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With the rapid adoption of Large Language Models (LLMs) in healthcare, accurate tokenization 

of complex medical terms has become increasingly critical. Improper segmentation leads to high 

unidentified words and suboptimal performance, particularly in medical Natural Language 

Processing (NLP) tasks. While subword tokenization methods like WordPiece and Byte Pair 

Encoding (BPE) have been widely used to mitigate Out-of-Vocabulary issues, there remains a 

lack of specialized metrics for evaluating their effectiveness in the medical domain. In this study, 

we propose MedSeg, a novel statistical evaluation metric designed to assess tokenizer 

performance by analyzing the Token Split Rate and Out-of-Vocabulary distribution across word 

lengths. MedSeg introduces a domain-aware, regression-based scoring mechanism that 

compares each tokenizer’s output to an estimated population distribution, quantified using 

normalized root mean square error (NRMSE). Experimental results using BioBERT and 

BioLlama on CTCAE data demonstrate that MedSeg effectively captures the trade-off between 

segmentation granularity and medical vocabulary preservation. The proposed metric provides a 

robust and interpretable framework for assessing tokenization strategies in domain-specific NLP 

applications. 

Keywords: Medical NLP, Tokenization Evaluation, Subword Tokenizer, WordPiece, BPE, Out-

of-Vocabulary, Token Split Rate, MedSeg 

 

INTRODUCTION 

With the growing advancement of Large Language Models (LLMs), their potential application in the healthcare 

industry has become a significant research focus(Shool et al., 2025; Ullah et al., 2024). Healthcare demands that 

LLMs achieve a higher standard of understanding, specifically tailored to accurately interpret medical terminologies 

and complex clinical contexts, far surpassing general language comprehension(Friedman et al., 1994; Meystre & 

Haug, 2006). Accuracy and reliability become especially critical, as incorrect interpretations can lead directly to 

compromised patient safety and even fatalities. 

The tokenizer plays an important role in LLM’s effectiveness, which segments text into manageable units based on 

its vocabulary(Khattak et al., 2019). Poor segmentation of medical terms by the tokenizer can significantly elevate 

the rate of Out-of-Vocabulary tokens, subsequently reducing the model’s interpretative ability(Benamar et al., 2022). 

Tokenizers that divide words into excessively small segments unnecessarily increase input length, while overly broad 

segmentation can obscure important distinctions among specialized medical concepts(Dotan et al., 2024; Nayak et 

al., 2020). Hence, precision in tokenization processes is vital for optimizing the performance of LLMs in medical 

domains. 

Incorporating specialized medical terminology into existing vocabularies significantly expands overall vocabulary 

size, presenting challenges in terms of computational complexity and resource management(Tao et al., 2024). 

Traditional word-level tokenization methods inadequately address these challenges, often replacing unknown 

medical terms with generic tokens, leading to information loss(Pfeiffer et al., 2021). Conversely, subword 

tokenization has emerged as a more viable solution, breaking words into smaller, more meaningful units and 

effectively reducing OOV issues without excessive computational burdens(He et al., 2014).  
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Tokenization strategies deeply influence an LLM's ability to handle domain-specific vocabulary and ultimately its 

overall accuracy and utility(Bolton et al., 2024; Goldman et al., 2024). Building on this, Wang et al. 

(2021)(Sachidananda et al., 2021) demonstrated that incorporating domain-specific subword units through adaptive 

tokenization—without additional pretraining—substantially improves model performance across biomedical, legal, 

and scientific domains. Their method highlights that tailoring tokenization to a target domain can yield performance 

gains comparable to domain-adaptive pretraining, emphasizing the critical role of domain-aware vocabulary design 

in efficient and accurate language model adaptation. 

Conventional tokenization evaluation metrics, such as Average Token Length and Sparsity, do not adequately reflect 

the complexities inherent in medical texts, which frequently contain long and intricately structured terminology. To 

address this limitation, this research introduces Medical Segmentation Score, an innovative quantitative evaluation 

metric specifically designed for medical NLP applications. MedSeg systematically evaluates tokenizers by comparing 

their Token Segmentation Rates (TSR) and OOV distributions against statistical baselines derived from 

approximated population distributions, enabling a more nuanced and precise assessment of tokenizer performance 

in medical contexts. 

EVALUATION SCORE 

This study introduces the Medical Segmentation Score, a metric designed to assess tokenizer performance using two 

established indicators: Token Split Rate and Out-of-Vocabulary Rate. Due to the large number of words and the 

inherently statistical nature of subword segmentation, directly comparing tokenizers at the individual word level is 

neither feasible nor meaningful, especially when attempting to assign semantic value to subword units. To address 

this, MedSeg evaluates tokenizer performance by analyzing the distribution patterns of TSR and OOV across different 

word lengths. This word-length-aware statistical approach provides a more precise and informative evaluation of 

subword segmentation quality. 

To evaluate tokenizer performance systematically, our proposed MedSeg follows a structured four-step process: 

1. Distribution Calculation: Compute the TSR and OOV distributions separately for each word length. 

2. Ground Truth Estimation: Derive a Ground Truth (GT) distribution by averaging the TSR and OOV 

distributions of the tokenizers under comparison. 

3. Non-linear Regression: Apply Gaussian-based non-linear regression to estimate the GT distributions and 

calculate the deviation of each tokenizer’s distribution from the GT using NRMSE. 

4. Metric Integration: Integrate the resulting NRMSE values for TSR and OOV into a single normalized 

lexical segmentation score ranging from 0 to 1. 

Token Split Rate(TSR) quantifies how often and to what extent words are broken down into subword tokens. For 

example, if a word is segmented by a WordPiece tokenizer into token1 + ##token2 + ##token3, its TSR would be 3. 

A high TSR reflects more aggressive token splitting, while a low TSR suggests that the tokenizer tends to preserve 

words as single units. 

Instead of assessing each word individually, our approach organizes words by their character length and computes 

the average TSR for each group. That is, we calculate the mean number of tokens generated from words of length 5, 

6, and so on. This results in a distribution that captures how tokenization behavior varies across different word 

lengths. 

In general, the Out-of-Vocabulary (OOV) rate refers to how frequently a tokenizer encounters unknown words in a 

given dataset(Araabi et al., 2022). While subword-based tokenizers aim to eliminate traditional OOV issues by 

decomposing unfamiliar words into known subword units, we adopt a more comparative definition of OOV in this 

study. Specifically, a word is considered OOV if it is not found as a complete token in the tokenizer’s vocabulary and 

must be split into multiple subword tokens. 
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Given the structural complexity of medical texts, we compute the OOV rate as a function of word length—measuring 

how often words of a specific length are absent from the tokenizer’s vocabulary as complete tokens. This produces a 

word-length-specific OOV distribution that enables detailed, tokenizer-level comparisons. 

Medical Segmentation Score (MedSeg) 

Since it is inherently difficult to define a single “correct” tokenization, our study constructs a Ground Truth (GT) 

distribution by averaging the distributions of the two tokenizers being evaluated. Formally, we suppose the GT 

distribution as: 

𝐺𝑇 ≈
𝐷𝑘1

+ 𝐷𝑘2
+ ⋯ + 𝐷𝑘𝑛

𝑛
(1) 

where 𝐷[𝑖] denotes the distribution (frequency or proportion) of words of length 𝑖  tokenized by Tokenizers. We 

measure the similarity between each tokenizer’s distribution and the GT distribution using the non-linear regression. 

MedSeg uses non-linear regression based on a Gaussian function to approximate the GT distributions of TSR and 

OOV rates. These regression equations serve as reference points for comparing different tokenizer distributions. The 

differences between the tokenizer’s distributions and the GT distributions are quantitatively measured through an 

error function, specifically the Normalized Root Mean Squared Error (𝑁𝑅𝑀𝑆𝐸). This process results in two distinct 

RMSE values for each tokenizer: one reflecting the TSR distribution ( 𝑁𝑅𝑀𝑆𝐸𝑇𝑆𝑅 ) and another for the OOV 

distribution ( 𝑁𝑅𝑀𝑆𝐸𝑂𝑂𝑉 ). The fitted Gaussian functions serve as baseline models, representing the optimal 

distributions of TSR and OOV rates. Lower RMSE values indicate that a tokenizer closely matches the optimal 

distribution, suggesting superior tokenization performance. The NRMSE is computed as: 

𝑁𝑅𝑀𝑆𝐸 =
1

𝑚𝑒𝑎𝑛(𝐺𝑇)
√∑ (𝐺𝑇𝑁 − 𝐷𝑘𝑁

)
2𝑁

𝑖=1

𝑁
 (2) 

Subsequently, these two NRMSE values are combined into a single comprehensive metric, MedSeg, defined as: 

MedSeg = 1 − [λ(NRMSE𝑇𝑆𝑅) + (1 − λ)NRMSE𝑂𝑂𝑉] (3) 

Here, λ is a hyperparameter that balances the relative importance of TSR and OOV; in this study, λ is set at 0.8, 

emphasizing TSR slightly more than OOV. By integrating both TSR and OOV aspects, MedSeg penalizes tokenizers 

that significantly deviate in either dimension. As a result, a MedSeg value near 1 suggests that a tokenizer closely 

matches the optimal tokenization pattern, whereas a score approaching 0 highlights significant deficiencies in 

tokenizer performance. This metric, therefore, provides a detailed and nuanced evaluation tailored specifically to 

address the unique tokenization challenges within medical NLP. 

MATERIALS AND METHODS 

Subword tokenization aims to strike a balance between minimizing vocabulary size and ensuring comprehensive 

text coverage by segmenting text into units smaller than full words but larger than individual characters. This study 

centers on two widely used subword tokenization algorithms: WordPiece and Byte Pair Encoding (BPE). 

WordPiece(Schuster & Nakajima, 2012), initially created for machine translation and later widely adopted through 

BERT(Devlin et al., 2019), incrementally builds its vocabulary by selecting subword units that optimize the 

language model’s likelihood. In contrast, BPE(Sennrich et al., 2016) follows a greedy approach by repeatedly 

merging the most frequent adjacent character pairs, and was originally developed for neural machine translation 

tasks. Despite their different mechanisms, both methods ultimately produce a fixed subword vocabulary that 

balances representing rare words effectively while preserving longer, semantically rich tokens. 

For evaluation, we employed the Common Terminology Criteria for Adverse Events (CTCAE) dataset (National 

Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE), n.d.) , curated by the National 

Institutes of Health (NIH). The CTCAE is a standardized resource used widely in clinical oncology trials to classify 

adverse events by type and severity. 

From version 5.0 of this dataset, we extracted a list of adverse event terms, such as disease conditions and symptom 

names (e.g., sore throat, anal fistula, Stevens-Johnson syndrome). These terms often consist of multiple words or 
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complex compounds, posing a challenge for tokenization systems. Because such terms are typically domain-specific 

and relatively rare in general corpora, they test the tokenizer’s ability to preserve medical meaning through effective 

segmentation. 

To better understand how tokenizers process specialized terminology, we chose to work with term-level data instead 

of full sentences. Prior to tokenization, we applied minimal preprocessing: all non-textual metadata was removed, 

and the text was converted to lowercase to maintain consistency, given that the tokenizers used in this study are 

uncased models. 

We implemented both tokenizers using pre-trained BioBERT (WordPiece, 110M parameters, 30K Vocabulary size) 

(DMIS Lab., n.d.) and BioLlama(BPE, 137M parameters, 1.2M Vocabulary size)(iRASC., n.d.) models. We analyzed 

tokenization outputs in terms of segmentation patterns and semantic preservation. 

RESULTS 

In this section, we present the results of our experiments. Within each, we compare the performance of WordPiece-

based vs BPE-based models. We also include analyses of tokenization-specific metrics to interpret the results. 

Table 1 presents sample tokenization outputs for selected medical terms. The WordPiece tokenizer preserves 

contextual meaning by indicating connections between subwords using the prefix '##' when splitting words, whereas 

the Byte-Pair Encoding (BPE) tokenizer retains structural text information by marking word boundaries with the 'Ġ' 

symbol to indicate whitespace. 

Overall, WordPiece demonstrated superior performance in preserving medically meaningful segments. For example, 

in the phrase “cardiac arrest,” WordPiece successfully maintained two distinct medical terms ("cardiac" and "arrest"), 

whereas BPE fragmented “cardiac” into “card” and “iac,” potentially obscuring its medical significance. However, for 

terms like “myocarditis,” both WordPiece and BPE produced semantically ambiguous subword splits, making 

interpretation more difficult.  

Consequently, these results underscore the inherent difficulty of consistently producing semantically meaningful 

subword splits in medical texts. Although WordPiece demonstrates relatively greater semantic coherence overall, 

despite a relatively compact vocabulary size, challenges remain in ensuring fully interpretable segmentation, 

emphasizing the need for further refinement in tokenizer strategies tailored specifically for medical terminology. 

text BPE (BioLlama) WordPiece (BioBERT) 

cardiac arrest [card, iac, Ġarrest] [cardiac, arrest] 

myocarditis [my, ocard, itis] [my, ##oc, ##ard, ##itis] 

Table 1. Experimental Results of WordPiece and BPE on Two Text Samples 

 

Results of Proposed Segmentation Score  

In this section, we present detailed results derived from our proposed Medical Segmentation Score. We systematically 

analyze each component of MedSeg—TSR and OOV Rate—and interpret the overall MedSeg scores by comparing the 

performance of BioBERT and BioLlama tokenizers. 

1) TSR   

Figure 1 illustrates the normalized average TSR for each word length produced by two tokenizers—BioLlama (blue) 

and BioBERT (orange)—along with a fitted Gaussian curve (dashed red line) representing the average TSR trend. The 

green and red lines show the differences between each tokenizer’s TSR and the fitted curve, which are used to 

compute NRMSE values. 

As described in the Evaluation Score section, TSR reflects how often a word is broken into subword units. For words 

shorter than 15 characters, both tokenizers produce comparable segmentation patterns. However, with longer 

medical terms (15 characters or more), BioLlama applies more aggressive splitting than BioBERT, suggesting that it 
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breaks complex terms into finer subword units. This detailed segmentation can help reveal morphological or 

semantic components in medical vocabulary, which may aid interpretability. Still, excessive splitting can result in 

fragmented tokens, potentially reducing the coherence of the representation. Compared to BioBERT, BioLlama 

shows a smoother, more gradual increase in TSR as word length grows, which may help maintain semantic 

consistency across longer terms. 

2) OOV 

Figure 1 presents a similar analysis for OOV rates by word length. The fitted Gaussian function models the OOV 

distribution, and the deviations from the curve are again used to calculate NRMSE for each tokenizer. The 

visualization illustrates how closely each tokenizer aligns with the modeled ground truth across varying word 

lengths. The BioLlama tokenizer generally exhibits higher OOV rates, particularly for words between 5 and 10 

characters long. This pattern suggests that BioBERT includes a richer set of medical-specific subwords in its 

vocabulary, especially for medium- to long-length terms. Conversely, BioLlama’s elevated OOV rate for shorter 

words indicates that its general-domain vocabulary lacks sufficient specialized medical tokens. Despite this, 

BioLlama demonstrates strong coverage of medical terminology overall, even with a more compact vocabulary size. 

  

Figure 1. Gaussian curve fitting of TSR (left) and OOV (right) distributions by word length for BioLlama and 

BioBERT. The plots show each tokenizer’s normalized values, the fitted Gaussian curve, and the differences used to 

compute NRMSE. 

3) Comparison Using the Proposed Score 

 𝑵𝑹𝑴𝑺𝑬𝑻𝑺𝑹 𝑵𝑹𝑴𝑺𝑬𝑶𝑶𝑽 MedSeg 

BPE (BioLlama) 0.36179 0.44640 0.57051 

WordPiece (BioBERT) 0.37818 0.42398 0.58517 

Table 2. summarizes the results of the MSE and the final MedSeg calculated based on the TSR and OOV 

distributions for both tokenizers. 

This section presents the evaluation results for the BioLlama and BioBERT tokenizers, based on the normalized 

distributions of TSR and OOV, as well as the corresponding NRMSE values and final MedSeg scores in Table 2. 

BioBERT achieves a higher MedSeg score (0.58517) than BioLlama (0.57051), indicating superior overall 

segmentation behavior. Since MedSeg values closer to 1 represent stronger alignment with the Ground Truth (GT) 

distribution, a higher MedSeg score reflects better tokenization performance. 

MedSeg is computed by integrating NRMSE values from both TSR and OOV. Because higher Mean Squared Error 

(MSE) values indicate greater deviation from the GT distribution, lower NRMSE values suggest better alignment and 

thus better tokenizer quality. In this regard, the MedSeg metric effectively captures these differences, and the trends 

are clearly observable in both Figure 1 and the numerical results—demonstrating strong agreement between 

quantitative and visual evaluations. 
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In Figure 1, BioLlama exhibits TSR behavior that more closely follows the fitted Gaussian curve, particularly for 

longer words (≥15 characters), where its segmentation is smoother and more consistent than BioBERT’s. This visual 

pattern is consistent with BioLlama’s lower 𝑁𝑅𝑀𝑆𝐸𝑇𝑆𝑅  (0.36179), indicating more stable token splitting. 

In contrast, Figure 1 shows that BioBERT’s OOV distribution better fits the Gaussian curve, especially in the 5–10 

character word length range. This suggests that BioBERT includes a richer set of medical subword tokens, resulting 

in a lower OOV rate. The corresponding 𝑁𝑅𝑀𝑆𝐸𝑂𝑂𝑉 (0.42398) confirms this, as it is lower than that of BioLlama 

(0.44640), indicating stronger vocabulary coverage. 

These results illustrate a clear trade-off between segmentation stability (TSR) and vocabulary preservation (OOV). 

BioLlama performs better in terms of consistent segmentation, while BioBERT excels in preserving domain-specific 

vocabulary. MedSeg effectively combines these two aspects, and the alignment between numerical scores and visual 

patterns supports its validity as a robust and interpretable metric for evaluating tokenizers in medical NLP. 

CONCLUSION AND FUTURE WORK 

In this study, we introduced the Med, a novel evaluation metric designed to assess tokenizer performance in the 

context of medical NLP. Unlike traditional metrics that focus solely on token counts or OOV rates, MedSeg provides 

a more fine-grained assessment by incorporating TSR and OOV distributions across word lengths. These 

distributions are compared to a Gaussian-approximated GT to quantify how closely a tokenizer aligns with optimal 

segmentation behavior. 

Our results demonstrate that BioLlama shows stronger consistency in segmentation (lower 𝑁𝑅𝑀𝑆𝐸𝑇𝑆𝑅 ), while 

BioBERT performs better in vocabulary preservation (lower 𝑁𝑅𝑀𝑆𝐸𝑂𝑂𝑉 ). The trade-offs between these two 

dimensions are clearly captured by MedSeg, and the metric’s values closely align with the visual and statistical 

patterns observed in the experimental data—highlighting MedSeg as a reliable and interpretable metric. 

MedSeg offers a comprehensive and intuitive way to evaluate tokenizers by balancing segmentation granularity and 

vocabulary coverage, both of which are critical in domain-specific NLP applications. Future work may refine the 

definition of the GT distribution or extend the application of MedSeg to a broader range of domains and languages, 

further enhancing its generalizability and practical value. 
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