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Improving rates of survival of patient for breast cancer (BC) requires early identification and 

precise categorization. Using the DDSM mammography dataset , this work The goal is to enhance 

the detection and classification of breast cancer through the application of deep learning 

techniques. The suggested framework uses a method based on C.N.N. 55,890 pre-processed 

mammography pictures, divide into train and test sets, make up the dataset. Both positive and 

negative instances were included in the data, which was further divided into benign masses, 

benign calcifications, malignant masses, and benign calcifications. The images were scaled to 

299x299 resolution. Accuracy, sensitivity, specificity, and other pertinent measures were used to 

train and assess four models. The classification accuracies of C.N.N, VGG16, ResNet-50, 

DenseNet121, and Efficient Net were 90.83%, 87.00%, 91.35%, 92.40%, and 94.97%, 

respectively. Efficient Net achieved the highest performance, demonstrating superior 

generalizability across diverse imaging modalities and demographic variations. The proposed 

frameworks, supported by pre-trained models, demonstrates significant potential for improving 

Early recognition and identification of breast cancer as well. The integration of ethical 

considerations, interpretability, and a focus on clinical impact ensures its relevance for real-

world applications. 

Keywords: Breast cancer detection, deep learning network, DDSM mammography 

  

INTRODUCTION 

Breast cancer continues to be one among the deadliest illnesses in the world, accounting for a large portion of death 

rates globally, especially in industrialized nations. It has been shown that screening mammography pictures for 

breast cancer early on lowers death rates from 40% to 20%. High rates of FP and FN are among the ongoing issues 

facing the medical sector, which are made worse by the high expenses related to (Abhisheka et al., 2023) with non-

uniformities in image quality assessment. These issues require an efficient, automated diagnostic system to detect 

early signs of breast cancer and ultimately lower mortality rates. Several recent studies  have explored the use of deep 

learning algorithms to address these challenges, focusing on the enhancement of diagnostic (Mridha et al., 2021) 

accuracy in breast mammogram images. However, a primary challenge to implementing these solutions is the 

inability to train big data with generalized labelled data because of the growing population and challenges with 

different imaging modalities and image capture. 

This is particularly complicated in the case of screening mammograms (Ragab et al., 2021) due to the failure to 

precisely detect small abnormalities, like micro calcifications, and the inability to distinguish between dense and 

typical breast structures. These are complications to the classification process since dense tissue often hides or 

mimics lesions critical for early cancer detection (Shukla & Behera, 2024). Even promising conventional machine 

learning and AI models still lack accuracy in such cases. It's a pressing need to create a sophisticated computer-aided 
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diagnosis system using the latest available algorithms, such as deep learning. The current work targets advanced 

techniques (Junaid Umer et al., 2023) to fill in existing gaps in breast cancer diagnosis. Today, with big data and deep 

learning, tremendous progress is being reported in healthcare, and, of course, breast cancer diagnosis is no exception. 

Figure 1 represents the previous generation (Khan et al., 2019) of models of breast cancer diagnostics; our study, 

however aims at improving the models to employ more efficient deep learning algorithms for better accuracy and fast 

processing. 

 

Earlier conventional models for the breast cancer detection task comprised multiple sub-modules or functions 

(Mohaiminul Islam et al., 2020) specifically designed to handle various functionalities preliminary processing, image 

enhancement, feature extraction and classification are some examples of other techniques. As an example, de-noising 

techniques were used for the removal of noise and methods involving contrast or brightness adjustment are used for 

enhancing the image. However, in general, these traditional models pose a high (Tembhurne et al., 2021) 

computational and time complexity. They were not so efficient when it comes to dealing with large volumes of data, 

especially image data with a high dimension. In contrast, ML and DL algorithms do provide a better (Arooj et al., 

2022) advantage for classification purposes as they could deal with big volumes of data, even images on breast cancer 

for classification. They can learn from this data by feature extraction that makes it possible for them to enhance the 

process of classification. The learning models follow a training and testing approach to optimize their performance. 

This leads to high classification accuracy as the models compare the trained features with new test data. Therefore, 

machine and deep (Toğaçar et al., 2020) learning models are increasingly preferred for medical image classification 

tasks due to their efficiency and scalability. 

Processing, analysing, and drawing insightful conclusions from massive information all depend on big data analytics. 

Recently, deep learning has become the most sophisticated kind of machine learning, with capabilities that nearly 

resemble those of human intelligence. DL algorithms are used in the pharma profession to process medical (Wang et 

al., 2024) in order to identify and categories abnormalities in images. These algorithms use deep neural networks 

that employ CPUs with massive computational powers to extract far wider features than previously achieved by 

methods that have come before them (Al-Mansour et al., 2023). C.N.Ns are very potent deep learning algorithms that  

completely transformed the image processing industry, segmentation, and recognition tasks. Some models which 

include a couple of C.N.N -based models were deployed to detect and diagnose breast cancer from digital 

mammography due to their characteristic of deep feature extraction analysis. 

In get to efficiently classify photos of breast cancer, this research presents a unique C.N.N -based architecture. C.N.N 

was chosen because of its tendency to learn from vast volumes of data, extracting almost all features from an image 

and thus allowing for high-level analysis. In contrast to the traditional semi-automatic or machine (Chougrad et al., 
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2018) learning algorithms that require the presence of auxiliary algorithms for feature extraction, C.N.N s can 

perform feature extraction and classification in an independent manner. The added hands of this paper is as follows: 

• Data Preparation and Pre-processing: The paper begins by loading and pre-processing the input set of 

data. Subdivide the images to different regions, so treat those as independent data inputs to the C.N.N  

• C.N.N Algorithm Implementation: The C.N.N architecture is applied to analyse the breast cancer 

images, followed by dividing the process into phases to train and test to ensure an increased overall 

accuracy. 

• Model Comparison: The output of the C.N.N model is compared with other well-known DL 

models, such as V.G.G-16, ResNet-50, and DenseNet121, to assess their accuracy in breast cancer 

classification. 

LITERATURE REVIEW 

BC detection and diagnosis have received tremendous advancements in AI and ML technologies. X-rays have been 

the primary imaging technique used for diagnosing breast cancer, but over the last decade, mammography images 

have emerged as a better alternative. The intelligent diagnostic models for analysing mammograms have raised the 

detection precision and effectiveness of breast cancer diagnosis. The aforementioned models, which employ a wide 

range of machine learning techniques have become indispensable in the medical industry, particularly for early 

identification and treatment. 

In deep learning, the DLF framework by Govindarajan and Narayanasamy in 2024 provided new breakthroughs. 

With the C.N.N algorithm-based DLF framework, they introduced the concept of improving efficiency and accuracy 

in the diagnostic process for breast cancer diagnosis. This framework, involving advanced image analysis techniques, 

further distinguishes malignant and benign tumors, thus developing more effective diagnostic tools for usage in 

clinical settings. Christy Atika Sari et al. (2024) researched the optimization of C.N.N architectures using Adam and 

Optuna models. Their method reached a high accuracy of 99.72% in breast tumor classification. This shows how there 

is a need for cooperation between medical practitioners and AI experts in order to accurate the detection and 

management of breast cancer. Through optimizing C.N.N  models, they could improve the classification process with 

more accurate results (Thulasisingh et al., 2024). 

Histopathological image analysis breakthroughs have led to advancements in the improvement of IDC models for 

early detection. Ezunkpe and Kumar (2024) proposed the DC.N.N  model for identifying IDC in histopathological 

images. Their model performed with an accuracy of 87%, indicating that it has the potential to supersede traditional 

imaging techniques using deep learning for improving detection accuracy. This study strongly emphasizes the use of 

DC.N.N s in the identification of early-stage invasive cancers (Ezunkpe & Kumar, 2024). Sathishkumar and 

Venkatasalam (2024) suggest an improved C.N.N model to predict and classify breast cancer. The proposed model 

gave better performance than other DL algorithms and reached a peak accuracy of 97%. This emphasizes the growing 

importance of C.N.N -based models to increase the diagnosis of breast cancer's categorization accuracy 

(Venkatachalam et al., 2024). 

Wang et al. (2024) proposed an image classification-based breast cancer method using the DenseNet architecture 

with added attention mechanisms and transfer learning techniques. This method addressed limitations in terms of 

data available and provided over 84.0% classification accuracy. It improved the ability to detect and classify images 

of pathological tissues, offering an effective approach to improving diagnoses for breast cancer when labelled samples 

are limited. A number of machine learning models have been suggested to improve the accuracy of diagnosis for 

breast cancer. Some of the techniques are used quite often, which are LR, ANN, KNN, Softmax Regression, SVM, and 

C.N.N. The techniques help the doctors make better and quicker decisions (Luo et al., 2024). Kiyan and Yildirim 

(2004) and Gonzalez-Angulo et al. (2007) acquired the datasets from the Kaggle depository and developed some 

prediction models to detect the presence of breast cancer. Their papers compared several algorithms of machine 

learning, that is SVM, Random Forest, Naive Bayes, and logistic regression. It results in precision between 52.63% 

and 98.24% depending upon the applied algorithm (Gonzalez-Angulo et al., 2009). 
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These works highlighted the need for early diagnosis and the adoption of accurate diagnostic tools, which It may be 

used by medical professionals to identify benign or malignant breast cancer. They proposed KNN models for the 

categorization of BC and introduced a voting-based system. Here, many models are used to increase accuracy of 

classification. The University of Wisconsin dataset, which is widely used in breast cancer research, was used for the 

tests. The accuracy rates of these various studies differ, such that Ponraj et al. (2012) recorded 98.90%, Pavithra et 

al. (2016) recorded 97.60%, while Kumar et al. (2017) recorded only 83.45%. Other authors such as Agarap (2018), 

Pritom et al. (2016), and MurtiRawat et al. (2020) have focused on increasing the chances of diagnosis of breast 

cancer recurrence. These authors studied the application of ML methods, including SVM, for predicting recurrences 

(MurtiRawat et al., 2020). The work showed how good prediction models could indeed improve patient outcomes. 

Some of these studies used the UCI Machine Learning Repository's Wisconsin dataset. Feature selection algorithms 

were then applied to decrease the dimensionality of features to enhance the models' quality that were not relevant or 

of lower priority (Pavithra et al., 2016). 

Deep learning methods, especially C.N.N s, have been widely adopted in recent years for diagnosing breast cancer. 

C.N.N s are found to be specifically good for image-based data, including mammograms. Spanhol et al. (2016), 

Gayathri et al. (2013), and Shen et al. (2019) have used C.N.N s to use mammography pictures to categorize breast 

cancer. These studies used the BreaKHis dataset and focused on training the C.N.N  using image patches for better 

classification accuracy (Shen et al., 2019). Their approaches achieved high performance in categorizing screening 

mammograms, with the best model demonstrating a sensitivity of 86.2% and specificity of 80.2%. Research 

conducted by Westermann et al. (2002), Joo et al. (2004), and Salem et al. (2017) applied the concept of ANNs for 

the categorization of different types of cancers using signatures derived from gene expression profiles. In this regard, 

attempts have been made to identify unique patterns of SRBCTs, which are indeed known to be problematic. Their 

experiments got an accuracy of up to 99%, which indicates a high prospect of ANNs in raising the level of classification 

and selection of applicable biomarkers for cancer diagnosis. Studies on deep learning and their application to improve 

breast cancer diagnosis have also been prominent (Westermann & Schwab, 2002). In this regard, Pandiyaraju et al. 

(2024) proposed a deep      CNN with a multi-attention framework. This innovative approach improved the 

classification of tumors, distinguishing between benign, malignant, and normal cases with an accuracy rate of 99.2%. 

This method has significantly enhanced the diagnostic precision in medical image analysis, as it has promised the 

best detection and classification of breast cancer by using C.N.N s with attention mechanisms (Pandiyaraju et al., 

2024). 

MATERIALS AND METHODS 

Dataset 

The DDSM dataset, which comprises 55,885 mammography pictures divided into five different classes—Normal, 

Benign Calcification, Benign Mass, Malignant Calcification, and Malignant Mass—was the source of our dataset, 

which we obtained from the Kaggle repository. The dataset is structured with images of varying resolutions and sizes, 

typically in grayscale and stored in PNG format. The dataset is comprised of 48,596 Normal samples (86.96%), 2,103 

Benign Calcification (Sharafaddini et al., 2024) samples (3.76%), 1,911 Benign Mass samples (3.42%), 1,463 

Malignant Calcification samples (2.62%), and 1,812 Malignant Mass samples (3.24%). 

The set are of data was split into training, validation, and test sets.  Major part of the data makes up the train set, 

while validation and test sets are applied (Kuan et al., 2017) for the evaluation of models. In the validation set, there 

are 6,663 samples of Negative images (86.74%), 262 samples of Benign Calcification (3.41%), 334 samples of Benign 

Mass (4.35%), 210 Malignant Calcification (2.73%), and 213 Malignant Mass (2.77%). The test set comprises 6,697 

Negative samples (87.18%), 296 Benign (Elshennawy & Ibrahim, 2020) Calcification samples (3.85%), 308 Benign 

Mass samples (4.01%), 159 Malignant Calcification samples (2.07%), and 222 Malignant Mass samples (2.89%). 

The dataset is organized into folders based on these labels to facilitate pre-processing, model training, and evaluation. 

This organization ensures efficient data handling, allowing the model to learn from diverse samples during training, 

and providing validation and testing data for accurate performance evaluation. We applied specific strategies to 

handle class imbalances, ensuring the resilience and dependability of the model in practical situations. 
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To evaluate model performance, we used five different configurations of the dataset based on various image pre-

processing techniques. We benchmarked the results of our model, which uses four different deep learning 

architectures: C.N.N , VGG16, ResNet-50, Efficient Net and DenseNet121. Each of these models was tested and 

compared across these dataset configurations to determine which yielded the best performance. 

 

Figure 2. Display images from a batch of the dataset 

Data Generation 

In this study, we focus on generating data from a collection of mammogram images. These images are sourced from 

the DDSM and represent different breast cancer phases (malignant, benign, and normal). To ensure diverse and 

robust training, we apply a number of data augmentation methods to fictitiously increase the size and diversity of the 

data. Rotation, scaling, flipping, and cropping are some of these methods. The pictures are normalized for constant 

pixel intensity levels and scaled to a set dimension (299x299 pixels). The act of creating data enhances the model's 

tendency to generalize under different imaging circumstances and aids in the learning of invariant properties. 

Dataset Splitting 

The set of data is split into three primary subsets: sets for train, valide and test as particularly. While the validation 

collection (about 10%) is used to keep trace of the model's performance throughout training and modify 

hyperparameters, the training set typically uses a significant portion of the data (approximately 80%) to train the 

model. The balance of the test set, which is also around 10%, is used to assess the model's accuracy and 

generalizability on unseen data. The training set contains samples (Sannasi Chakravarthy et al., 2023) from all 

classes: Benign Calcification, Malignant Calcification, Benign Mass, Normal, and Malignant Calcification. Techniques 

such as oversampling and class weighting are used to balance the dataset in case of class imbalances. The validation 

set and test set ensure that the model's performance can be validated in real-world conditions by being evaluated on 

data that it has not seen during training.
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Figure 3.  Shows the scenarios of experiment applied in the study

Deep Learning Models Used in All Experiments  

In this research, five deep learning models—Convolutional Neural Network (C.N.N ), VGG16, ResNet-50, 

DenseNet121, and EfficientNet—are used to classify breast cancer. Because of their strong performance on picture 

classification tasks, these algorithms have been taken into consideration. Baseline is the C.N.N while deeper and 

complex architectures such as VGG16, ResNet-50, and DenseNet121 are being explored for potentially better feature 

extraction. EfficientNet, being one of the computationally efficient architectures, is used in this study to test (Alahe 

& Maniruzzaman, 2021) the trade-off between high accuracy and lower resource usage. Every model is trained, 

validated, and tested for best practice in breast cancer detection. 

Table 1. An Overview of the Previous Research, Broken Down by Methods, the Most Effective Method, Language, 

Results, and Datasets Employed 
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Figure 4. Custom C.N.N Architecture for Image Classification 

“Table 2. Experimental Setup for All Models” 

Parameter EfficientNetB0 VGG16 

(Simplified) 

ResNet50 

(Simplified) 

DenseNet121 Custom C.N.N  

Model EfficientNetB0 VGG16 

(Simplified) 

ResNet50 

(Simplified) 

DenseNet121 Custom C.N.N  

Libraries Keras, 

Tensorflow, 

matplotlib, OS, 

sklearn 

Keras, 

Tensorflow, 

matplotlib, OS, 

sklearn 

Keras, 

Tensorflow, 

matplotlib, OS, 

sklearn 

Keras, 

Tensorflow, 

matplotlib, OS, 

sklearn 

Keras, 

Tensorflow, 

matplotlib, OS, 

sklearn 

Classes 8 8 8 8 8 

Class Mode Categorical Categorical Categorical Categorical Categorical 

Input 

Layer 

(299, 299, 1) (75, 75, 3) (75, 75, 3) (100, 100, 3) (100, 100, 3) 
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Neurons 3x3 

Convolutional, 32 

filter 

3x3 

Convolutional, 

32 filter 

3x3 

Convolutional, 

32 filter 

3x3 

Convolutional, 

64 filter 

3x3 

Convolutional, 

32 filter 

Accuracy F1-score F1-score F1-score F1-score F1-score 

Pooling 3x3 

Convolutional, 64 

filter 

Max Pooling Max Pooling Max Pooling Max Pooling 

Max 

Pooling 

Yes Yes Yes Yes Yes 

Flatten Fully Fully Fully Fully Fully 

Activation 

Function 

Softmax Softmax Softmax Softmax Softmax 

Loss Categorical 

Crossentropy 

Categorical 

Crossentropy 

Categorical 

Crossentropy 

Categorical 

Crossentropy 

Categorical 

Crossentropy 

Learning 

Rate 

0.0001 0.0001 0.0001 0.0001 0.0001 

Batch Size 128 128 128 128 128 

Epochs 120 120 120 120 120 

Output 

Layer 

8 8 8 8 8 

C.N.N  

For the aim of classification, the C.N.N architecture is made to extract hierarchical properties from input pictures. 

The model begins with a Conv2D layer that detects low-level features like edges using 32 filters with a kernel size of 

(3,3). Non-linearity is then introduced using a ReLU function of activation. The feature maps are then down sampled 

using a MaxPooling2D layer, which cuts the spatial dimensions in half. It continues with the additional convolutional 

(Yadav et al., 2023) layers each having 64 filters. The ReLU activations and the MaxPooling2D layers are applied at 

each convolutional layer stepwise to successively extract higher level features. Dropout is also added at this stage to 

prevent overfitting. Spatial dimensions are reduced at each layer, and finally, all the feature maps are flattened into 

a one-dimensional vector. This is followed by fully (Singh, 2023) connected dense layers with ReLU activations and 

a final dense layer that has a single output neuron for classification, ensuring the model outputs a prediction. The 

architecture captures both low-level and high-level features through successive convolutions and pooling operations 

to give a robust output in classification. 

VGG-16 

The architecture follows a similar structure as the VGG16-based model, starting with the VGG16 model, which 

extracts features using pre-trained weightsReduce the spatial resolution of the feature maps by using the following,it 

uses a number of convolutional layers with progressively larger filter sizes, followed by MaxPooling2D layers. It then 

applies a Dropout layer for regularization and then flattens the feature maps  (Ameh Joseph et al., 2022). Later, a 

stack of dense layers is used with batch normalization, which prevents overfitting and controls internal covariate 

shifts. The final layer consists of one output unit in a final dense layer that gives the model the classification result. 

The main difference between the two architectures (Sugiharti et al., 2022) is the use of pre-trained VGG16 weights in 

the second model, allowing it to leverage previously learned features for more accurate predictions, especially when 

the dataset is small or requires transfer learning. Both architectures are effective for image classification tasks, and 

the VGG16 model is advantageous over the others with regard to feature extraction because it uses pre-trained 

weights.
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“Figure 5. VGG16-based Model for Image Classification” 

 

“Figure 6. DenseNet121-based Model for Image Classification” 

 

Figure 7. ResNet50-based Deep Learning Model for Classification 
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Figure 8. EfficientNetB0-based Model for Image Classification 

ResNet50 

The 50-layer ResNet50 architecture, The ResNet50-based Deep Machine Learning Model for Classifier uses residual 

connections, which assist mitigate the vanishing gradient problem during deep network training. For classification, 

it employs convolutional layers, batch normalization, as well as residual blocks, which are succeeded by fully 

connected layers. The number of parameters in this model is around 25.6 million. Intermediate layers use ReLU 

activation and softmax for output. 

DenseNet121 

The DenseNet121-based Model uses DenseNet121, in which every layer is densely connected to all the subsequent 

layers; This improves gradient flow and feature reuse. The architecture is made up of global layers, transition layers, 

and dense blocks average pooling followed by output passing through fully connected layers. It has about 8 million 

parameters, which use ReLU activation for convolutions and softmax for classification. 

Efficient Net 

It's the EfficientNetB0-based Model, an architecture that is optimized for efficiency via A technique of compound 

scaling. It has convolutional layers, global average pooling, and fully linked layers and strikes a compromise between 

depth, width, and resolution. for classification with roughly 4.8 million parameters. It employs ReLU for intermediate 

activation and softmax for output. It is very efficient since the results from its performance are far more improved 

when compared to the use of regular C.N.N s with much higher numbers of parameters. 

Training and Validation of Each Model 

Multiple key steps are involved in the training and validation process for each model to make them optimal and 

generalized. Every model is trained by starting with loading and pre-processing a dataset, which includes all 

techniques of image resizing, normalization, and data augmentation in order to make it robust. Models are trained 

using the appropriate loss function, such as categorical cross-entropy (Heenaye-Mamode Khan et al., 2021) for 

multiclass classification, and an optimizer such as Adam to modify the weights of the model. It also entails configuring 

parameters like the number of training epochs, batch size, and learning rate. Additionally, it must verify the model's 

performance during training using a validation set that measures many metrics, including accuracy, precision, recall, 

and F1-score. In order to avoid overfitting, it often includes early halting, that is when the model would do really well 

on the training set but fail miserably outside it. Finally, the models are tested against a test set and the performance 

is compared to (Sannasi Chakravarthy et al., 2023) ascertain which model yields the best classification results. 

Regularization methods like dropout and batch normalization are applied to ensure better generalization of the 

models towards unseen data. 
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Algorithm 

Input: 

1. Pre-processed dataset D. 

2. EfficientNet model M. 

3. Hyperparameters: learning rate LR batch size BS, and epochs E. 

Output: Model 𝑀  with optimized accuracy. 

1.Initialize model 𝑀:  

M0 = EfficientNetB0 (pre-trained weights). 

Set LR, BS, and E 

2.Training Phase: 

For each epoch e in 1 to E: 

Me+1=Me+train on Dtrain using Adam optimizer and categorical cross-entropy loss. 

If validation accuracy converges: Break. 

3.Testing Phase: 

Evaluate M on Dtest to compute metrics: 

Accuracy, Precision, Recall, and F1-score. 

4.Return: Optimized model 𝑀 performance metrics. 

 

Mathematical Model for Breast Cancer Detection and Classification 

Breast cancer detection and classification rely on convolutional neural networks (CNNs) to analyze mammographic 

images and classify them into categories such as benign or malignant. The proposed mathematical model operates as 

follows: 

Input Data: 

The dataset X={x1,x2,…,xn} comprises n mammographic images, each scaled to d×d  dimensions (e.g., 299×299 ). 

Each image xi is labeled yi where yi ∈{0,1} representing benign or malignant cases. 

Feature Extraction with CNNs: 

The CNN extracts hierarchical features from the input image: 

                                           𝐹𝑖  = ℱ𝐶𝑁𝑁 (𝑥𝑖; 𝜃) 

Here, ℱ𝐶𝑁𝑁  is the CNN architecture with parameters θ Convolutional and pooling layers detect image features at 

various levels, applying operations like: 

                                           𝑍 =  𝜎 (𝑊 ∗ 𝑋 + 𝑏) 

where W and b are weights and biases, and σ is an activation function (e.g., ReLU). 

Classification: 

The extracted features 𝑓𝑖are passed to fully connected layers for classification: 

                                           𝑌̂ = SOFTMAX (𝑊𝑓𝑐 . 𝑓𝑖𝑏𝑓𝑐) 
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 The output 𝑦̂𝑖 represents the probability of each class. 

Loss Function and Optimization: 

The model minimizes the categorical cross-entropy loss: 

                                            L = - 
1

𝑛
 𝑖 = ∑ 1𝑛

𝑖=  ∑ 𝑦𝑖 𝑘
𝑘
𝑘=1  log (𝑦̂𝑖𝑘) 

Parameters are updated using the Adam optimizer. 

Performance Metrics: 

Metrics like accuracy, precision, recall, and F1-score evaluate the model: 

                                    Accuracy =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

The model’s ability to detect and classify breast cancer accurately is validated using training, validation, and test 

datasets.

RESULTS & DISCUSSION 

Here, we analysed the performance of various DL models for the classification of benign and malignant cases in a 

medical dataset. These models include C.N.N DenseNet121, ResNet50, VGG16, and Efficient Net, which get trained 

and tested to check their ability to accurately predict the outcome. Many other performance metrics were considered 

here for these models: accuracy, precision, recall, F1 score, ROC AUC score, and Cohen's Kappa score, considering 

these as effective means for comparing the difference between classes using these models. Following section will 

outline in depth performances of the results based on each model.

 

Figure 9. Accuracy of All Models 

The figure shows that DenseNet121 attains the highest training accuracy 94% and validation accuracy 92%, whereas 

its testing accuracy is 90%, which is great generalization. On the contrary, VGG16 is the worst as it dropped its 

training accuracy to 89%, the validation accuracy is at 87%, and testing accuracy is at 86%, which clearly indicates 

huge underperformance and overfitting problems. Efficient Net excels in testing accuracy 91%, surpassing 

DenseNet121, despite slightly lower training 92% and validation accuracies 89%. ResNet50 maintains moderate 

performance with 90% training accuracy, 89% validation accuracy, and 88% testing accuracy, showing consistent 

results. C.N.N, the simplest model, achieves 92% training, 90% validation, and 88% testing accuracy, highlighting 

its balanced yet less competitive performance compared to advanced architectures. 
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Figure 10. Loss of All Models 

The figure compares the losses of training, validation, and testing of various models. DenseNet121 has the least 

training loss 0.15 and validation loss 0.25, along with a low testing loss 0.30, indicating excellent learning and 

generalization. EfficientNet achieves the lowest testing loss 0.28, despite slightly higher training 0.18 and validation 

losses 0.27. VGG16 performs the worst, with the highest training loss 0.35, validation loss 0.40, and testing loss 0.45, 

reflecting poor learning and overfitting. ResNet50 and C.N.N demonstrate balanced performance with moderate 

losses across phases, highlighting DenseNet121 and EfficientNet as the most efficient models overall. 

 

Figure 11. Time Performance of All Models 

This figure compares the time performance of five models C.N.N , DenseNet121, ResNet50, VGG16, and EfficientNet) 

in terms of training, validation, and testing times. DenseNet121 has the longest training time 220 seconds, 

significantly higher than other models, while EfficientNet has a relatively lower training time 160 seconds. Validation 

times are consistent across models, ranging from 10 to 15 seconds, with DenseNet121 slightly leading. Testing times 

are similarly close, between 20 to 30 seconds, with C.N.N  being the fastest 20 seconds and EfficientNet slightly 

higher. This indicates DenseNet121 is computationally intensive, whereas C.N.N  is faster but may compromise 

complexity. 
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Figure 12. Precision of All Models 

This figure shows the precision performance of five models. DenseNet121 achieves the highest precision 88%, 

followed by ResNet50 86%, while C.N.N demonstrates moderate precision 85%. VGG16 has the lowest precision 83%, 

indicating potential issues with overfitting or underfitting. EfficientNet shows a sharp spike and gets a near-perfect 

precision of 89%, showing that it minimizes false positives. DenseNet121 and EfficientNet show to be the top-

performing models, whereas VGG16 underperforms; this shows that EfficientNet's architecture is more optimized 

for precision on this task than the other models.

 

Figure 13. Recall of All Models 

DenseNet121 demonstrates the highest recall 87%, indicating strong capability in identifying true positives, followed 

closely by ResNet50 85%. C.N.N achieves a moderate recall 84%, while VGG16 significantly underperforms with the 

lowest recall 83%, suggesting it struggles with sensitivity. EfficientNet outperforms all models with a sharp rise to 

88%, showcasing its robustness in minimizing false negatives. In the recall context, the results highlight EfficientNet 

and DenseNet121 as best performers. In order to be able to increase sensitivity, VGG16 has to be optimized.
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Figure 14. F1-Score of All Models 

The graph plots the F1-scores (%) of different models: C.N.N , DenseNet121, ResNet50, VGG16, and EfficientNet. It 

can be seen that the highest score is obtained by DenseNet121, with 88.5%. EfficientNet follows with a score of 88%. 

The ResNet50 obtains a middle score of 85.5%, and C.N.N  slightly lags behind at 85%. VGG16 obtains the lowest 

score, with 83%, showing a comparatively poor performance. There is a significant fall for VGG16 and a steep rebound 

for EfficientNet, indicating superior optimization over the traditional architecture. This means that DenseNet121 and 

EfficientNet are better at picking relevant features than the rest of the models. Classification results based on these 

features are in Figures, therefore, after care consideration from explanation and experiment, the proposed Deep 

Learning Framework exceeds traditional feature-based classification methods in terms of classification accuracy. To 

increase the performance of the proposed DLF, measures such as sensitivity, specificity, and accuracy are computed. 

The term accuracy is used to refer to the proportion of instances correctly classified, and it is computed using the 

following formula: 

• Accuracy equals (TP+TN) of (TP+TN+FP+FN).  

• Sensitivity equals TP divided by (TP plus FN).  

• Specificity equals TN divided by (TN plus FP).  

The symbol TP indicates that positive classes have been successfully classified. 

 In the case of TN, the classification of negative classes was correct. 

FP: is inaccurately categorized as positive when it should be negative is incorrectly categorized as positive when it 

should be negative  

Table: Performance Comparison of Models 

Method Model Accuracy (%) 

Elkorany et al. [2023] C.N.N  91.81 

Hekal et al. [2021] AlexNet 91.00 

Gonçalves et al. [2021] DenseNet201 91.67 

Proposed Models: 

C.N.N  90.8 

DenseNet121 92.40 

ResNet50 91.35 

VGG16 87.18 

EfficientNet 94.97 
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CONCLUSION:  

• The proposed Efficient Net-based Deep Learning Framework (DLF) demonstrated the best performance, 

achieving the accuracy of 94.97%, with precision of 95.13%, recall of 94.96%, and a ROC AUC value of 98.16%. 

• DenseNet121 and ResNet50 showed competitive results, achieving accuracies of 92.4% and 91.35%, respectively, 

but had challenges with recall and precision compared to the DLF. 

• The C.N.N model delivered a moderate accuracy of 86.96% but struggled with lower precision, recall, and a 

Cohen Kappa score of 0.0, indicating inconsistencies with the ground truth. 

• The VGG16 model, though widely used, achieved a relatively modest accuracy of 86.18%, illustrating the 

limitations of simpler architectures for complex tasks like cancer prediction. 

• The study highlights the importance of advanced architectures like Efficient Net for their ability to deliver higher 

accuracy, better true-positive and false-negative classification, and robust predictive capabilities in comparison 

to other models that are considered to be state-of-the-art.
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