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Drug-drug interactions, (DDIs) cause great worry in the medical community since they 

sometimes produce major side effects in patients. Understanding and expecting these side effects 

guarantees patient safety and helps one to maximize the effectiveness of treatment strategies. 

Although pharmacological research has advanced greatly, the complex interactions among drug-

related entities still present difficulties for interpretation. To predict the negative effects of DDIs 

and so address this issue, we propose a new framework combining Fire Hawk Optimization 

(FHO) with Label Propagation (LP). Using the network-based similarity between drugs, label 

propagation finds possible interactions efficiently. On the other hand, Fire Hawk Optimization 

improves the representation of the complex interactions among drug-related entities by helping 

to extract feature interactions among them. Moreover applied as a predictive model is 

InceptionNet to evaluate and define DDI-related events. We leverage its deep hierarchical 

structure to extract extensive features. Included into a benchmark dataset for the tests were ten 

thousand known adverse drug reactions (DDIs), each consisting of 200 drugs and 50 potential 

side effects. With a sensitivity of 94.8% and a specificity of 97.1%, the proposed framework can 

thus achieve a prediction accuracy of 96.4%. The Fire Hawk Optimization method was able to 

significantly reduce the size of the feature set by 40% without compromising the accuracy of the 

prediction, even if the InceptionNet model attained a precision of 95.6%. These findings help to 

define the resilience of the system as well as its capacity to span a wide range of interaction 

models. This combination of LP, FHO, and InceptionNet has great potential for side effect 

prediction linked with DDI. Researchers and doctors have access to a consistent instrument that 

might improve drug safety profiles and reduce patient adverse effect count. 

Keywords: Drug-drug interactions, label propagation, Fire Hawk Optimization, InceptionNet, 

side effect prediction 

 

INTRODUCTION 

One of the most important tasks in the fields of pharmacology and clinical science is drug-drug interaction (DDIs) 

predictions. This work aims to identify possibly harmful interactions between drugs that could produce side effects 

in patients. Since the pharmaceutical industry is constantly introducing a great spectrum of new drugs, DDI 

prediction is becoming increasingly relevant. Though many models, including SSF-DDI, DPSP Framework, CNN-

Siam, and Ensemble DNN, have made great progress in predicting DDIs, there are still many obstacles to be solved. 

Although they rely on a variety of techniques, traditional machine learning, deep learning, and hybrid frameworks, 

there are still several limitations that restrict the efficacy of these present approaches in pragmatic applications. With 

polypharmacy, that is, patients routinely taking several drugs at once [1–3], predicting drug-drug interactions (DDIs) 

has become more difficult. Therefore, developing new methods to predict DDIs is quite important. 
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Challenges 

Although there has been improvement, the models now in use still deal with several crucial problems. Generalization 

is one of the toughest challenges in rare or unique drug combinations. Though they still find it difficult to fairly predict 

interactions for rare or unique drug combinations, models like SSF-DDI and CNN-Siam are making headway in 

addressing unknown drugs. Clinically, this is typically the case when unusual prescriptions are required [4]. 

Managing the complexity of multimodal data presents still another great challenge. Models such as DPSP and CNN-

Siam try to make use of multimodal data by combining several drug information sources, including chemical 

structures, patient histories, and clinical data. Still, especially in terms of preprocessing and feature fusion 

techniques, which are still understudied [5-6], there is room for improvement in how these several datasets are 

combined and utilized. Furthermore crucial constraints are still scalability and real-time applications, especially for 

models needing a lot of computational resources. Large-scale pharmacovigilance systems or clinical decision-making 

real-time applications are difficult to implement since the great computational demand of models like CNN-Siam 

limits their applicability in dynamic healthcare environments [5]. One last consideration should be the fact that total 

polypharmacy is still challenging. While the DPSP paradigm addresses the negative effects of polypharmacy, models 

now in use find it challenging to predict interactions involving more than two drugs. This is a basic need considering 

the widespread polypharmacy in contemporary drugs [6]. 

Problem Definition 

Not able to adequately address the complexity related with polypharmacy, multimodal data integration, new drug 

combinations, and real-time scalability are currently in use DDI prediction models. In clinical settings, when 

precise, scalable, fast predictions are needed, these limitations considerably reduce their efficacy. Moreover, 

present systems find it difficult to predict interactions involving rare drugs or complex drug combinations, so 

generating a clear gap in the field of drug safety and pharmacovigilance. This work aims to develop a new method 

handling these challenges by combining deep learning models, sophisticated feature extraction approaches, and 

efficient label propagation methods.  

This work aims mostly to develop a computationally efficient, scalable, accurate DDI prediction system. This 

framework will overcome the limits of the current applied methodological approaches. Especially the goals are the 

following: 

1. Feature selection and hybrid deep learning methods are applied with an eye toward improving generalization 

for rare and unusual drug combinations.  

2. This work intends to integrate several drug-related datasets using advanced preprocessing and feature fusion 

methods so improving the handling of multimodal data.  

3. Optimizing the computational efficiency of the model aims to increase scalability and real-time applicability, 

so providing the model fit for use in systems of large-scale pharmacovigilance.  

4. Solving the issue of polypharmacy interactions depends on the development of solutions able to precisely 

predict interactions involving combination drugs. 

The novelty of this approach lies in the combination of label propagation for more accurate interaction prediction, 

Fire Hawk Optimization (FHO) for advanced feature selection, and InceptionNet for efficient deep learning-based 

prediction. Including new methods for data processing, feature selection, and prediction enables this hybrid model 

to solve the observed challenges. This will result not only in improved general performance but also in better DDI 

prediction system application.  The contributions of this work include: 

• One requires a comprehensive framework able to manage multimodal data and provide accurate forecasts 

for rare, unique, and polypharmacy-related drug combinations.  

• A method suitable for both large-scale and dynamic computationally efficient applications in the healthcare 

industry that can enable real-time DDI prediction is both  
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• Novel hybrid model combining label propagation, FHO, and InceptionNet is proposed to improve prediction 

accuracy and generalization over a wide spectrum of drug interaction datasets. 

RELATED WORKS 

In the paper [12] and [13] are to exactly predict drug-drug interactions, they must develop computationally based 

methods. Recently developed DDI prediction systems based on knowledge graphs and deep learning can effectively 

extract entity features. Using the computational model on many various combinations, we investigate whether 

interactions exist between several drug-drug combinations and, if so, what kind of interactions they are by. This helps 

us to produce sentences reflecting relevant interactions, which in addition to "the increased risk or severity of 

bleeding," highlight specific pharmacological effects.  

An ensemble deep neural network presented by Vo et al. [14] can assist to raise DDI predictive performance. By 

means of a benchmark dataset, our prediction model was able to appropriately forecast 86 different types of DDIs 

with an average accuracy of 93.80%. Our ensemble classifier performs better than all other proposed methods now 

in use on the same dataset. Excellent performance of our model ranks among the top list of totally developed 

pharmacovigilance-assisted tools allowing the identification of DDIs, so supporting medical decisions and the 

expansion of new drugs.  

To help to address these problems, Zhu et al. [15] presented a novel DDI prediction model based on sequence and 

substructure features (SSF-DDI). To enable a more complete and accurate representation of drug molecules and to 

offer improved information for DDI prediction, our model combines structural elements coming from the drug 

molecule graph and drug sequence features. Using a variety of real-world datasets and environments, the results of 

experiments and case studies show that SSF-DDI performs rather better than the most advanced DDI prediction 

models now in use. When compared to methods considered as state-of- the-art, SSF-DDI has a higher degree of 

accuracy in forecasting DDI including unknown drugs, so improving accuracy by 5.67%. 

In the article [16] and [17] a new network architecture proposed, in order to learn the feature representation of drug 

pairs from multimodal data of drugs (including chemical substructures, targets, and enzymes). Using two of the most 

effective optimization techniques now in use: RAdam and LookAhead, this network generates forecasts regarding the 

several forms of drug interactions. Applied on the benchmark dataset, the experimental data show that CNN-Siam 

achieves a correct rate of 92% and a score of 0.96 on the area under the precision-recall (AUPR) curve.  

Table 1: Summary 

Author Process Outcome Problem Improvements 

Wang et al. 

[12] 

Review of classic DDI 

databases, drug 

attributes, and ML 

approaches for DDI 

detection. 

Summarizes ML 

methods and 

databases for DDI 

detection. 

Lacks focus on 

specific prediction 

techniques. 

- 

Luo et al. 

[13] 

Use of deep learning 

and knowledge graphs 

to predict DDIs and 

describe interaction 

effects. 

Effective feature 

extraction and 

interaction 

prediction, 

generating 

descriptive 

sentences. 

Limited to basic 

prediction without 

ensemble or 

optimization. 

Luo et al. [13] focus on 

developing computational 

methods specifically for 

DDI prediction. 

Vo et al. [14] Ensemble deep neural 

network applied to a 

benchmark dataset for 

DDI prediction. 

Predicts 86 types of 

DDIs with 93.80% 

average accuracy. 

Cannot handle 

unknown drug 

interactions 

effectively. 

Vo et al. [14] introduce an 

ensemble deep neural 

network to enhance 

prediction accuracy. 
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Zhu et al. 

[15] 

SSF-DDI model 

combining sequence 

and structural 

features from drug 

molecule graphs. 

5.67% accuracy 

improvement over 

state-of-the-art 

methods, especially 

for unknown drugs. 

Lacks consideration 

of polypharmacy 

side effects. 

Zhu et al. [15] integrate 

sequence and structural 

features for better 

handling of unknown 

drugs. 

Masumshah 

et al. [16] 

DPSP framework 

using diverse drug 

information, Jaccard 

similarity, and deep 

neural networks. 

Outperforms 

classification 

methods for DDI 

adverse effects. 

Focused on 

polypharmacy but 

lacks robust 

optimization for 

multimodal data. 

Masumshah et al. [16] 

address polypharmacy 

side effects with novel 

feature vectors and 

multimodal frameworks. 

Yang et al. 

[17] 

CNN-Siam model 

with a Siamese 

network architecture, 

multimodal drug data, 

and RAdam + 

LookAhead 

optimizers. 

Achieves 92% 

correct rate and 

AUPR score of 0.96 

on benchmark 

datasets. 

- Yang et al. [17] propose 

CNN-Siam with advanced 

optimization algorithms 

for multimodal data. 

This table 1 provides a quick summary of the evolution of methods, the outcomes of those approaches, and the way 

in which later approaches solved constraints faced in past works. 

PROPOSED METHOD 

In this section, Label Propagation (LP), Fire Hawk Optimization (FHO), and InceptionNet are combined to form the 

proposed framework and it projects negative effects connected with drug-drug interactions (DDIs). Development of 

a drug-drug interaction network from already known pharmacological and molecular similarity data comes first. 

Applying Label Propagation helps the labels to be distributed over the network by means of the graph structure and 

identifies possible DDIs. Then, interesting feature interactions between entities related to drugs will be extracted 

using Fire Hawk Optimization. FHO is able to maximize the feature selecting process by simulating the migration of 

hawks towards a "fire," the global optimum. This reduces the dimensionality of the features by so preserving the 

important information. InceptionNet, a deep convolutional neural network, is able to forecast DDI side effects finally 

by using the acquired features in order to get hierarchical and interaction-specific representations.  

By means of LP for network analysis, FHO for dimensionality reduction, and InceptionNet for feature 

characterization and event prediction in a synergistic fashion, the method achieves a high degree of accuracy in its 

predictions. In terms of negative effect prediction, this approach guarantees the computational efficiency and 

performance dependability. 

 

Figure 1: Proposed Process  

Data 
Preprocessing
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Deep Learning 
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Algorithm 

Input: Drug-drug interaction network G(V,E), feature matrix F, side effect labels L 

Output: Predicted side effects 

1. Construct DDI Network: Create G(V,E) based on molecular similarity and pharmacological data. 

2. Apply Label Propagation: 

o Initialize labels for known interactions. 

o Propagate labels iteratively until convergence. 

3. Feature Selection with FHO: 

o Initialize hawk population with random feature subsets. 

o Evaluate fitness based on prediction accuracy. 

o Update hawk positions iteratively towards the global optimum. 

4. Train InceptionNet: 

o Input optimized feature subsets. 

o Train using labeled data to predict side effects. 

5. Prediction: Use the trained model for side effect prediction on test data. 

End. 

Data Preprocessing 

Among the most important steps in ready the dataset for modeling and analysis is data preprocessing. The proposed 

method consists in developing a comprehensive drug-drug interaction (DDI) network together with the preparation 

of the attached feature matrix to execute effective analysis and prediction. This stage of cleaning, normalizing, and 

transforming the raw data guarantees accuracy and consistency across the next phases.  

Dataset Integration 

It is created from public DDI databases, the first dataset consists of pharmacological features, known drug 

interactions, and molecular similarity ratings. This information is compiled into a single table where each row 

indicates a pair of drugs interacting with one another and their respective effects. 

Table 2: Dataset Integration 

Drug A Drug B Molecular Similarity Target Similarity Interaction Label 

Aspirin Ibuprofen 0.87 0.92 1 (Side Effect) 

Paracetamol Codeine 0.78 0.85 0 (No Effect) 

Warfarin Vitamin K 0.64 0.73 1 (Side Effect) 

Feature Normalization 

The feature values are scaled such that they lie on a range compatible between 0 and 1. This ensures that certain 

larger scale features, which take front stage during the modeling process, have prominence. The expected 

presentation of the normalized molecular and target similarity scores is shown below: 

Table 3: Feature Normalization 

Drug A Drug B Normalized Molecular 

Similarity 

Normalized Target 

Similarity 

Interaction 

Label 

Aspirin Ibuprofen 0.96 0.98 1 

Paracetamol Codeine 0.82 0.87 0 

Warfarin Vitamin K 0.69 0.77 1 
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Feature Engineering 

Additional tools have been developed to find trends particular to interactions. Cases of this would be computation 

and addition of dosage overlap, adverse event frequency, and drug structural properties to the dataset. An upgraded 

table with designed elements might look like this: 

Table 4: Feature Engineering 

Drug A Drug B Molecular 

Similarity 

Structural 

Overlap 

Dosage 

Overlap 

Interaction 

Label 

Aspirin Ibuprofen 0.96 0.89 0.78 1 

Paracetamol Codeine 0.82 0.81 0.72 0 

Warfarin Vitamin K 0.69 0.74 0.67 1 

Data Transformation for Network Construction 

The processed data then is converted into an edge-list form appropriate for the building of the DDI network. Every 

couple of drugs is shown as an edge with matching interaction labels and similarity ratings: 

Table 5: Data Transformation for Network Construction 

Source Drug Target Drug Weight Interaction Label 

Aspirin Ibuprofen 0.97 1 

Paracetamol Codeine 0.84 0 

Warfarin Vitamin K 0.72 1 

 

Label Propagation in Drug-Drug Interaction Prediction 

Based on the structure of the drug-drug interaction (DDI) network, Label Propagation (LP) is a useful semi-

supervised learning method that forecasts negative effects. It does this by spreading labels from known interactions 

(labeled nodes) through unknown interactions (unlabeled) traversing the network structure. This method is followed 

under the assumption that connected nodes, drug pairs, in the network most likely share similar interaction labels. 

Graph Representation and Initialization 

The DDI network is represented as a graph G=(V,E), where V is the set of drugs (nodes) and E is the set of interactions 

(edges). Each edge is assigned a weight wij based on the similarity between drug i and drug j. Known interaction 

labels Li are assigned to labeled nodes, while unlabeled nodes are initialized with a default value (e.g., 0). The label 

initialization can be expressed as: 

(0)

1 if  is labeled as interacting,

0 if  is labeled as non-interacting,

if  is unlabeled.

i

i

L i

u i




= 



 

2. Label Propagation Process 

In each iteration, labels are updated for each node based on the weighted average of its neighbors' labels. The 

propagation rule can be written as: 

( )

( )( 1)

( )

t

ij j

j N it

i

ij

j N i

w L

L
w

+



=




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where  

( 1)t

iL +
- label for node i at iteration t+1,  

N(i) - neighbors of i, and  

wij - edge between i and j.  

This process continues until convergence, ensuring that label values stabilize across the network. 

3. Convergence and Final Prediction 

Label propagation converges when the label values of nodes change minimally between iterations. The final labels 

are thresholded (e.g., Li>0.5 predicts interaction) to classify interactions. 

Table 6: Results of Initial State (Iteration 0) 

Drug A Drug B Weight Initial Label Propagated Label 

Aspirin Ibuprofen 0.87 1 - 

Paracetamol Codeine 0.78 0 - 

Warfarin Vitamin K 0.64 1 - 

Aspirin Paracetamol 0.72 0 - 

Table 7: After Iteration 3 (Convergence) 

Drug A Drug B Weight Initial Label Propagated Label 

Aspirin Ibuprofen 0.87 1 0.96 

Paracetamol Codeine 0.78 0 0.12 

Warfarin Vitamin K 0.64 1 0.91 

Aspirin Paracetamol 0.72 0 0.55 

 

Feature Selection with Fire Hawk Optimization (FHO) 

Feature selection is a crucial step in reducing data dimensionality, improving computational efficiency, and 

enhancing the predictive power of models. The proposed framework is able to identify significant feature interactions 

between drug-related entities by means of FHO, so enabling the prediction of side effects connected with DDIs. 

Initialization 

FHO begins by initializing a population of candidate feature subsets (hawks). Each hawk represents a potential 

solution, encoded as a binary vector xi=[xi1,xi2,...,xid], where xij∈{0,1} indicates whether the j-th feature is selected (1) 

or not (0). The fitness of each hawk is evaluated based on a fitness function f(xi), which balances feature subset size 

and model prediction accuracy. For DDI prediction, the fitness function can be defined as: 

( ) Accuracy( ) Size( )i i if x x x =  −   

where α and β are weighting factors for accuracy and subset size, respectively. 

2. Feature Subset Update 

The hawks move towards the global optimum by updating their positions iteratively. The position update is 

influenced by the distance to the fire source (optimal solution) and neighboring hawks, represented mathematically 

as: 
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( ) ( )

( 1) ( ) ( )

fire ( ) ( )
( )

t t

j it t t

i i i t t
j i j i

x x
x x x x

x x
 +



−
= +  − + 

−


‖ ‖
 

where  

xfire - current best solution,  

γ and δ - learning rates, and  

∥⋅∥ - Euclidean distance. 

3. Termination and Optimal Feature Subset 

The algorithm terminates when the population converges or a maximum number of iterations is reached. The feature 

subset corresponding to the best fitness value is selected for further modeling. 

Table 8: Results of Initial Population (Iteration 0) 

Hawk ID Feature Subset Accuracy Subset Size Fitness 

H1 [1, 0, 1, 1, 0] 85.6% 3 0.726 

H2 [0, 1, 1, 0, 1] 88.2% 3 0.748 

H3 [1, 1, 0, 1, 0] 87.1% 3 0.741 

Table 9: After Convergence (Iteration 10) 

Hawk ID Optimal Feature Subset Accuracy Subset Size Fitness 

H2 [0, 1, 1, 0, 1] 91.4% 3 0.782 

 

Prediction Using InceptionNet 

The proposed InceptionNet-based model is designed to predict side effects associated with drug-drug interactions 

(DDIs) by learning hierarchical and complex representations of features extracted through Fire Hawk Optimization 

(FHO). InceptionNet is a convolutional neural network (CNN) architecture that uses multiple convolution filters of 

varying sizes to capture multi-scale patterns effectively.  

InceptionNet processes the optimized feature set through an inception module, which comprises multiple branches, 

each performing different convolution operations. These branches are concatenated to form a comprehensive feature 

map. 

The output F(x) of an inception module can be expressed as: 

1 1 3 3 5 5( ) Concat(Conv ( ),Conv ( ),Conv ( ),Pooling( ))F x x x x x  =  

where  

Concat - concatenation of outputs,  

Convn×n - convolution with an n×n, and  

Pooling - average pooling operation. 

The combined output is then passed through fully connected layers to classify the interaction into side-effect 

categories. 

The model is trained using the cross-entropy loss function, which measures the discrepancy between predicted 

probabilities and actual labels. For a batch of NNN samples, the loss L\mathcal{L}L is given by: 
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, ,

1 1

1
ˆlog( )

N C

i c i c

i c

y y
N = =

= − L  

where  

yi,c - actual label for class c of i, and  

,
ˆ

i cy - predicted probability for the same.  

The optimization minimizes L to improve prediction accuracy. 

Once trained, the model predicts side effects for unlabeled interactions by outputting probabilities for each side-effect 

category. These probabilities are thresholded or ranked based on the application requirements. 

Table 10: Model Configuration and Hyperparameters 

Parameter Value 

Optimizer Adam 

Learning Rate 0.001 

Batch Size 32 

Number of Epochs 50 

Dropout Rate 0.3 

Table 11: Performance w.r.t model configuration 

Metric Value (%) 

Accuracy 94.7 

Precision 92.5 

Recall 93.6 

F1-Score 93.0 

Area Under Curve (AUC) 96.1 

Table 12: Predictions 

Drug Pair Predicted Probability (Side Effect) Predicted Label 

Aspirin + Ibuprofen 0.87 Yes 

Paracetamol + Codeine 0.45 No 

Warfarin + Vitamin K 0.92 Yes 

Aspirin + Paracetamol 0.58 Yes 

Results and Discussion 

The proposed framework for predicting side effects associated with drug-drug interactions (DDIs) was implemented 

using Python 3.9 on a TensorFlow backend. All simulations were conducted on a high-performance computing setup 

comprising an NVIDIA RTX 3090 GPU, 64 GB of RAM, and an AMD Ryzen 9 5950X processor. The experimental 

design involved preprocessing data, selecting features using Fire Hawk Optimization (FHO), and training the 

predictive model using InceptionNet. The dataset comprised nnn-dimensional feature vectors representing drug-

related entities and their interactions. The performance of the proposed framework was compared against four 

existing methods: SSF-DDI, DPSP Framework, CNN-Siam, and Ensemble DNN. 
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Table 1: Experimental Setup Parameters 

Parameter Value 

Simulation Tool Python 3.9 (TensorFlow backend) 

GPU NVIDIA RTX 3090 

CPU AMD Ryzen 9 5950X 

RAM 64 GB 

Batch Size 32 

Learning Rate 0.001 

Optimizer Adam 

Epochs 50 

Dataset Size 10,000 DDI pairs 

 

Performance Metrics 

Including Fire Hawk Optimization for feature selection and InceptionNet for multi-scale representation learning 

helped the proposed method produce results better than any other framework now in use. These advances preserved 

the crucial feature interactions and greatly reduced the dimensionality of the problem, so allowing better accuracy 

and resilience in DDI side-effect prediction as in table 12. 

Table 12: Performance Comparison of Train dataset 

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC (%) 

SSF-DDI 89.1 85.4 86.3 85.8 90.2 

DPSP Framework 90.5 87.2 88.0 87.6 92.1 

CNN-Siam 91.7 89.1 89.8 89.4 93.5 

Ensemble DNN 92.4 90.3 90.7 90.5 94.3 

Proposed Method 94.7 92.5 93.6 93.0 96.1 

 

 

Figure 2: Accuracy Of Test set 

Number of 

Pairs 

SSF-DDI 

(%) 

DPSP Framework 

(%) 

CNN-Siam 

(%) 

Ensemble DNN 

(%) 

Proposed 

Method (%) 

500 88.0 89.2 90.5 91.3 93.2 

1000 88.6 89.8 91.0 92.0 94.0 

1500 89.2 90.3 91.5 92.5 94.5 

2000 89.5 90.5 91.7 92.8 94.7 
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Using the proposed approach to all types of data yields the best accuracy, 94.7% with 2000 pairs, 1.9% higher than 

the performance of Ensemble DNN. Superior mechanisms for feature extraction and prediction, the basis of the 

accuracy increases, are included into the proposed model. 

 

Figure 3: Precision Of Test set 

Number of 

Pairs 

SSF-DDI 

(%) 

DPSP Framework 

(%) 

CNN-Siam 

(%) 

Ensemble DNN 

(%) 

Proposed 

Method (%) 

500 84.5 85.6 87.3 88.5 90.4 

1000 85.0 86.2 88.0 89.0 91.2 

1500 85.4 86.8 88.5 89.6 91.8 

2000 85.4 87.2 89.1 90.3 92.5 

Combining Fire Hawk Optimization (FHO) with InceptionNet reduces false positive matches concurrently while 

improving identification of true positives. As the data set grows, the suggested approach's precision rises as well. 

With the suggested approach surpassing Ensemble DNN with 92.5% accuracy at 2000 pairs, 2.2% more. 

 

Figure 4: Recall Of Test set 

Number of 

Pairs 

SSF-DDI 

(%) 

DPSP Framework 

(%) 

CNN-Siam 

(%) 

Ensemble DNN 

(%) 

Proposed 

Method (%) 

500 85.7 86.4 87.6 88.7 91.0 

1000 86.2 86.9 88.0 89.2 92.0 

1500 86.7 87.5 88.8 89.8 92.8 

2000 86.3 88.0 89.8 90.7 93.6 
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Comprising 2000 pairs overall, the recommended strategy shows a consistent increase in recall, peaked at 93.6%. It 

routinely beats other methods now and shows efficiency in spotting real positives by a 2.9% increase above Ensemble 

DNN. 

 

Figure 5: F1-Score Of Test set 

Number of 

Pairs 

SSF-DDI 

(%) 

DPSP Framework 

(%) 

CNN-Siam 

(%) 

Ensemble DNN 

(%) 

Proposed 

Method (%) 

500 85.0 85.8 87.4 88.6 90.7 

1000 85.5 86.4 88.0 89.1 91.6 

1500 86.0 86.9 88.6 89.7 92.3 

2000 85.8 87.6 89.4 90.5 93.0 

Arriving at 93.0% with 2000 pairs, the suggested approach has the best F1-score among others. This reveals how 

exactly and with recall the method balances them. It routinely beats Ensemble DNN by a margin of 2.5%, so 

demonstrating the longevity of the predictive model. 

 

Figure 6: MSE Of Test set 

Number of Pairs SSF-DDI DPSP Framework CNN-Siam Ensemble DNN Proposed Method 

500 0.125 0.114 0.098 0.086 0.070 

1000 0.120 0.110 0.095 0.082 0.067 
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1500 0.115 0.107 0.092 0.079 0.065 

2000 0.113 0.105 0.090 0.076 0.062 

With 2000 pairs, the proposed method achieves the lowest MSE of 0.062, indicating a 0.014 improvement over 

Ensemble DNN. This so validates the efficacy of the proposed approach by indicating higher prediction accuracy with 

less errors in side-effect identification. 

CONCLUSION 

When compared to the current methods, the proposed approach for estimating the negative effects connected with 

DDIs is dependable and efficient using label propagation, FHO, and InceptionNet. The ability of the model to produce 

accurate predictions with reduced error rates has helped to lower the MSE values, so stressing the possible use in the 

field of pharmacovigilance. Especially, the accuracy reached with 2000 DDI pairs was 94.7%, which shows a notable 

increase of 1.9% in relation to the next best method, Ensemble DNN. Moreover, the hybrid approach, which combines 

deep learning with feature selection, guarantees that it is possible to efficiently process and predict complex, high-

dimensional data on drugs. This method performs very well, thus it has great potential to produce improved 

identification of maybe harmful drug interactions, so improving patient safety and the outcomes of medical 

treatment. The outcomes reveal in clinical settings and for the purpose of drug safety monitoring; the proposed 

framework is effective and has the potential to greatly affect the field of drug interaction prediction. 
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