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Ensuring data privacy has become increasingly vital for entities such as 

statistical bureaus, healthcare providers, and other data-dependent 

institutions. Although numerous data publishing techniques have been 

proposed, most are limited to managing datasets with a single sensitive 

attribute, rendering them ineffective in multi-sensitive environments. 

Conventional models like k-anonymity and ℓ-diversity face significant 

limitations in preserving privacy across multiple sensitive fields and often 

lack flexibility for tailored data handling. To address this gap, we propose the 

Sensitivity Preservation–Securing Value (SP-SV) Method, a novel framework 

that builds upon Differential Privacy to support anonymization across 

multiple sensitive attributes. SP-SV employs an adaptive noise injection 

strategy that dynamically adjusts according to the sensitivity level of the data, 

rather than relying on uniform noise distribution. This selective mechanism 

enhances protection for highly sensitive data points while retaining 

analytical value. Using synthetically generated datasets based on real-world 

healthcare records (comprising 6,000 entries), our experiments reveal that 

SP-SV maintains data utility with a maximum variation of only 12.45% for 

Sciatica and 12.50% for Fungal Infection. Compared to systems like Airavat, 

which apply static noise levels, SP-SV demonstrates superior flexibility and 

efficiency by aligning noise with data sensitivity. 

Keywords: Privacy Protection, Noise-Based Methods, Multi-Attribute Data 

Security, Sensitive Attributes. 

1. INTRODUCTION 

Cloud computing has emerged as a pivotal force reshaping the digital landscape, with large-scale 

enterprises rapidly deploying sophisticated infrastructures to support diverse data-driven applications. 

Its widespread adoption has opened new avenues for innovation, especially in domains like e-commerce 

and healthcare, where intelligent data processing delivers substantial value. However, this dependence 

on large-scale data gathering and analysis has intensified major concerns over information 
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confidentiality and individual privacy. As new threats evolve, protecting personal data has become a 

critical priority. Hence, developing a strong and adaptable privacy-preserving mechanism is essential 

to avoid potential data misuse or breaches during storage and computation. 

Conventional techniques—such as encryption, generalization-based anonymization, and 

randomization—form the core of many privacy strategies. Yet, encryption and anonymization, while 

useful in hiding identities, are increasingly proving inadequate against advanced re-identification 

attacks. In contrast, privacy models based on probabilistic noise insertion, particularly those following 

the Differential Privacy principle, offer a more robust line of defense by introducing uncertainty in query 

outputs. 

In this context, our study proposes an advanced privacy model named Sensitivity Preservation–

Securing Value (SP-SV) Method, which enhances Differential Privacy through attribute-specific 

adaptations. The SP-SV approach assigns variable noise levels based on the degree of sensitivity 

associated with different data features, thus ensuring heightened protection for more vulnerable 

attributes while minimizing unnecessary distortion. This adaptability allows for a better equilibrium 

between preserving individual confidentiality and maintaining analytical relevance. 

Differential Privacy, in its essence, provides a quantifiable measure for evaluating privacy strength 

by assessing the impact of noise on the dataset’s statistical outcomes. When customized to account for 

varied sensitivity across attributes, it becomes a powerful mechanism to safeguard against inference 

risks without rendering data unusable. Our framework, SP-SV, builds on this concept to deliver precise, 

sensitivity-aware anonymization that preserves functionality. 

Although Hadoop offers scalability and parallelism, its current security layers are fragmented and 

often inadequate for modern privacy demands. Many existing models emphasize either privacy or 

usability—rarely both. The SP-SV Method fills this gap by incorporating a refined Differential Privacy 

logic into the Hadoop MapReduce pipeline, offering a dual focus on safeguarding sensitive data and 

retaining its analytical merit. Notably, its user-centric design ensures it can be deployed with minimal 

technical overhead, making it accessible even in real-world operational settings. 

To demonstrate its practical applicability, the method was evaluated on synthetic healthcare 

datasets modeled on real clinical data, comprising 6,000 records. Results confirmed that the framework 

preserves privacy while supporting meaningful insights—highlighting its potential for large-scale, 

privacy-conscious data environments. 

The paper is structured as follows: Section 2 presents a review of relevant work in the area of 

differential privacy. Section 3 details the architecture of the proposed SP-SV Method. Section 4 outlines 

the experimental setup and discusses key findings. Section 5 explores privacy-utility implications and 

ethical concerns. Section 6 concludes the study and suggests potential avenues for future 

improvements. 

2. LITERATURE SURVEY 

Differential Privacy, a rigorous mathematical model designed to preserve individual confidentiality 

during large-scale data analysis, was pioneered by Cynthia Dwork and her colleagues [15]. The core idea 

involves inserting controlled randomness (noise) into outputs, allowing meaningful insights while 

safeguarding personal data from exposure. 
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Expanding on this theoretical base, Dwork et al. [16] addressed the real-world complexities of 

implementing Differential Privacy. Their contributions offered best practices for deploying this 

framework effectively, focusing on the intricate trade-offs between privacy guarantees and data 

usability. 

The HybrEx model [10] proposed a hybrid-cloud privacy solution that classifies data into sensitive 

and non-sensitive types. While this separation aimed to enhance anonymity and security, its practical 

application faced limitations in integrating public and private cloud data seamlessly—especially when 

dealing with generated or dynamic datasets. 

Machanavajjhala et al. [11] applied Differential Privacy principles to synthetic transportation 

datasets to analyze commuting behaviors. Although their approach maintained privacy, uniform noise 

distribution across sparse and dense regions distorted results, particularly in domains with wide-

ranging values. Attempts to reduce domain size using auxiliary data narrowed the analytical scope to 

short-distance travel, limiting versatility. 

Randomization methods, such as those explored by R. Agrawal et al. [12], disrupt individual records 

to obscure identities. However, the authors noted that this interference hampers the development of 

accurate predictive models, as the added noise degrades data quality and impairs model performance. 

Addressing multi-party data analysis, S. R. Ganta et al. [13] observed that prevailing privacy 

standards fall short in protecting datasets distributed across institutions. Their work emphasized 

privacy-preserving collaborative mining, where confidentiality must be ensured without centralized 

data aggregation. 

Privacy Integrated Queries (PINQ), developed by     F. D. McSherry [14], introduced a novel model 

that performs private queries over sensitive datasets. Utilizing a trusted computing environment, PINQ 

secures intermediate computations and final outputs, making it effective for distributed systems. 

M. Kantarcioglu et al. [17] examined privacy protection in scenarios lacking centralized data 

warehouses. Their research focused on mining association rules while preserving privacy, comparing 

noise-based individual protection methods with secure multi-party computation to enable cross-

database collaboration without exposing private details. 

Airavat, introduced by I. Roy et al. [19], represents a privacy-aware enhancement to the MapReduce 

paradigm. By integrating Differential Privacy with stringent access controls, Airavat restricts the flow 

of sensitive information, ensuring that processing nodes (mappers) cannot leak confidential content. 

This marks a substantial improvement in securing distributed computation frameworks. 

Building on these developments, the Sensitivity Preservation–Securing Value (SP-SV) Method [18] 

enhances Airavat by integrating a combiner mechanism and extending support for Differential 

Anonymity within the Hadoop MapReduce environment. Notably, SP-SV does not require modification 

of Hadoop’s core source code, making it a flexible yet secure solution. It processes attributes securely 

while maintaining functionality, bridging the gap between data privacy and operational effectiveness. 

As Dwork emphasized, Differential Privacy ensures that the inclusion or exclusion of any individual 

record does not substantially alter analysis results—an essential criterion for high-assurance privacy 

frameworks. In the SP-SV approach, this principle is maintained while also mitigating potential 
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vulnerabilities within the Hadoop MapReduce pipeline, such as insecure Reducer nodes. Importantly, 

the method anticipates adversarial inference risks by preserving individual indistinguishability even in 

output variations [7]. 

Problem Statement: 

Existing Differential Privacy mechanisms frequently apply uniform noise across all attributes, often 

resulting in excessive data distortion or insufficient privacy. This one-size-fits-all strategy compromises 

either utility or protection—particularly in complex datasets containing multiple sensitive fields.             

The SP-SV Method addresses this challenge by introducing an adaptive noise scaling technique, which 

adjusts noise levels according to attribute sensitivity. This not only enhances protection for critical data 

points but also retains data quality for analytical purposes. 

 

Furthermore, widely used privacy models such as k-Anonymity, ℓ-diversity, t-Closeness, and traditional 

Differential Privacy frameworks encounter significant challenges when applied to multi-attribute 

datasets. These conventional approaches suffer from: 

• Limited flexibility in handling varied sensitivity levels across attributes 

• Reduced data utility due to blanket generalization or uniform noise 

• Inadequate scalability for distributed systems like Hadoop 

• Vulnerability to advanced re-identification and inference attacks 

The SP-SV Method is proposed to overcome these deficiencies through differentiated privacy 

mechanisms, tailored specifically for large-scale, multi-attribute data processing environments. 

Table 1 : Comparison of limitations of conventional techniques 

Method Key Technique Limitations 

k-Anonymity Generalization & suppression 
Fails against attribute linkage 
and background knowledge 
attacks 

ℓ-diversity 
Ensures diversity of sensitive 
attributes 

Ineffective when sensitive values 
are semantically similar 

Differential Privacy Noise addition (static) 
Applies fixed noise across 
attributes, leading to excessive 
distortion or privacy gaps 

SP-SV (Proposed) Adaptive noise injection 
Balances privacy and utility 
dynamically 

3. METHODOLOGY 

The Sensitivity Preservation–Securing Value (SP-SV) Method [18] introduces a seamless integration 

of Differential Privacy into the Hadoop MapReduce architecture to enable secure and privacy-conscious 

data processing. This framework is designed to prevent the disclosure of personally identifiable 

information (PII), thereby upholding anonymity while still enabling researchers to derive insights from 

sensitive datasets without breaching privacy standards. 

 

This work centres on evaluating the privacy and security performance of the SP-SV framework. The 

approach leverages a diversified Differential Privacy model, which intelligently balances data protection 

with utility preservation. To conduct this evaluation, synthetic datasets were generated using Python 
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scripts, modelled after real-world healthcare records. The privacy-preserving architecture incorporates 

controlled randomization, which serves to obscure individual-level details without corrupting the 

overall data structure. 

 

To generate randomized yet cryptographically sound noise values, the framework utilizes 

Cryptographic Random Number Generators (RNGs). These RNGs are tailored for secure applications, 

ensuring that the randomization process remains unpredictable and robust against inference attacks. 

 

During execution, each MapReduce task processes an individual data partition, applying privacy 

logic at the mapping stage. As the mapper reads and processes records, it generates intermediate key-

value pairs using quasi-identifiers such as age, city, gender, and occupation. These attributes are 

prioritized for privacy transformation. 

 

To reinforce privacy protections, the method applies attribute-specific sensitivity values along with 

an associated privacy budget parameter, epsilon (ε). These parameters guide the addition of Laplacian 

noise, a core mechanism in Differential Privacy, which obfuscates true values without significantly 

impairing data usability. 

 

The SP-SV framework adopts the following formula to anonymize data: 

 

NoisyValue = OriginalValue + Laplace (0, sensitivity/ε) 

 

Here: 

Laplace (0, sensitivity/ε) denotes Laplace-distributed noise centred at zero with scale proportional 

to the attribute's sensitivity. Sensitivity captures the maximum possible change in the attribute's value. 

Epsilon (ε) governs the trade-off between privacy strength and data fidelity. 

SP-SV dynamically adjusts \epsilon values, ensuring low deviation rates (<15%) while maintaining 

analytical reliability. Figure 1 illustrates the SP-SV method’s architecture, implemented within the 

Hadoop MapReduce framework to ensure scalability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 1 New varied SPSV method Flowchart
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In our experimental evaluation, we applied three different levels of the privacy parameter epsilon, 

specifically 0.2, 0.4, and 0.8, to examine the impact of varying privacy budgets. These values were 

selected to achieve a strong balance between privacy protection and data utility, ensuring that 

anonymization does not significantly distort the analytical usefulness of the data. 

Sensitivity in this context refers to the maximum change in a function’s output that could result 

from altering a single record in the dataset. Since different attributes pose different privacy risks, 

sensitivity values are customized per attribute to reflect their individual privacy requirements. The 

privacy parameter ϵ\epsilonϵ governs the level of obfuscation introduced—lower values yield stronger 

privacy but may reduce data fidelity, while higher values preserve more accuracy at the cost of weaker 

privacy guarantees. 

During processing, the Map function reads each record and produces intermediate key-value pairs, 

grouping them based on quasi-identifiers such as age, location, or occupation. After mapping, the 

differential privacy logic is applied to the values, involving either aggregate computations or targeted 

noise injection, depending on the sensitivity of each attribute. 

The map output is partitioned by keys, ensuring that all entries sharing the same key are routed to 

the same Reduce function [18]. This guarantees proper grouping for further anonymization at the 

reducer level. 

Inside each reducer, the incoming key-value pairs are sorted based on their key. The reducer then 

applies the privacy-preserving transformations and generates a final anonymized dataset in the form of 

new key-value pairs. These processed outputs can either be saved within the Hadoop Distributed File 

System (HDFS) or exported to other secure storage environments, making them available for 

downstream analytics without risking individual privacy exposure. 

SPSV Method Key Steps 

A. Data Segmentation (Input Splitting) 

The initial step involves dividing the input dataset into smaller, manageable partitions.                                

This segmentation enables focused processing and identification of key quasi-identifiers required for 

privacy-preserving transformations. 

B. Mapping Stage (Map Phase) 

Each data segment is processed independently using an anonymization routine that transforms 

sensitive attributes. During this phase, the Map function produces intermediate key-value pairs, 

anonymizing fields such as age, city, gender, and occupation. Privacy guarantees are enforced by 

integrating attribute-specific sensitivity values and epsilon budgets. 

To introduce differential privacy, Laplacian noise is added using the following formulation: 

NV = OV + L(0,
S

ε
)    

Where, NV-Noisy value, OV-Original value,               L-Laplace, S-sensitivity 
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C. Attribute Handling & Noise Configuration 

• Numerical Attributes (e.g., AGE, CITY) are directly modified using Laplace-distributed noise to 

mask sensitive values. 

• Categorical Attributes (e.g., JOB, CITY, DISEASE) undergo SP-SV encoding, a structured 

transformation technique that preserves analytical utility while hiding direct values. 

• DISEASE is left unmodified intentionally to retain its diagnostic significance in downstream 

health analytics. 

• Privacy Parameter epsilon ε: 

Controls the trade-off between accuracy and privacy. Lower ε implies stronger privacy but 

reduced utility. 

• Sensitivity Measure: 

Determines how much an attribute’s value can influence output and guides the magnitude of 

noise. It is calculated as: 

max(|M_min|, |M_max|) = 1 

The count function ranges between 0 and 1, while sum operations can reach maximum values based 

on data scale. The amount of noise N is sampled as: 

N ~ Lap(∆d/e) 

D. Shuffle & Reduce Phase 

• Shuffling: Ensures that all key-associated values are grouped and sent to the correct 

reducer. 

• Sorting: Within each reducer, records are sorted by key. 

• Final Output Generation: 

The anonymized dataset is compiled and stored either in the Hadoop Distributed File 

System (HDFS) or an external data repository. This ensures secure access and further 

utility. 

4. EXPERIMENTAL RESULTS 

The proposed Varied SP-SV framework, based on Differential Privacy, was tested on a synthetically 

generated healthcare dataset consisting of 6,000 individual records. This dataset captures the 

distribution of patients across a diverse range of medical conditions. 

 

The original version of the dataset includes patient counts for each disease, and these counts were 

deliberately preserved across all anonymized transformations to maintain analytical consistency. The 

transformation process did not alter disease-level totals, ensuring that essential statistical insights 

remained unaffected. 

 

Table 2 presents the list of diseases alongside the corresponding number of patients affected by 

each condition. The dataset spans various health issues, from common allergic responses to more 

complex conditions such as thyroid dysfunction. Despite the application of privacy-preserving 
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mechanisms, the integrity of disease-specific aggregates was retained, ensuring the dataset remains 

reliable for clinical or research analysis.

 

Table 2. List of 12 Diseases with count in the 6000-Patient Dataset across 5 Transformations 
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1  
ALLERGIC 

REACTIONS  
604 604 0 604 0 604 0 604 0 604 0 

2  BLOOD PRESSURE  582 582 0 582 0 582 0 582 0 582 0 

3   SCIATICA  597 597 0 597 0 597 0 597 0 597 0 

4  LYMPHOMA  281 281 0 281 0 281 0 281 0 281 0 

5  SCIATICA 643 643 0 643 0 643 0 643 0 643 0 

6  HYPERTENSION  573 573 0 573 0 573 0 573 0 573 0 

7  FUNGAL INFECTION  636 636 0 636 0 636 0 636 0 636 0 

8  PNEUMONIA  292 292 0 292 0 292 0 292 0 292 0 

9  PSORIASIS 583 583 0 583 0 583 0 583 0 583 0 

10  FUNGAL INFECTION 599 599 0 599 0 599 0 599 0 599 0 

11  UTERINE DISORDERS  288 288 0 288 0 288 0 288 0 288 0 

12  THYROID  322 322 0 322 0 322 0 322 0 322 0 

TOTAL COUNT  6000 6000 0 6000 0 6000 0 6000 0 6000 0 

 

The SP-SV approach maintains consistent patient counts for each disease across all transformations 

(T1–T5), ensuring data stability and privacy protection. As shown in Table 1, the dataset includes 6,000 

records covering conditions from allergic reactions to thyroid disorders. The enhanced SP-SV method 

is applied to safeguard privacy while preserving the integrity of disease-wise counts for accurate 

analysis.  

 

The SP-SV method effectively preserves both data utility and individual privacy. After applying the 

transformation, the patient count for each disease remains consistent across all five versions (T1–T5), 

ensuring stability and privacy protection throughout the process. 

 

Table 3 shows the distribution of 597 sciatica patients across age groups (21–30 to 71–80), with 

the total count and gender breakdown (284 females, 313 males) remaining unchanged in all 

transformations. The New Varied SP-SV method ensures that although internal data values are 

modified, the overall counts are preserved, confirming the framework’s reliability in protecting privacy 

without compromising analytical accuracy. 
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Table 3. Age-Group wise SCIATICA Patient’s Count across Original and Transformation Datasets 
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Table 4. Age-Group Wise Fungal infection Patient’s Count across Original and Transformation 

Datasets 
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Table 4 details the distribution of patients diagnosed with fungal infections, segmented by age 

brackets ranging from 21–30 to 71–80 years. The original dataset includes a total of 599 patients, 
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comprising 302 males and 297 females. Importantly, both the total count and the gender-based 

distribution remain identical across all SP-SV transformations (T1 through T5), demonstrating the 

method’s ability to preserve data fidelity. 

To achieve this balance between privacy protection and analytical usability, the New Varied SP-SV 

technique was employed. This method ensures that transformations applied to the dataset do not distort 

the actual patient statistics. The fungal infection counts, segmented by age and gender, exhibit zero 

deviation throughout all five privacy-preserving stages, affirming the reliability and consistency of the 

transformed data. 

 

 Further confirming this stability, Table 5 presents the total number of sciatica cases identified within 

the original dataset of 6,000 healthcare records. Out of these, 597 patients were marked as having 

sciatica—a count that remains unchanged in all transformed datasets (T1 to T5). 

 

This consistent retention of disease-specific records, even after the application of anonymization, 

underscores the effectiveness of the SP-SV method. It successfully enables secure analysis of patient 

data without compromising privacy, accuracy, or demographic composition. The framework ensures 

that sensitive information is obscured while retaining the epidemiological relevance of the data, 

supporting meaningful clinical and statistical interpretation. 

 

Table 5. Deviation Percentage of SCIATICA Datasets across Five Transformations 
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21-30  107  76  28.97  75  29.91  72  32.71  76  28.97  73  31.78  

31-40  127  120  5.51  125  1.57  126  0.79  125  1.57  125  1.57  

41-50  130  137  5.38  133  2.31  131  0.77  132  1.54  137  5.38  

51-60  125  122  2.40  126  0.80  128  2.40  125  0.00  123  1.60  

61-70  108  129  19.44  120  11.11  120  11.11  119  10.19  126  16.67  

71-80  0  13  13.00  18  18.00  20  20.00  20  20.00  13  13.00  

AVG 

DEVIATION  
597  597  12.45  597  10.62  597  11.30  597  10.38  597  11.67  

The SP-SV method has shown significant effectiveness in preserving the structural integrity of the 

dataset while safeguarding sensitive individual details. Although transformations applied through SP-

SV may alter the distribution of patients across specific age groups, the total disease counts remain 

unaffected. This ensures that the transformed dataset retains its analytical relevance and privacy 

compliance. 

In the case of Sciatica, although variations were observed in the number of patients across different 

age segments after transformation, the total number of patients consistently remained at 597 across all 

five transformation versions (T1–T5). This stability confirms the method’s ability to prevent 
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inconsistencies in aggregate counts. As depicted in     Figure 2, the per-age-group variation ranged from 

0.77 to 32.71, with an average deviation across transformations yielding a maximum deviation (MaxVal) 

of 12.45 and a minimum (MinVal) of 10.38. These values are well below the acceptable threshold of 15–

20%, confirming the dataset's reliability and usability for clinical or statistical interpretation. 

For Fungal Infection, Table 6 shows that the total patient count of 599 remained unchanged across 

all five SP-SV transformations. Although age-wise distributions varied slightly, the overall count 

remained consistent, ensuring data stability. Deviations ranged from 0.00 to 23.33, with a maximum 

of 12.50% and minimum of 9.83%, as illustrated in Figure 2. 

These results confirm that despite privacy-driven changes, the SP-SV method preserved data 

consistency, supporting reliable downstream analysis. The controlled deviation levels further validate 

the method’s ability to ensure privacy without compromising data fidelity. 

 

Table 6. Deviation Percentage of Fungal infection Datasets across Five Transformations 
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41-50 116 121 4.31 124 6.90 119 2.59 125 7.76 125 7.76 

51-60 116 108 6.90 109 6.03 110 5.17 114 1.72 104 10.34 

61-70 126 137 8.73 137 8.73 141 11.90 130 3.17 140 11.11 

71-80 0 21 21 19 19 16 16 22 22 20 20 
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DEVIATION 
599 599 10.85 599 11.08 599 9.83 599 10.36 599 12.50 

                          

Fig. 3 Deviation Results of Transformations across T1 to T5 for Sciatica 
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To enable analytics while protecting individual privacy, the original dataset was anonymized using 

the variable SP-SV method, which effectively maintains both data accuracy and confidentiality. 

 

Post-transformation, age-wise counts for fungal infection varied slightly, with deviations ranging 

from 0.00 to 23.33 across T1–T5. The maximum average deviation was 12.50%, and the minimum was 

9.83%, as shown in Figure 2—well within the acceptable 15–20% threshold. 

 

Although age-group distributions changed, the total patient count remained constant at 599, 

ensuring dataset consistency and confirming the      SP-SV method’s reliability in balancing privacy and 

analytical integrity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Deviation Results of Transformations across T1 to T5 for Fungal infection 

 

Figure 4 illustrates the percentage deviation in fungal infection counts across the five SP-SV 

transformations (T1 to T5). The X-axis denotes the transformation stages, while the Y-axis reflects the 

corresponding deviation percentages observed in the dataset. 

 

Table 7. Addition of one SCIATICA Dataset 
DISEASES AGE 

GROUP 

ORIGINAL AVERAGE T1-T5 

TRANSFORMATION 

BEFORE ADDITION 

 AVERAGE 

T1-T5 

DEVIATION 

% 

ORIGINAL 

AFTER 

ADDING 

ONE 

RECORD 

T6 

TRANSFORMATION 

AFTER ADDITION 

T6 

DEVIATION 

% 

SCIATICA       21-30  107  74   30.47  107  73  31.78  

31-40  127  124   2.20  127  120  5.51  
41-50  130  134   3.08  130  145  11.54  
51-60  125  125   0.16  126  117  7.14  
61-70  108  123   13.70  108  123  13.89  
71-80  0  17   16.80  0  20  20.00  

TOTAL  597 597  11.07 598 598 14.98 

 

4.1 Effect of Adding a Record To The Dataset 

 

Table 7 shows that for Sciatica, the average deviation before adding a record was 11.07%. After 

the addition, it increased to 14.98%, indicating a 3.91% rise. Despite the change, the deviation remains 

below the 15% threshold, confirming that privacy and utility are still preserved. 
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4.2 Effect of Deleting a Record From The Dataset 

 

Table 8 illustrates that for Psoriasis, the deviation percentage was 12.93% before data removal. 

Following the deletion of a single record, the deviation rose marginally to 12.95%, marking a minimal 

increase of 0.02%. This slight change still keeps the deviation well below the 15% threshold, confirming 

the dataset remains privacy-compliant and analytically sound. 

 

Table 8. Deletion of one PSORIASIS Dataset 
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21-30 133 99 25.56 133 98 26.32 

31-40  127 125 1.57 126 125 0.79 

41-50  101 115 13.86 101 112 10.89 

51-60  124 116 6.45 124 116 6.45 

61-70  98 104 6.12 98 111 13.27 

71-80  0 24 24 0 20 20.00 

TOTAL     583 583     12.93     582 582 12.95 

5 ANALYSIS OF THE PRIVACY-PRESERVING FRAMEWORK  

Table 9 presents the confusion matrix constructed from the outcomes of SP-SV transformations 

and record modifications, as detailed in Tables 1 through 8. This matrix reflects the consistency, 

stability, and privacy-preserving performance of the proposed framework under different conditions, 

including the addition and deletion of records. The results confirm the robustness of the SP-SV method, 

with the following key observations in Table 9: 

 

Table 9: Confusion Matrix 

 

Confusion Matrix 
Predicted Positive 

(Transformed Matches 
Original) 

Predicted Negative 
(Deviation/Change) 

Actual Positive (No 
Change in Original 

Count) 

True Positives (TP):              6000 
(unchanged counts across T1-T5 
for diseases) 

False Negatives (FN):             Minor 
deviations by age group (e.g., Table 4: 
Deviation for Sciatica, maximum 
32.71%) 

Actual Negative 
(Changes in Count Due 

to Transformation) 

False Positives (FP):None 
significant, deviations well below 
15% range (e.g., Fungal infection, 
xTable 5: maximum deviation 
12.50%) 

True Negatives (TN):                       No 
deviation for disease totals despite 
added or deleted records 
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Table 8 outlines the confusion matrix derived from the SP-SV framework’s transformation 

outcomes and record-level modifications (as seen in Tables 1 through 8). This analysis highlights the 

framework’s ability to maintain privacy while preserving data accuracy across diverse operational 

scenarios. 

High True Positives (TP): The SP-SV method consistently retains total disease counts 

throughout all transformations (T1–T5), ensuring high data integrity and analytical validity—

particularly essential in healthcare datasets. 

 

Minimal False Negatives (FN): Isolated deviations, such as the 32.71% age-group variation for 

Sciatica in Table 5, are controlled within acceptable limits. The average deviation remains below 15%, 

ensuring that utility is not compromised. 

 

Zero False Positives (FP): No evidence of excessive generalization or over-transformation was 

observed. The SP-SV method maintains the original dataset structure without introducing unnecessary 

alterations, preserving both utility and privacy. 

 

High True Negatives (TN): Even under record additions (Table 7) and deletions (Table 8), the 

framework holds overall disease counts constant, with only minor deviations (e.g., 3.91% for additions, 

0.02% for deletions), reflecting excellent stability under data changes. 

In conclusion, the SP-SV method achieves a strong balance between privacy protection and data 

utility, making it a reliable and compliant choice for handling sensitive healthcare datasets in real-world 

analytical applications. 

5.1 Analysis Using Roc Curve 

To create a Receiver Operating Characteristic (ROC) curve, data from Table 5 (SCIATICA deviation 

percentages) is used, as the deviation percentages in age groups resemble sensitivity-specificity 

evaluation suitable for ROC analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 ROC Curve for SCIATICA Transformations from T1-T5 
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The ROC curve was generated using the age-wise deviation percentages for Sciatica, as presented in 

Table 5. These deviations serve as input for evaluating the relationship between sensitivity (true positive 

rate) and specificity (false positive rate), making them suitable for privacy-utility trade-off analysis. 

The ROC assessment across all five SP-SV transformations (T1 to T5) illustrates a consistent and 

balanced performance. Each transformation yields a curve that reflects minimal variation, 

demonstrating the SP-SV method’s ability to maintain both privacy protection and data usability. The 

near-overlapping ROC plots further indicate the uniform behavior of the framework, regardless of 

transformation instance. 

Importantly, all deviations remained within the accepted privacy threshold of 15% to 20%, 

reaffirming the stability and reliability of the method. This consistent performance across age groups 

underscores the suitability of SP-SV for healthcare datasets, where protecting sensitive information 

must not come at the cost of analytical accuracy. 

6 BENCHMARKING SP-SV WITH STANDARD PRIVACY PRESERVATION 

METHODS 

This chapter presents a detailed comparative analysis of traditional privacy-preserving methods 

alongside the proposed SP-SV (Sensitivity Preservation–Securing Value) Method, using a healthcare 

dataset containing 6,000 records. The comparison involves the application of well-established 

techniques—k-Anonymity, ℓ-Diversity, and Differential Privacy—each evaluated independently on the 

same dataset to provide a consistent performance benchmark. 

 

The primary objective of this analysis is to assess how effectively each method balances data privacy 

with analytical utility, especially in the context of sensitive healthcare information. Metrics such as 

information loss, granularity reduction, privacy leakage risk, and deviation control were used to 

quantify outcomes. 

 

Results indicate that the SP-SV method consistently outperforms conventional approaches, 

delivering robust privacy guarantees while preserving high data usability.  

Unlike the static nature of generalization or fixed-noise mechanisms, SP-SV’s adaptive design allows 

it to respond dynamically to data sensitivity, making it particularly well-suited for multi-attribute 

datasets in privacy-critical environments. 

 

6.1 k-Anonymity Implementation  

The k-Anonymity technique utilizes generalization and suppression methods on attributes such as 

Age, City, Job, and Disease to minimize the risk of individual re-identification within the dataset. 
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Table 6.1: k-Anonymity Implementation Results 

 

k-Level Changes Drawbacks 

k=2 
Age grouped (e.g., 20–30); City generalized as 

"Region 1"; Disease categories simplified 

Reduced granularity; suppression of 

fields like marital status 

k=3 
Broader generalization of Age and Job; Cities 

merged into larger zones 

Lower data precision; potential 

inference vulnerabilities 

k=5 
Full generalization applied; Cities anonymized 

completely 

High loss of detail; decreased analytical 

utility 

 

Table 6.2: Sample k-Anonymized Dataset (k=2) 

 

Age Gender City Job Disease 
Marital 

Status 

50-60 Female Region 1 General Role Hormonal Disorder Any 

20-30 Male Region 2 Medical Role Digestive Issue Any 

50-60 Male Region 3 Management 
Immuno- deficiency 

Condition 
Any 

 

 

6.2  ℓ-diversity Implementation 

 

The ℓ-diversity model enhances privacy by ensuring that each equivalence class contains at least l 

distinct values for sensitive attributes. In this study, the method was applied using l = 2 and l = 3, while 

location data was generalized to prevent indirect re-identification. This approach maintains diversity 

within sensitive fields like Disease, helping mitigate risks from homogeneity and background knowledge 

attacks. 

Table 6.3: ℓ-diversity Implementation Results 

 

ℓ-Level Findings Limitations 

ℓ=2 
Maintains at least two distinct sensitive values per 

group; City data generalized 

Susceptible to background 

knowledge or semantic similarity 

attacks 

ℓ=3 
Enhances diversity across sensitive attributes; 

location data generalized more broadly 

Over-generalization impacts data 

utility and interpretability 
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Table 6.4: Sample ℓ-diversity Dataset (l=2) 

 

Age Gender City Job Disease 
Marital 

Status 

50-60 Female Region 1 Support PCOD Any 

20-30 Male Region 2 Physician Appendicitis Any 

40-50 Female Region 3 Engineer Breast Cancer Any 

        

 6.3 Differential Privacy Implementation 

 

The Differential Privacy (DP) framework applies Laplace noise to attributes like Age and City, 

providing robust privacy through randomized data perturbation. Although this approach effectively 

shields individual records, it can negatively impact spatial precision, limiting the effectiveness of 

location-specific analyses. 

 

Table 6.5: Differential Privacy Effects 

 

Aspect Observation 

Privacy Strength Obscures records effectively 

Utility Impact High loss due to noise on city-based data 

Inference Risks Rare attributes remain vulnerable, city distortions affect research 

 

 

Table 6.6: Sample Differential Privacy Dataset 

 

Age Gender City Job Disease Marital Status 

53.03 Female Bidar Engineer Hypertension Married 

69.33 Male Kalaburgi System Admin Diabetics Married 

45.48 Female Raichur Artist Brain Tumor Unmarried 

       6.4 SPSV Method Analysis 

The SP-SV Method employs an adaptive noise injection strategy that dynamically adjusts based on 

attribute sensitivity, ensuring strong privacy protection while maintaining data utility, especially in 

location-sensitive transformations. 
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Table 6.7: SPSV Method Adjustments 

Attribute Modification 

Age Slightly modified with minimal deviation (less than 20%) 

City Regionally generalized to preserve spatial context 

Job Standardized formatting while maintaining attribute-level diversity 

Disease Left unaltered to retain analytical utility 

Table 6.8: Sample SPSV Dataset 

Age Gender City Job Disease Marital Status 

55 Female Ballari Bank Manager PCOD Unmarried 

25 Male Ballari Programmer Appendicitis Married 

48 Female Raichur Supervisor Breast Cancer Unmarried 

       6.5 Comparative Analysis 

A comparative assessment of the basic privacy-preserving methods was conducted based on key 

evaluation criteria, including privacy strength, utility loss, inference risk, and computational overhead. 

The outcomes of this analysis are presented in Table 6.9. 

 

Table 6.9: Privacy-Utility Trade-Offs 

 

Method Privacy 
Utility Loss 

(%) 
Inference Risk Computational Cost 

k-Anonymity Moderate 18% High Low 

ℓ-diversity High 20% Moderate Low 

Differential 

Privacy 
Very High 22% Low High 

SPSV (Proposed) Optimized 12.45% Very Low Low 
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  6.6 Execution Time Analysis 

Table 6.10: Execution Time for Different Methods 

 

Method Time Taken (s) 

k-Anonymity (k=2) 0.0476 

ℓ-diversity (l=2) 0.0386 

Differential Privacy 0.1835 

SPSV (Proposed) 0.1677 

The comparative analysis confirms that the SP-SV method delivers superior performance in 

safeguarding sensitive attributes when compared to traditional privacy-preserving approaches. While 

k-Anonymity and ℓ-diversity enhance privacy, they do so at the cost of reduced data utility. Similarly, 

Differential Privacy strengthens data protection but negatively impacts location-specific analysis due to 

noise-based transformations. 

In contrast, the SP-SV framework achieves an optimal balance between privacy and utility, 

minimizing information loss while adhering to GDPR and HIPAA standards. Its city-level adaptive 

adjustments retain meaningful regional patterns, making it especially effective for geographically 

focused healthcare analytics. 

 Overall, the SP-SV method stands out as a comprehensive solution—providing robust privacy 

protection, low utility degradation, and computational efficiency, all while preserving the integrity of 

spatially relevant insights. 

7 ANALYSING THE OUTPUT ACCURACY WITH RECONSTRUCTION ATTACK 

  To assess the robustness of the SP-SV privacy-preserving framework, a Reconstruction Attack 

was conducted on the anonymized dataset. Using probabilistic inference and machine learning models, 

we attempted to recover original attribute values particularly focusing on sensitive fields such as job 

roles and medical conditions. The outcomes revealed a low reconstruction success rate of approximately   

9–10%, indicating that the SP-SV transformation significantly hindered accurate value retrieval. 

 

As illustrated in the accompanying graph, the high level of inaccuracy in reconstruction attempts 

confirms the effectiveness of the applied privacy techniques. These results underscore the SP-SV 

method’s capability to resist reverse engineering, thereby reinforcing data confidentiality. Overall, the 

SP-SV framework demonstrates strong resistance to reconstruction attacks, validating its suitability for 

sensitive domains such as healthcare. 

 

8   CONCLUSION 

 The SP-SV method demonstrates superior performance over conventional privacy-preserving 

techniques such as k-Anonymity, ℓ-diversity, and Differential Privacy by achieving a well-calibrated 

balance between privacy protection and data utility. Its adaptive noise mechanism minimizes data 

distortion while safeguarding sensitive information, making it especially effective for use in healthcare 
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datasets. By maintaining analytical integrity alongside strong privacy guarantees, SP-SV proves to be a 

reliable and scalable solution for privacy-critical environments. 
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