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With the rising demand for seamless global connectivity, heterogeneous satellite systems (i.e. 

satellite systems operated by different providers) are integrated. This study introduces a new 

approach to optimizing interoperability between satellite constellations using dynamic 

adaptation and multi-domain learning. To improve QoS and environment understanding, the 

framework employs intelligent protocol conversion, real-time network switching, and 

collaborative learning. The proposed system demonstrates considerable improvement in user 

satisfaction, QoS metrics, and learning efficiency from the simulation results. The findings 

underscore the transformational potential of multi-domain learning in the pursuit of satellite 

network interoperability and scalable, efficient communication systems. 
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INTRODUCTION 

The rapid expansion of satellite communications constellation has prompted the necessity for different systems 
operated by different providers (e.g., SpaceX, One Web, Amazon, etc.) to work collaboratively in an efficient 
manner efficient manner. There are differences in satellite altitudes, bandwidth capacities and network protocols, 
all of which make interoperability extremely difficult. The isolation of operations has resulted in inefficient usage 
of resources and less availability of services for the end-users. In this paper, we propose a dynamic adaptation 
framework for heterogeneous satellite interoperability based on multi-domain learning. The proposed system 
integrates real-time QoS-based network switching, intelligent protocol translation, and collaborative learning to 
provide a better user experience with optimal resource utilization. Using dynamic data including network 
congestion, weather impacts, and protocol compatibility, the framework adaptively optimizes performance. 

The contributions of this work are threefold: 

• A dynamic adaptation model that enables real-time network selection and protocol translation. 

• A multi-domain learning framework for collaborative knowledge sharing across operators. 

• Comprehensive performance evaluation and comparison with traditional fixed-operator models. 

LITERATURE REVIEW 

The last decade has seen a revolution in satellite communication, with Low Earth Orbit (LEO) constellations 
emerging as a competitive paradigm. Interoperability and QoS are crucial for satellite networks, and various 
researchers have investigated multiple ways to improve them. [1-3], for example, proposed and evaluated a hybrid 
switching mechanism for LEO-MEO-GEO integration. Fifth, [4-6] introduced a decentralized learning model for 
end-to-end satellite network optimization. Machine learning (ML) is a rapidly evolving field, and recent 
developments have also allowed for intelligent allocation of resources in communication systems. Researchers 

showed that reinforcement learning could allow for dynamic adaptation of the network in [7-12]. Nonetheless, these 
jobs are more focused on similar home systems and do not have overall solutions for heterogeneous systems. There 
is an evidence in this domain where multi-domain learning also improves collaborative decision making between 
agents [13-15]. Nevertheless, its adoption in satellite networks has not been thoroughly explored, creating an 
avenue this paper aims to fill. Interoperability issues in satellite networks have given rise to several works. [16-18] 

is focused on the design of a cross-layer protocol, which will improve inter-satellite communication. [19-21] studied 
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the blockchain technology to offer secure and reliable coordination between operators. While these approaches 
provide useful insights, they are not able to adapt dynamically. In the work [22-26], a user-centric model for 
selecting the best satellite based on QoS parameters in dynamic network switching was introduced. This model, 
while effective, was not able to be responsive in real time. The existing studies primarily focus on dealing with 
single-sector data, whereas the proposed system extends these studies by incorporating intelligent protocol 
translation and multi-domain learning. It is designed to provide better QoS and interoperability with existing 
approaches by dynamically adapting to user requirements and environment contexts. 

 

PROPOSED SYSTEM MODEL 

Figure 1. Shown the proposed model-based system simulates the multitasking adaptation of satellite networks with 
the purpose of switching to the best performing satellite network by using the deep learning technologies in a multi-
domain based strategy. This model is trained to simulate interoperation between several operators (SpaceX, 
OneWeb, and Amazon), dealing with network congestion, weather effects, and compatibility of protocols. Well, the 
main objective is to effectively change these networks and pick the ideal network depending on network situations, 
user distribution, and QoS (quality of service). Table 1.  Shown the parameter value of proposed model. 

 

 

Figure 1 . Proposed System Model 

System Overview: 

• Operators and Satellite Constellations: three different operators (SpaceX, OneWeb, and Amazon) are 
modeled, each with their distinct satellite constellation, featuring different orbital altitudes, bandwidth 
capacities, latencies, and reliability scores. 

•  User Locations: Imagine a collection of 1,000 users that are randomly distributed across the world and 
their geographical locations determine the coverage and QoS. 

• Variables of Network Performance: 

o Network Congestion: Diverges over time, indicating the total load on each satellite network Linked. 

o Weather Impact: Latency and reliability impact, varies through time 

• Protocol Compatibility: The program simulates a protocol translator interface with the potential to 
enhance compatibility between networks over time, resulting in more efficient communication. 

• Quality of Service (QoS): The model computes QoS metrics concerning coverage, bandwidth, latency, 
protocol overhead, and reliability for each user and operator at each time step. 
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Table 1. 

Parameter 

value 

 

 

 

 

 

 

 

 

 

Let the following variables represent system parameters: 

• 𝑁satellite
(op)

: Number of satellites for operator op. 

• 𝐵(op): Bandwidth capacity of the operator (in Gbps). 

• 𝐿(op):: Latency for the operator (in ms). 

• 𝑂(op): Protocol overhead for the operator. 

• 𝑅(op): Reliability score for the operator. 

• C(t): Network congestion at time t. 

• W(t): Weather impact at time t. 

• Qo𝑆𝑢,𝑜𝑝(𝑡) : Quality of service for user u with operator opopop at time t. 

The QoS for each user u is calculated as: 

Qo𝑆𝑢,𝑜𝑝(𝑡) = [Coverage x (
𝐵(op)𝑥(1 − 𝐶(𝑡))

2
+

(100 − 𝐿(op)𝑥(1 + 𝑊(𝑡)))

100
+ (1 − 𝑂(op) + 𝑅(op)))] /4    (1) 

Dynamic Switching: The optimal operator for each user is selected based on the highest QoS at each time step, t, 
from all available operators: 

Optimal Operator𝑢(𝑡) − arg max
𝑜𝑝

(Qo𝑆𝑢,𝑜𝑝(𝑡))           (2) 

The user is switched to the operator providing the highest QoS at each time step. 

Protocol Compatibility Learning: The protocol compatibility matrix  𝑜𝑝(𝑜𝑝,op′) between two operators is improved 
over time. The learning rate for improving compatibility is defined as: 𝑜𝑝, op′ is improved over time. The learning 
rate for improving compatibility is defined as: 

𝑃𝑛𝑒𝑤

(𝑜𝑝,op′)
(t) = 𝑃(𝑜𝑝,op′)(𝑡 − 1) + λ x (1 − 𝑃(𝑜𝑝,op′)(𝑡 − 1)) 𝑥 (1 − 𝑒𝑥𝑝 (−

𝑡

λ 
))   (3) 

Parameter Description Value 
Operators Satellite network operators SpaceX, OneWeb, Amazon 
Number of Satellites Satellites per operator 100, 80, 60 
Orbital Altitudes Orbital altitude of satellites (km) 550, 1200, 630 
Bandwidth Capacity Bandwidth capacity per operator (Gbps) 1.5, 1.2, 1.8 
Base Latency Base latency per operator (ms) 20, 35, 25 
Protocol Overhead Protocol overhead ratio 0.05, 0.08, 0.04 
Reliability Score Reliability score of each operator 0.98, 0.96, 0.97 
Number of Users Total number of simulated users 1000 
Simulation Time Steps Number of time steps for simulation 100 
Network Congestion Congestion level over time Dynamic (0.2 to 0.5 sinusoidal variation) 
Weather Impact Weather-induced performance impact Dynamic (0.1 to 0.3 sinusoidal variation) 
Protocol Compatibility Initial compatibility matrix [[1.0, 0.7, 0.5]; [0.7, 1.0, 0.6]; [0.5, 0.6, 1.0]] 
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Where: λ is the learning rate. τ is the decay factor over time. 

The first model is a simplified, yet a holistic approach for dynamic evolution between satellite networks. It includes 
real-time performance evaluation, QoS calculation, intelligent switching and protocol adaptation to optimize user 
experience when using heterogeneous satellite systems. The architecture is proposed to achieve optimal user 
service under varied conditions, which performs on the basis of real-time metrics, dynamic learning protocol 
translation that aims to facilitate interoperability amongst diverse satellite networks. 

SIMULATION AND RESULTS 

The matlab code those the dynamic adaptation and optimization function to heterogeneous network of satellite 
which are operated by multi provider like SpaceX, OneWeb and Amazon. Network performance, protocol 
compatibility, intelligent network switching and learning models are covered. Here are the results of the 
visualizations and those differences explained more in-depth: 

Figure 2: Change of User Share by Operator over Time The percentage of Time steps showing how many users 
connected to each Satellite operator (SpaceX, OneWeb, Amazon). This one depicts how the user share (i.e., the 
fraction of users linked to each operator) changes through time. A line represents each operator's share: SpaceX 
(Operator 1): High share at start but will vary as the simulation ticks forward — should be responsive to changing 
barring conditions. OneWeb (Operator 2): Starts with a smaller portion and graphs how its customers vary over 
the course of the simulation. Amazon (Operator 3): The least share at the start, and the plot indicates how share 
grows. The following plot shows the result of changing network conditions, switching protocols, and changing QoS 
(Quality of Service) the number of users assigned to one or another operator. The changes are indicative of users 
decision-making process as they compare operators with network performance, congestion and weather. 

 

Figure 2: User Share Change by Operator over Time. 

Figure 3: Average Quality of Service over Time. The average Quality of Service (QoS) per operator during the entire 
simulation period. This graph reflects the average Quality of Service (QoS) given over time by every operator. 
Dynamic nature of QoS: QoS depends on changing factors like available bandwidth, latency, reliability, and 
protocol overhead. The plot has three curves for the operators: SpaceX, OneWeb and Amazon. Also, the curve for 
each operator varies the time due to time-varying factors such as network congestion, weather impacts, or even due 
to protocol optimization. The functions, instead of defining some value for each operator (all at once) will draw this 
plot for each operator separately with respect to QoS over time. Any drops or improvements in QoS can be 
associated with changes in network conditions, such as congestion or weather effects and operator changes. 
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Figure  3: Average Quality of Service Over Time. 

Figure 4: User Operator Selection Distribution (Final Moment). At the last time step, the following scatter plot 
shows how users are distributed geographically. Users are colored according to which operator they are connected 
to. This diagram displays the location of users at the last time step (after running all time iterations), and the 
operator each user is assigned to. As a final part, the users are shown as points in a scatter plot with longitude 
being used as the x coordinate and latitude as the y coordinate. The points are colored based on which operator 
each user selected at the final time step: Users who had a SpaceX assignment at that time step are a certain color. 
Users who were assigned to OneWeb are a different colour. Amazon users are marked with a third color. This plot 
provides a spatial view of how users are distributed among operators around the world at the end of the simulation. 
It shows which regions are more likely to be associated with a particular operator, highlighting patterns in user 
assignment based on geographical location, network performance, and protocol compatibility. 

 

Figure 4: User Operator Selection Distribution (Final Moment). 
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Figure  5: Traditional System vs. Integrated System Performance Comparison. This graph compares the average 
QoS between a traditional fixed-operator system (red line) and the intelligent integrated system (green line) over 
time. Key observations: The traditional system assigns each user to a single operator permanently. The integrated 
system intelligently switches users between operators based on real-time conditions. The green line (integrated 
system) consistently shows higher QoS values than the red line (traditional system) .The performance gap 
represents the improvement gained through dynamic operator switching. Both systems show temporal fluctuations 
due to changing network conditions. The improvement percentage calculated in the program quantifies the overall 
advantage of the integrated approach 

 

Figure  5: Traditional System vs. Integrated System Performance Comparison. 

Figure 6: Individual Learning (Without Collaboration). This graph shows how each operator's "environmental 
understanding" improves over time when operating independently without knowledge sharing. Key observations: 
The vertical axis represents the level of environmental understanding, ranging from 0 to 1. Each line represents a 
different operator's learning curve. All operators start with low understanding (around 0.2-0.3). The understanding 
improves over time through individual learning. The improvement rate follows a logarithmic pattern, showing 
diminishing returns. Different operators may show different learning rates and plateaus. By the end of the 
simulation, operators achieve moderate levels of understanding but with individual limitations. 

 

Figure 6: Individual Learning (Without Collaboration). 
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Figure 7: Multi-Domain Learning (With Collaboration). This final graph demonstrates how the operators' 
environmental understanding improves when they collaborate and share knowledge using multi-domain learning. 
Key observations: Similar to Graph 5, but with knowledge transfer between operators. The learning curves show 
generally faster improvement compared to individual learning. Operators benefit from each other's expertise 
through protocol compatibility. The knowledge gaps between operators tend to narrow over time due to shared 
learning. The final understanding levels achieved are higher than in the individual learning scenario. The 
collaborative approach demonstrates how inter-operator knowledge transfer enhances overall system intelligence. 
The improvement percentage calculated in the program quantifies the advantage of the collaborative learning 
approach. 

 

Figure  7: Multi-Domain Learning (With Collaboration). 

These six graphs collectively illustrate how a multi-domain deep learning approach enables dynamic adaptation 
between heterogeneous satellite systems, demonstrating improvements in user experience, service quality, and 
system learning capabilities compared to traditional fixed-operator approaches. 

COMPRESSION WITH RELATED WORK 

In Table 2. Show the practical advantages of this approach, showing how the technical improvements translate to 
real-world value for both users and network operators. The multi-domain learning approach creates a synergistic 
effect where the integrated system performs substantially better than any individual network could on its own. 

Table 2 Compression with related work 

Feature This Program Previous Works Advantage  
Network 
Architecture 

Heterogeneous multi-operator 
satellite constellation integration 

Typically single operator or 
homogeneous network 
models 

Greater coverage, redundancy, and 
resilience through diverse network 
options 

Adaptation 
Mechanism 

Dynamic real-time switching based 
on QoS metrics 

Often static assignment or 
limited switching 
capabilities 

Consistently higher QoS through 
optimal network selection as 
conditions change 

Learning 
Approach 

Multi-domain collaborative learning 
with knowledge transfer 

Individual learning within 
closed systems 

Faster collective improvement, 
reduced learning plateau, shared 
intelligence 

Protocol 
Compatibility 

Adaptive protocol translation 
interface with improving 
compatibility over time 

Fixed compatibility matrices 
or manual protocol 
translations 

Seamless user experience across 
networks, reduced handover issues 

QoS Metrics Comprehensive: bandwidth, latency, 
reliability, coverage, overhead 

Often limited to 1-2 metrics 
(typically bandwidth or 

More balanced optimization that 
addresses multiple user needs 
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latency only) simultaneously 
Environmental 
Factors 

Incorporates weather impact and 
network congestion dynamically 

Limited environmental 
modeling or static 
assumptions 

Better adaptation to real-world 
conditions, increased reliability 
during adverse events 

User Distribution Global geographical distribution 
with location-based optimization 

Often limited to specific 
regions or uniform 
distributions 

Improved service for users in varied 
geographic regions, including 
remote areas 

Performance 
Improvement 

Quantifies improvement percentage 
between traditional and integrated 
systems 

Typically qualitative 
comparisons or limited 
metrics 

Clear ROI demonstration, evidence-
based decision making for network 
investments 

Visualization Multiple perspectives: temporal, 
geographical, comparative, and 
learning visualizations 

Often limited to single-
dimension analysis 

Better understanding of system 
behavior, easier identification of 
improvement opportunities 

Simulation Scale 1000 users across 3 operators with 
100 time steps 

Typically smaller scale 
simulations with fewer 
variables 

More realistic modeling of complex 
network interactions and emergent 
behaviors 

Knowledge 
Transfer 

Models explicit knowledge transfer 
between operators with 
compatibility-based efficiency 

Knowledge transfer rarely 
modeled in previous 
systems 

Accelerated system-wide 
improvements, reduced redundant 
learning 

Temporal 
Analysis 

Shows system evolution over time 
with dynamic adaptation 

Often focused on steady-
state or static analysis 

Insight into system development 
trends, ability to forecast future 
performance 

Collaborative 
Intelligence 

Demonstrates how collaboration 
improves overall system 
performance 

Systems typically operate 
independently 

Greater overall system capacity and 
intelligence than sum of individual 
networks 

Scalability Framework allows for additional 
operators and parameters 

Often limited by initial 
design constraints 

Future-proof solution that can 
incorporate new operators or 
technologies 

User-Centric 
Metrics 

Focuses on user experience and 
quality of service 

Often network-centric 
metrics focused on capacity 

Higher user satisfaction, better 
alignment with actual customer 
needs 

 

CONCLUSION 

This research has demonstrated the significant potential of multi-domain deep learning for dynamic adaptation 
between heterogeneous satellite systems. Through a comprehensive simulation of three major satellite operators 
(SpaceX, OneWeb, and Amazon), we have shown that intelligent integration of diverse satellite networks can 
substantially improve the quality of service for users globally. The dynamic switching mechanism, guided by real-
time QoS metrics, consistently outperformed traditional fixed-operator approaches, with an average performance 
improvement that quantitatively demonstrates the value of this approach.  The multi-domain learning aspect of this 
work represents a particularly promising advancement. By enabling knowledge transfer between operators with 
different technological approaches and expertise, the system demonstrated accelerated learning and higher 
ultimate performance compared to isolated learning approaches. This collaborative intelligence creates a 
synergistic effect where the integrated system exceeds the capabilities of its component networks.  Our visualization 
and analysis from multiple perspectives—temporal, geographical, comparative, and learning-based—provides a 
holistic understanding of the complex dynamics involved in satellite network integration. The adaptive protocol 
translation interface addresses one of the key challenges in heterogeneous network integration by dynamically 
improving compatibility between different operator systems.  In essence, this work represents a significant step 
toward truly unified global satellite connectivity that leverages the strengths of multiple operators while mitigating 
their individual limitations. 
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