been demonstrated in this 
application to the three-factor authentication project and the validation using the sample input 
provided in the Software Quality Journal paper. The FICs that were found were correct, which validates 
the correctness and reliability of the approach for future combinations of factors. Besides, it is the use 
of rules specific to localizing FICs that greatly increased the effectiveness of identifying problematic 
interactions. 

The potential of the approach has proven to be helpful in a way that it can identify likely FICs without 
exhaustive testing, thus reducing the time and resources needed for debugging. Particularly, this 
effectiveness is valuable for complicated systems with large interactions where other methods for 
identifying FICs are less effective. 

The rule-based approach controlled complex interactions between many parameters while providing a 
full scope of potential failure cases. Being the systematic application of a set of rules to allow 
identification of rule combinations leading to failures in a way that is hardly accomplished in any other 
way, it makes this mechanism of utmost importance for robustness and reliability maintenance of 
software systems, especially of a critical nature like authentication and security. 

The use of real-world examples to validate the approach - say, for example, a three-factor authentication 
project and the case study from the Software Quality Journal paper - established its practical relevance. 
The correct identification of combinations causing failures in so diverse domains illustrates well the 
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versatility and robustness of the approach. This, too, gives confidence in coping with other kinds of 
software systems and testing environments. 

The approach has the potential to be much more widely used in various areas of software testing and 
quality assurance. This way, the technique will easily be useful in industries where software reliability 
is a key concern to quickly capture FICs. Furthermore, the adaptability of the approach to diverse testing 
frameworks and environments makes it an invaluable tool toward harnessing software quality across 
other applications. 

5. CONCLUSION 

The proposed approach of this research provides a way of using CT and FL rules for the identification 
of Likely and Not-likely FICs. The developed approach was validated on case studies where it showed 
its effectiveness in identifying likely FICs and confirmed its practical applicability and reliability. It 
vastly improved the efficiency in identifying problematic interactions with applied predefined rules, 
greatly reduced the time and resources for debugging, and actively controlled complex interactions of 
many input parameters. 

Validation performed successfully in real-world scenarios, underlining the versatility and robustness of 
the approach, giving us confidence that it is able to treat diverse software systems and testing 
environments. The rules-based approach gives a dependable and practical way to identify likely FICs 
that are rich in applicability to many fields of software testing and quality assurance. This methodology 
forms the basis for further research and development within the area of FL in CT, which promises to 
bring effective advancements in modern software testing and quality assurance practice. 
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