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Secure IoT network-based dynamic key distribution using Q-learning techniques. IoT 

networks play a vital role in contemporary wireless communication systems, so developing 

efficient security mechanisms is crucial in a world where the number of smart devices is 

increasing dramatically. Reinforcement learning based solution However, this paper proposed 

a reinforcement learning based solution, in which a Q-learning based key distribution 

approaches is presented to adapt with the changing security requirements of different IoT 

devices. Here, each IoT device learns to broadcast keys according to multi-agent reinforcement 

learning problem to prevent threats and not only this but improve overall network security. 

We validate the method through extensive simulations showing significant improvements in 

performance on key management and threat mitigation. Our findings indicate that the shrewd 

integration of dynamic key distribution with reinforcement learning can serve as a most 

effective approach to safeguard contemporary IoT ecosystems from diverse cyber-attacks. 
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INTRODUCTION 

The Internet of Things (IoT) is rapidly evolving and is causing great changes in the wireless communication 

systems. Your training data goes till 2023-10. However, if it is this additivity of these devices we notice how much 

security issues will be raise like data breaches, unwanted access and toxic attacks. Key management is one of the 

important portions of IoT networks security as cryptographic keys are used to provide confidentiality, integrity, 

and authenticity of the transmitted data. Traditional approaches to key management in wireless networks use 

centralized schemes where keys are distributed to devices during network setup. But these approaches are typically 

not scalable and do not suit the dynamic requirement of today’s IoT ecosystem. In this paper, we propose a novel Q-

learning based dynamic key distribution scheme to tackle these shortcomings. Our method provides for a more 

scalable, flexible, and efficient solution to the security issues in IoT networks as it allows each device to 

independently learn and adjust its key distribution approach depending on its context. The rest of the paper is 

organized as follows: related work in IoT security and key management is reviewed in Section 2. Section 3 presents 

the proposed Q-learning-based key distribution method together with the system model. Section 4 shows 

simulation results and analysis. Section 5 concludes the paper and discusses directions for future research. 

LITERATURE REVIEW 

The safety of IoT networks has attracted considerable attention in the literature over the past few years in terms of 

key management schemes. Traditional cryptographic techniques, specifically symmetric and asymmetric 

encryption, were the most common methods adopted in early attempts to secure communication in IoT devices. 

However, these methods tend to depend on pre-shared keys or a centralized authority for key management and are 

primarily suitable for static centralized networks, which is not adequate in the case of highly dynamic and 
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decentralized IoT networks. To secure IoT devices in the management of the secret keying material, several key 

management protocols have been introduced for IoT, including the IoT Key Management Protocol (IoT-KMP) [1,2] 

and the Lightweight Key Management Scheme (LKMS) [3–5]. While these protocols solve the issues of large-scale, 

resource-efficient networks, they often have rigidity to adapt to dynamic environments. In the past few years, 

machine learning techniques were used to address key management issue for IoT networks. The dynamic nature of 

IoT networks, in fact, has led to exploration of reinforcement learning as a solution. For example, there exist Q-

learning-based methods for optimizing the management of IoT devices [6-8], which provide feedback from the 

environment, and adapt the behavior of devices. Such strategies allow devices to change their actions (like key 

distributing) in the direction that improves network performance and security. Yet, there is a table of research gap. 

Although Q-learning and other machine learning approaches have been investigated for resource allocation in IoT 

[9-12], few of them combined these techniques with dynamic key distribution for improving security. To address 

this research gap, we propose a Q-learning-based solution for dynamic optimal key distribution in order to 

counteract threats in wireless IoT networks. 

RELATED WORK 

Existing Literature A number of studies consider key management solutions for IoT networks, centralized and 

decentralized schemes. In [13,14] authors propose a hybrid key management scheme effectively entry and reduce 

communications overhead using both symmetric and asymmetric cryptography. This is effective in certain 

scenarios, but the approach is less suited for environments with high mobility of devices or for sudden changes in 

network topology. IoT security solutions based on machine learning have also been investigated. The authors in 

[15-17] utilize supervised learning to detect anomalies in IoT traffic whereas reinforcement learning is used for 

resource allocation optimization in members [18-22]. These works show the potential in applying the machine 

learning techniques to improve security or performance but do not address the specific issue of key management. 

Our work complements these existing efforts by proposing Q-learning for the dynamic key distribution problem. 

Our approach leverages the excellent ability of algorithms, such as reinforcement learning (RL), to learn optimal 

policies from the interaction with the environment and provides an adaptive solution that suits varying security 

requirements over time, as per the mitigation we have described in our previous research. 

RESEARCH GAP 

While previous work has covered many key management protocols and machine learning approaches to IoT 

security, little has focused specifically on reinforcement learning and Q-learning for use in the dynamic 

distribution of cryptographic keys in IoT networks. Previous works have mainly considered static or predefined key 

management systems not adapted to the dynamic nature of the IoT environments. Moreover, few works have 

synergized machine learning and security mechanisms to directly tackle the complex task of real-time cyber threat 

mitigation. This study attempts to fill this gap by proposing a Q-learning-based dynamic key distribution strategy. 

By continually analyzing real-time network conditions, and adapting its key distribution approach to not just 

coordinate dynamics, but account for active threats and changing security requirements, our solution delivers a 

more adaptable and future-proof IoT network securing method. 

PROPOSED MODEL SYSTEM 

The proposed system utilizes Q-learning for dynamic key distribution in IoT networks. The objective is to 

adaptively assign cryptographic keys to devices in the network based on their current security needs (safe or 

threatened), using reinforcement learning to improve security over time. Inputs: State matrix (device security 

states), device actions (key distribution), learning parameters. Outputs: Updated device states, updated policy (key 

distribution), reward history, and system performance over rounds. Figure 1 shown the block diagram proposed 

model.  
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Figure 1. Proposed Model System 

➢ Initialization: 

• System Settings: 

o Number of devices: N:10 

o Number of rounds (M): 15 

o Key length: L:16 

o Learning rate (α): 0.2 

o Discount factor (γ): 0.9 

o Exploration rate (ϵ): 0.2 

o Gateway capacity: 100 

• State matrix (Device state): A random state matrix is created for the devices (0: Safe, 1: Threatened). 

• Policy matrix: Represents the key distribution for each device. It is randomly initialized at the beginning. 

Policy matrix 𝑃(𝑖, 𝑗) = Random Matrix               (1)        Where    i=1 to N and   j=1 to L 

➢ 2. Loop through Rounds: 

This loop runs over M rounds (e.g., 15 rounds as in the example). 

➢ 3. Choose Action (Key Distribution): 

• Exploration: If a random value is less than ϵ\epsilonϵ, a random key distribution is selected. 

Action𝑖 =  Random Matrix              (2)     Where i=1 to L 

Exploitation: If a random value is greater than ϵ, the current policy (the current key distribution for the device) is 
selected. 

Action𝑖 =  Policy Matrix𝑖               (3)     Where i=1 to L 

➢ 4. Evaluate Reward: 

• If the device is Threatened (State = 1): 

Reward𝒊 =  − ∑ Action𝑖,𝑗

𝑳

𝒋=𝟏

                                    (4) 
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(A penalty is applied if the key distribution is not suitable). 

• If the device is Safe (State = 0): 

Reward𝒊 =  ∑ Action𝑖,𝑗

𝑳

𝒋=𝟏

                                    (5) 

(A reward is granted if the key distribution is suitable). 

➢ Update Policy Using Q-Learning (Q-Learning Policy Update): 

• Q-Learning Update Equation: The key distribution policy is updated using the famous Q-learning equation. 

𝑄(𝑎, 𝑠) = 𝑄(𝑎, 𝑠) + α[𝑟 + γ . max 𝑄(s′, a′) − 𝑄(𝑎, 𝑠)]                (6)  

Where: 

• 𝑄(𝑎, 𝑠): is the current Q value for state s and action a. 

• a: Learning rate. 

• r: Reward obtained from the key distribution. 

• γ: Discount factor. 

• max 𝑄(s′, a′): The maximum Q value in the next state s′ across all actions. 

Policy Matrix𝑖 = Policy Matrix𝑖 + α (Reward𝑖 + γ . max(Reward History) − ∑ Policy Matrix𝑖)  (7) 

➢ Update Device State (Update Device State): 

• After evaluation and policy update, the device state is updated randomly to 0 (Safe) or 1 (Threatened) to 
simulate the dynamic environment. 

State𝑖 = Random State (0 or 1)                    (8)    

 Where i=1 to N 

➢ . Performance Evaluation: 

• After each round, the average reward for all devices in that round is calculated. 

Average Reward =
1

𝑁
∑ Reward𝑖  

𝑁

𝑖=1

                                      (9) 

➢ Repeat: 

These steps are repeated for all rounds until the specified number of rounds is completed. 

SIMULATION AND RESULTS 

The following visualizations illustrate the performance of the proposed key distribution system for IoT devices. 
Each figure corresponds to a specific analysis of the system's behavior during the simulation rounds. The 
simulation done by matlab software. 

Figure 2. Average Performance over Rounds. X-axis: Round number (1 to 15). Y-axis: Average reward for each 
round. This plot displays the evolution of the average reward across all rounds of the simulation. The average 
reward is calculated as the mean reward of all devices during each round. Trend Analysis: A consistent 
improvement or oscillation in the average reward can be observed as the learning algorithm adapts the policies over 
time. If the reward increases, it indicates that the system is gradually improving its key distribution for devices that 
are safe and minimizing penalties for threatened devices. Interpretation: Fluctuations could arise due to random 
exploration, where the exploration-exploitation trade-off (parameter ϵ  plays a significant role in the dynamics. 
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Figure 2. Average Performance over Rounds. 

Figure 3. Final Policy Matrix. X-axis: Key index (1 to 16, representing the key length). Y-axis: Device index (1 to 10). 
This matrix represents the key distribution decisions (0 or 1) for each device across the 16 key slots. Each row 
corresponds to a device, and each column corresponds to a key index (out of 16 possible keys). The color intensity 
indicates the final chosen key distribution for each device at the end of the simulation. Interpretation: A well-
optimized policy matrix should show a pattern where devices with high threat levels are assigned key distributions 
that minimize the potential vulnerabilities (as indicated by low values in the matrix). Devices with a safe state might 
exhibit more flexibility in the key distribution. Analysis: The matrix highlights the dynamic nature of key 
distribution and demonstrates the learning process over the rounds. 

 

Figure 3. Final Policy Matrix. 

Figure 4. Total Rewards for Each Device. X-axis: Device index (1 to 10). Y-axis: Total rewards accumulated by each 
device. This bar chart visualizes the total rewards accumulated by each device throughout all rounds. 
Interpretation: Devices that accumulated higher rewards likely have a more optimized key distribution policy, 
which is beneficial for their security and efficiency. Devices with low rewards may have been frequently in a 
threatened state or experienced poor key distribution during the rounds. Insight: Devices with the highest total 
rewards can be considered as having more effective key management strategies, while devices with lower rewards 
indicate areas for potential improvements in the key distribution process. 
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Figure 4. Total Rewards for Each Device. 

Figure 5. Safe vs Threatened Devices. This pie chart shows the distribution of devices in two categories: "Safe" and 
"Threatened." Interpretation: The chart breaks down the number of devices that are in a safe state (State = 0) and 
those that are in a threatened state (State = 1). The proportion of devices in each state provides insight into the 
overall security of the system. Ideally, a higher proportion of devices should remain safe, indicating that the key 
distribution policy is effective at securing devices. Insight: The pie chart helps in understanding how the devices in 
the system transition between different states and how the key distribution model adapts to protect them. 

 

Figure 5. Safe vs Threatened Devices. 

Figure 6. Reward Distribution. X-axis: Reward values. Y-axis: Frequency of occurrence. The histogram shows the 
distribution of reward values across all rounds and devices. Interpretation: A high concentration of rewards near 
positive values indicates that most devices are benefiting from a suitable key distribution. A significant number of 
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negative rewards would indicate penalties, often resulting from inadequate key distributions for devices in a 
threatened state. This visualization reveals the spread and frequency of different reward outcomes. Insight: The 
reward distribution histogram is essential for identifying how well the system is performing across all devices and 
rounds. If most of the rewards are positive, the system is generally succeeding in key distribution and device 
protection. 

 

Figure 6. Reward Distribution 

Figure 7. Device Performance Comparison. X-axis: Round number (1 to 15). Y-axis: Reward value for each device. 
This plot compares the performance (in terms of rewards) of each device across the rounds. Interpretation: Each 
line represents the reward history of a single device, showing how its reward changes from round to round. Devices 
that show a consistently increasing or high reward trajectory are performing well, indicating that their key 
distribution is effective and adaptive. Conversely, devices that show a flat or decreasing trajectory may not be 
adapting well to the changing threat levels or have suboptimal key distribution strategies. By comparing the reward 
trends across devices, this plot helps in identifying which devices have learned effectively through the Q-learning 
process and which devices need further improvement. It also highlights any disparity between devices' 
performances in terms of key distribution policies. 
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Figure 7. Device Performance Comparison 

 

 

Overall Analysis of Results: 

• Learning Process: The results indicate that a Q-learning approach is an effective way to dynamically adjust 
keys distribution strategies for IoT devices. It makes learning solutions over time to change the policies to 
adapt changing states of the devices (Safe vs Threatened). 

• Security Adaptation: The system adjusts key distribution based on the device security, providing key 
distribution in a way that reduces vulnerabilities for the devices that need them the most. 

• Exploration vs. Exploitation: The quantifier parameter, ϵ\epsilonϵ also regulates the trade-off between 
exploration and exploitation  (exploit-explore trade-off). A more exploratory approach (larger ϵ) enables 
the system to experiment with different key distribution strategies, whereas a more greedy one (smaller ϵ) 
enables much of what has been learned to be reinforced. 

CONCLUSION 

This paper proposed a dynamic and adaptive key distribution model for IoT devices using reinforcement learning 
(Q-Learning) to improve security and efficiency. The model outperforms static key distribution schemes, as it 
customizes the assignment of keys for each device according to their specific threats, differentiating the levels of 
security needed. This exploration-exploitation balance during learning makes the system evolve over time, to learn 
from the past to improve its decision making. We accordingly measured the performance of our proposed system 
in terms of the average reward, total rewards obtained, and specific key distribution policies. The proposed method 
not only outperformed traditional, static key distribution methodologies but proved to scale with a massive number 
of Internet-of-Things devices, making it feasible for use in actual applications over intricate IoT systems. 
Additionally, the adaptability of the system allows it to evolve with changing circumstances, offering a higher level 
of protection against unidentified dangers. Overall, this system provides an adaptable and intelligent approach to 
securing IoT networks, and its ability to continually improve and learn makes it a more powerful solution than 
existing heuristic or rule-based systems. The proposed model is a promising solution for secure and scalable key 
distribution in IoT networks, with the aim to advance the field of adaptive security techniques for the wireless 
communication systems. Future work might include acceptance of the learning algorithms, improve real-time 
performance, and evaluate the model on larger and more diverse IoT environments. 
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