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Crowd monitoring is essential for security and effective management in public space, 

and drone imagery offers a powerful tool for this purpose. Though traditional 

methods often fall short in accuracy and efficiency techniques like manual counting, 

detection based approaches struggle with challenges like occlusion, low resolution, 

and high crowd density, leading to unreliable estimates. To address data privacy 

concerns related to capturing images of individuals without consent, regulatory 

barriers that restrict flight zones and operational guidelines, and technical limitations 

such as limited battery life and communication range like limitations, this study 

introduce a novel approach called the Temporal and Location Sensitive Fused 

Attention Model on Pyramid Features (TLFA_PF) for crowd density estimation and 

localization. The method employs scales while minimizing computational complexity. 

By integrating spatial and temporal attention schemes, the model effectively captures 

significant information from drone capturing images. A key innovation of this work is 

the introduction of a Bi Pooling Squeeze and Excitation Block, which enhances the 

conventional neural network by incorporating two pooling networks. This block 

selectively emphasizing important features improving the models ability to discern 

crowd density variation. The TLFA_PF model demonstrates superior performance in 

estimating crowd density and localizing individual compared to existing methods 

experimental results highlights the effectiveness of TLFA_PF across various scenario, 

showcasing its robustness in handling different crowd densities within the fused 

attention framework allows for more accurate predictions, making it’s a significant 

advancement in drone based crowd analysis. Overall, this research contributes to the 

field of computer vision by providing an efficient and effective solution for real time 

crowd monitoring using aerial imagery.   
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INTRODUCTION  

As urbanization accelerates due to population growth, an increasing number of individuals are residing 

in urban areas, leading to both positive and negative consequences. On the positive side, urban living 

enriches cultural experiences and maximized the use of urban infrastructure. However, the 

concentration of people in cities also present significant challenges for urban security and management, 

especially during large gatherings for events such as political demonstrations or festivals. This has led 

to a growing interest in automated crowd analysis methods, particularly in crowd counting and density 

estimation, to enhance safety and management strategies [1, 2]. The drone based crowd tracking has 

emerged as a vital technology that utilizes Unmanned Aerial Vehicle (UAVs) equipped with cameras for 

automated surveillance. This technology is essential for identifying and consistently tracking 

individuals across multiple video frames, even amidst the dynamic movements of both the crowd and 

the environment, employing Multi Objective Tracking (MOT) techniques to achieve effective 

monitoring [3]. The crowd gathering may be religious, sports, cultural, or any other public events where, 

video surveillance are used for crowd control and public safety. Therefore, UAVs used widely and 

became popular in monitoring mass gathering nowadays, for monitoring the crowd, to protect property, 

maintaining peace, save human lives and preserve the environment [4]. Crowd density estimation is a 

critical area of research in computer vision, with applications ranging from urban planning to public 

safety. Traditional techniques for crowd analysis often rely on stationary cameras, which can limit the 

potential of drones in overcoming these challenges by providing aerial view that capture dynamic crowd 

behavior more effectively [5]. For instance, the introduction of Space Time Neighbor Aware Network 

(STNNet) tailored for drone based crowd analysis, demonstrating significant improvement in density 

map estimation, localization, and tracking capabilities compared to conventional methods [6, 7].  

Traditional methods for drone based crowd density estimation and localization have generally relied on 

detection based method typically involved identifying individuals in video frames using algorithms that 

classify and localize objects however, these techniques often struggles with the challenges posed, leading 

to difficulties in accurate detection and tracking. For instance, the study [8] highlights how aerial views 

complicates the detection of individuals due to their sizes and proximity, which can result in missed 

detection or false positive in crowed environments. Regression based method [9] focus on estimating 

crowd density directly from image features but may fail to account for variations in crowd dynamics and 

environmental conditions, resulting in inaccuracies. Similarly, density based methods have improved 

upon some of these limitations by predicting density map that represent the number of individuals, 

which is critical for effective crowd management . For example, while frameworks like the Space Time 

Multi Scale Attention Network (STNNet) have shown promise in aggregating multi scale feature to 

enhance density map perditions, they still face challenges related to object displacement and occlusion 

due to high crowd density [10].  Moreover, traditional approaches often depends heavily on consecutive 

frames from tracking which can be problematic in scenarios characterized by significant movements or 

large inter frame intervals. This dependence is particularly evident in studies that emphasize the need 

for robust tracking mechanisms capable of handling rapid changes in crowd dynamics [11].  

Additionally, many existing dataset used for training these models are primarily designed for static 

camera environments, limiting their applicability to dynamic aerial setting. As a result, traditional 

methods frequently encounter issues with accuracy and reliability in real world applications, 

necessitating the development of more sophisticated techniques that integrations temporal and 

location-sensitive data to enhance tracking and localization capabilities in drone based crowd 

monitoring [12, 13]. Recent advancements in drone based crowd density estimation and localization 

have increasingly incorporated Artificial Intelligence (AI), Machine learning (ML) and Deep Learning 

(DL) techniques.  These techniques are pivotal in enhancing urban management strategies, particularly 

for monitoring large crowd during events. The study [14, 15], involve the use of deep learning 

architectures, particularly Conventional Neural Network (CNN), which have shown effective in 

processing aerial imagery for crowd counting and density estimation. For example, a Deep Neural 
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Network (DNN) model specifically designed for drone assisted systems, demonstrating improved 

accuracy in estimating crowd size from drone capturing image. Additionally, attention mechanism have 

been integrated into these models to focus on relevant features within crowded scenes, future enhancing 

estimation accuracy [16]. ML also plays a crucial role to improve robust and adaptability to various 

dataset. Similarly DL are used to improve the accuracy in crowd analysis, although the reliance on 

specific dataset limits the generalizability of these models across different scenario. Further data 

augmentation techniques such as color jittering and affine transformations, have been utilized to 

address variations in lighting and environmental conditions, thus enhancing model performance [17]. 

Despite these advancements, many existing models struggles with the complexities associated with 

varying crowd density and perspectives. A significant issue is the limited variety of dataset used for 

training models, which often rely on similar video sources [18, 19] . This lack of diversity restrict the 

models ability to adapt to new patterns of crowd behavior. A proper crowd control system and 

surveillance is highly needed for avoiding risk event situations. For this, real-time images should be 

utilized to extract information and instructions should be able to be communicated to the crowd at the 

same time which will be a very crucial tool in smart systems [19, 20]. 

To overcome such issues the proposed work, introduces a novel approach namely Temporal and 

Location Sensitive Fused Attention Model on Pyramid Feature (TLFA PF) for crowd estimation and 

localization. TLFA PF is a multiple scales while minimizing computational complexity through a feature 

pyramid enhancement model. By incorporating spatial and temporal attention mechanism alongside a 

Squeeze excitation module with dual pooling network, TLFA PF enhances its ability to focus on 

prominent information within dense crowds. Experimental results indicates that TLFA PF significantly 

outperforms many existing method, demonstrating its potential to bridge gaps in precision and 

reliability that have hindered previous approaches in crowd monitoring and localization. The major 

contribution of the respective model are signifies in the following: 

● The model enhance the urban management strategies by providing accurate crowd estimation 

and localization, which are critical for effective crowd control during large gathering.  

● To employ TLFA PA extract feature at multiple scales while minimizing computational 

complexity through feature pyramid enhancement model, where the efficiency in processing 

aerial imagery.  

 

1.1 Objective  

The main objective of proposed model, to implement a feature pyramid enhancement model that 

effectively extracts feature at multiple scales, improving the models ability to capture relevant 

information from a complex crowd. And to incorporate spatial and temporal attention mechanism 

that enhances the models focus on significant data point within density crowds thereby improving 

the accuracy of crowd estimation and localization. To employ a Bi-Pooling Squeeze and Excitation 

Block that refine feature extraction by emphasizing important feature while reducing noise 

enhancing the overall classification performance. To validate the efficacy of the proposed model 

through experimental results that demonstrate its superiority over existing methods in terms of 

accuracy and reliability in crowd monitoring and localization tasks. 

1.2 Paper Organization 

The paper is organized based on the effectual approaches applied in the drone based crowd 

estimation and localization and whereas section 2 explains the related work and identifies key 

problem in the field. Section 3 details the proposed methodology, including feature extraction 

techniques and attention mechanism. The result and discussion, include dataset description and 

performance analysis, are presented in section 4. Finally section 5 conclude the paper and suggest 

future direction.  
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RELATED WORK 

This section deliberate the analysis of the conventional research in the drone based crowd estimation 

and localization with temporal and spatial location sensitive fused attention model on pyramid features 

and other techniques and existing methods on crowd density estimation.  

Crowd management is crucial for ensuring safety at events yet effective control remains challenging 

despite advancements in drone and surveillance technology. The prevailing study [21], introduced an 

approach for crowd counting using drone data, employed dilated and scaled neural network for feature 

extraction and density estimation, existing method trained on a new dataset, ViseDrone2020, and 

compared against ten state of art methods, demonstrating superior accuracy in crowd counting and 

showed high performance on non-drone dataset like UCF-QNRF and ShanghaiTech, and the model 

effectively handled a noise, and attained better density and with Gaussian and Salt and pepper noise at 

a density of 0.02. Similarly, the existing study [22, 23], addresses the critical challenges of crowd density 

estimation for application like autonomous driving and crowd control, particularly in dynamic scenes 

with varying object size. The study used parallel multi size receptive field units to leverage features from 

multiple CNN layers enhancing the models ability to handle different scales, which incorporated 

asymmetric non local attention and channel weighting to improve prediction accuracy. Experiment 

done on UFC-CC 50 and ShanghaiTech dataset demonstrate significant improvements in density 

estimation, effectively managing dense distributions and varying object size. The conventional crowd 

counting method relied on costly pixel level annotations by the study [24], which used Deep Rank 

consistent PyrAmid model (DREAM) that utilized rank consistency within latency feature spaces, it 

enhanced model representation by leveraging pyramid partial orders across coarse-to-fine feature, 

allowing for effective use of unlabeled images. A new unlabeled dataset, FUDAN-UCC, was collected, 

comprising 4000 images for training. Investigates on scale datasets namely UCF-

QNRF and ShanghaiTech established important enhancements in crowd counting accuracy. 

Correspondingly, the study [25], light weighted on board crowd pattern identification method using 

H.264 video compression standard, achieved real time recognition in as low as 2 milliseconds on 

NVIDIA TX2, with a 45* execution time reduction compared to previous methods, the technique 

featured a temporally aware system that adapted to changing crowd movement patterns as the drone’s 

point of view varied. Evaluations against public dataset demonstrated significant performance and 

computational advantages, enhancing drone centric crowd management solutions. Similar study [19, 

26] focused on leveraging drone technology for crowd detection during COVID-19 pandemic 

recognizing the importance of effective crowd management in mitigating virus spread. The novelty of 

the research lay in its application of microguadroctor drones equipped with camera for real time air 

surveillance and crowd pattern identification. The method involved processing aerial images 

transmitted to mobile applications for enhanced data analysis and monitoring, successfully collecting 

data. The space time multi scale attention network for joint density estimation and localization. The 

study [27], method emphasize attention layers to capture temporal spatial crowd information from 

drone perspectives, using the Drone Crowd dataset for validation, showing high accuracy in dense 

crowds. Similarly the prevailing study [28], discusses advancements in drone based crowd counting and 

localization, emphasizing the need for temporal spatial attention models. Existing dataset has been 

utilized, it evaluate real time crowd localization approaches, highlighting improvement in crowd 

detection efficiency under varied conditions. The paper [29], introduced a large scale dataset of crowd 

tracking and counting. The result utilized temporal and spatial features to address crowd estimation 

challenges and the benchmark includes results on detection accuracy.  

The Drone Net introduced self-organizing neural network to improve crowd density estimation, 

incorporated pyramid feature to address scale variations. Tested on the drone crowd dataset, the model 

demonstrate efficiency in handling high density scenes [30]. Similarly the use of attention mechanism 
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to improve feature extraction in drone images, applying it to drone collected dataset. ARCN [31, 32], 

achieves a Mean Absolute Error (MAE) of 19.9 and a Mean Squared Error (MSE) of 27.7 on the Drone 

Crowd dataset, processing at 48 FPS on an NVIDIA GTX 2080 Ti GPU, marking it as a novel real-time 

solution.  This study [33], presents JMFEEL-Net, a novel approach that enhances crowd counting 

accuracy by integrating joint multi-scale feature enhancement with a lightweight transformer. The 

method employs a high resolution CNN supports and multi-scale feature enhancement module, 

validated on datasets including ShanghaiTech Part A/B, JHU-Crowd++, and UCF-QNRF, achieving 

competitive counting performance across these challenging datasets. The existing study [34, 35], 

addresses the challenges of crowd counting from drone-captured data, including small object inference 

and background clutter, by collecting a large-scale dataset of 3,360 images for the vision meets Drone 

Crowd Counting Challenge in VisDrone-CC2020 at ECCV 2020. The dataset includes 2,460 training 

images and 900 testing images, all manually annotated to support advancements in this field. 

 

 

1.3 Problem Identification 

Several conventional research has been limited by crow detection viewpoint and accuracy in crowd 

density estimation. 

● The crowd counting and density estimation in a static setting, neglecting the challenges 

posed by dynamic environments where crowd behaviour can change rapidly [25]. 

● The significant computational resources, making them unsuitable for real-time 

applications, particularly on drones with limited processing capabilities are limited [33]. 

● Although attention mechanisms have shown promise in other areas of computer vision, 

their full potential in crowd monitoring applications using drones has not been thoroughly 

explored [28]. 

 

PROPOSED METHODOLOGY 

The crowd management has emerged as a critical challenge. Traditional methods of crowd monitoring 

often struggle with accuracy, and real time processing, particularly in dynamic setting where crowd 

density can fluctuate rapidly. To overcome this challenges, the proposed work used novelty to improve 

precision.   
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Figure 1. Flow of proposed model  

The figure 1 depicts the structured workflow for the data processing starting with data acquisition, 

where the data is collected from drone crowd dataset. This data is then subjected to pre-processing to 

clean and organize for quality.  Next feature extraction identifies and generate relevant features for 

potential pyramid feature with attention mechanism to emphasizing critical elements. Following this 

the fused attention model combined with multiple attention strategies to improve feature extraction, 

the Bi Pooling Squeeze and Excitation block novel step refine the feature map by enhancing significant 

features and suppressing less important one. The density localization and crowd counting is also done 

with density map estimation. The following metrics helps to improvise the visualization result. 

1.4 Feature Pyramid Enhancement for Feature Extraction 

The study use Feature pyramid Network (FPNs) to extract image features at different scales. 

However the processing the same image at multiple scales, occlusion, variation and viewpoints can 

lead to increase computational complexity. To mitigate this issues, the FPEM was introduced, 

maintaining the advantages of FPNs while reducing complexity. The FPEM operates in two phase: 

the scale enhancement phase and the down scale enhancement phase. During the up sampling 

process, input features are mapped using strides of 4, 8, 16, and 32 pixels are applied. The method 

further enhances accuracy through element- wise multiplication of the input with the down samples 

output, effectively depending the network and expanding the receptive fields.  
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Figure 2. Feature Pyramid Enhancement Module (FPEM) 

The figure 2. Illustrate the architecture of a neural network, highlighting its main flow and two 

specific block configurations. The network processes input on the left and produces output on the 

right utilizing residual connections to enhance information retention and improving gradient flow. 

The enlarged block details shows a left block featuring a 3*# depth wise conventional followed by a 

1*1 convention with batch normalization and ReLU activation.  

1.5 Spatial and Temporal Attention Schemes 

Attention Model  

Attention model are employed in various application to highlight significant features. By utilizing 

these models, distinct features can be extracted, which can significantly benefit the applications. 

There are two main types of attention models namely, channel attention models and spatial 

attention models. 

Channel attention model, in this mechanism the prominent feature are extracted by leveraging the 

inter channel relationship of features. The accompanying figures outline the steps involved into 

channel attention. This approach spatial examine that statistics of pixel information. By integrating 

two pooling methods max pooling and average pooling, the feature representation is fine tuned in 

the model. 

 

Figure 3. Channel Attention Model 

 Figure 3 illustrates the channel attention model. The output of the channel attention, 𝑆𝐶𝐴can be 

calculated feeding the average and max pooled features into a shared multi layered perceptron 

(MLP) whose output is again applied with pooling layers. The input is multiplies with this output 

to get the𝑆𝐶𝐴. 
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Spatial Attention Model  

The spatial attention model examines the spatial relationship among pixels. The accompanying 

figure depicts the steps involved in the spatial attention process. Average pooling and max pooling 

are performed on the input feature S, and their concatenated outputs are passed through a 

conventional layer. These pooling operations emphasizing the information’s present at particular 

locations. The output from this layer multiplied by the input layer to produce the spatial attention 

output.  

 

Figure 4. Spatial Attention Model (SAM) 

Figure 4. Illustrate the SAM, the output of 𝑆𝑆𝐴, can be calculated through feeding a concatenated 

max pooled and average pooled features which is passed from input spatial to conventional layer 

whose output layer is again with output spatial layer 𝑆𝑆𝐴. 

1.6 Temporal an Location Sensitive Fused Attention model on Pyramid Features 

 

The proposed method leverage attention mechanisms and VGGNet to create an innovative 

framework for crowd management. This framework processed video sequence as input. Two 

parallel streams are provided with video sequences such as  𝐼𝑖  𝑎𝑛𝑑 𝐼𝑖−г and these inputs are fed into 

the foundational layer of VGGNet simultaneously. Figure 1 illustrate the flow architecture of 

TLFA_PF. 
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Figure 5. Proposed Architecture of TLFA_PF 

Figure 5. depict the two input are passed through a conventional layer with a 3*3 kernel and 64 filters, 

and the resulting output is then routed through a max pooling layer the max pooling layer selects the 

prominent features, which are subsequently fed into another conventional layer with 3*3 kernel and 

128 filters. The output from the top branch of this layer is labelled as𝐵1
1, while the output from the top 

branch is labelled as𝐵2
1. Following this, both outputs are sent through another max pooling layer before 

being routed to their respective conventional layers, each equipped with 256 filters. The output from 

the top branch is designed as𝐵1
2, and the output from the bottom branch is designated as𝐵2

2. This process 

continues with another max pooling layer, followed by a conventional layer that employs 512 filters and 

a 3*3 kernel size. The output from the top branch at this stage s denoted as𝐵1
3, while the outline from 

the bottom branch is denoted as𝐵2
3. 

The outputs 𝐵𝑙
𝑠 , 𝑤ℎ𝑒𝑟𝑒 𝑙 = 1, 2 𝑎𝑛𝑑 𝑠 = 1, 2, 3 are separately processed through a reduction layer. This 

layer is applied using a convolutional layer with a kernel size of 1 and 128 filters. The output from this 

layer undergoes batch normalization followed by the application of the ReLU activation function, 

resulting in the output described in equation (1).  

𝐹𝑙
𝑠 = 𝑅𝐿(𝐵𝑙

𝑠)| 𝑙=1,2 𝑎𝑛𝑑𝑠=1,2,3                                                                                                                                    1) 

Thus, the top branch produces the outputs F1, F2, and F3, while the bottom branch yields𝐹2
1, 𝐹2

2, 𝑎𝑛𝑑 𝐹2
3. 

The inputs to this layer have sizes of 128, 256, and 512. The reduction layer transforms these inputs into 

outputs of 128 bits. The outputs from the reduction layer (𝐹1
1, 𝐹1

2, 𝐹1
3, 𝐹2

1, 𝐹2
2, 𝑎𝑛𝑑 𝐹2

3) are then fed into a 

Feature Pyramid Enhancement Module (FPEM), resulting in distinct features for each input: 

(𝐹𝐸1
1, 𝐹𝐸1

2, 𝐹𝐸1
3, 𝐹𝐸2

1, 𝐹𝐸2
2, 𝑎𝑛𝑑 𝐹𝐸2

3)are then the feature 𝐹𝐸1
1  is input into a channel attention model to 

generate the output𝐹𝐸1𝐶𝐴
1 . Similarly, the feature 𝐹𝐸2

1undergoes spatial attention to produce the 

output𝐹𝐸2𝑆𝐴
1 . This process is repeated for the second set of features, where channel attention and spatial 

attention are applied to obtain outputs for 𝐹𝐸1𝐶𝐴
2 and 𝐹𝐸2𝑆𝐴

2  from features 𝐹𝐸1
2and𝐹𝐸2

2. The combined 

features are calculated using the following equations (2) to (4): 
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𝐹1 =  𝐹𝐸1𝐶𝐴
1 + 𝐹𝐸2𝑆𝐴

1                                                                                                                                            (2) 

𝐹2 =  𝐹𝐸1𝐶𝐴
2 + 𝐹𝐸2𝑆𝐴

2                                                                                                                                            (3) 

𝐹3 =  𝐹𝐸1
3 + 𝐹𝐸2

3                                                                                                                                                 (4) 

The de-convoluted and up-sampled output of 𝐹3is concatenated with𝐹2, as illustrated in the figure. This 

combined feature is then convolved twice, followed by a single de-convolution and up-sampling to 

obtain𝑔1, which is subsequently concatenated with𝐹1. To achieve the final output𝑔2, this result is passed 

through two convolutional layers with 128 filters and kernel sizes of 3 and 1, respectively. Thus, the 

proposed framework integrates attention mechanisms within a novel architecture to extract prominent 

features. In the first convolutional layer, features are extracted using a 3x3 filter with 64 filters. The 

output from this layer, referred to as convolutional layer 1, is then processed by a maximum pooling 

layer (Maxpool 1) with a filter size of 2x2 and a stride of 2. This process is detailed in the following 

𝐶𝑜𝑛𝑣𝑙𝑎𝑦𝑒𝑟1 = 2𝐷𝑐𝑜𝑛𝑣64,3 × 3(𝑖𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒1)                                                                                          (4) 

𝑀𝑃1 = 𝑚𝑎𝑥𝑝𝑜𝑜𝑙2 × 2 × 2𝑆(𝑐𝑜𝑛𝑣𝑙𝑎𝑦𝑒𝑟1)                                                                                                                    (5)        

Max pooling layers with a filter size of 3 and 128 filters are employed to extract features in Convolutional 

Layer 2. The first reduction layer, Reduced Layer 1, processes the output from Convolutional Layer 2. 

This output is then directed to a max pooling layer, Maxpool 2, which has a filter size of 2×2 and a stride 

of 2. This process is signified in the following equations     

𝐶𝑜𝑛𝑣 𝑙𝑎𝑦𝑒𝑟2 = 2𝐷𝑐𝑜𝑛𝑣 128,3 × 3(𝑀𝑃1)                                                                                                            (6) 

𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝑙𝑎𝑦𝑒𝑟1 = 𝑅𝐿1(𝑐𝑜𝑛𝑣 𝑙𝑎𝑦𝑒𝑟2)                                                                                                                (7) 

𝑀𝑃2 = 𝑚𝑎𝑥𝑝𝑜𝑜𝑙2 × 2 × 2𝑆(𝑐𝑜𝑛𝑣𝑙𝑎𝑦𝑒𝑟2)                                                                                                              (8) 

In Convolutional Layer 3, max pooling layers with a filter size of 3 and 256 filters are used for feature 

extraction. The second reduction layer, Reduced Layer 2, processes the output from Convolutional 

Layer 3, which is then passed to the max pooling layer Maxpool 3 with a filter size of 2×2 and a stride 

of 2. This is illustrated in the following equations: 

𝐶𝑜𝑛𝑣 𝑙𝑎𝑦𝑒𝑟3 = 2𝐷𝑐𝑜𝑛𝑣 256,3 × 3(𝑀𝑃2)                                                                                                            (9) 

𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝑙𝑎𝑦𝑒𝑟2 = 𝑅𝐿2(𝑐𝑜𝑛𝑣 𝑙𝑎𝑦𝑒𝑟3)                                                                                                               (10) 

𝑀𝑃3 = 𝑚𝑎𝑥𝑝𝑜𝑜𝑙2 × 2 × 2𝑆(𝑐𝑜𝑛𝑣𝑙𝑎𝑦𝑒𝑟3)                                                                                                             (11) 

In Convolutional Layer 4, max pooling layers are again utilized for feature extraction, this time with a 

filter size of 3 and 512 filters. The third reduction layer, Reduced Layer 3, processes the output from 

Convolutional Layer 4, as shown in the following equations: 

𝐶𝑜𝑛𝑣 𝑙𝑎𝑦𝑒𝑟4 = 2𝐷𝑐𝑜𝑛𝑣 512,3 × 3(𝑀𝑃3)                                                                                                          (12) 

𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝑙𝑎𝑦𝑒𝑟3 = 𝑅𝐿3(𝑐𝑜𝑛𝑣 𝑙𝑎𝑦𝑒𝑟4)                                                                                                               (13) 

The outputs from Reduced Layers 1, 2, and 3 are then fed into the Feature Pyramid Enhancement 

Module (FPEM), as represented by:  

𝐹𝑃𝐸𝑀1 = 𝐹𝑃𝐸𝑀(𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝑙𝑎𝑦𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝑙𝑎𝑦𝑒𝑟2, 𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝑙𝑎𝑦𝑒𝑟3)                                                       (14) 

Features are extracted in the first convolutional layer using a filter size of 3x3 with 64 filters. The output 

from this layer, referred to as Convolutional Layer 1, is subsequently processed through a maximum 

pooling layer (Maxpool1) with a filter size of 2x2 and a stride of 2. This process is depicted in equations 

(4) and (5):  
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𝐹𝑃𝐸𝑀2 = 𝐹𝑃𝐸𝑀(𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝑙𝑎𝑦𝑒𝑟4, 𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝑙𝑎𝑦𝑒𝑟5, 𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝑙𝑎𝑦𝑒𝑟6)                                                       (15) 

The channel weight layer from 𝐶𝐴1 and 𝑆𝐴1 corresponds to𝐹𝑃𝐸𝑀1, while the spatial weight layer from 

𝐶𝐴2 and 𝑆𝐴2 corresponds to𝐹𝑃𝐸𝑀2. The concatenation of 𝐶𝐴1 and 𝑆𝐴1 yields the result 𝐹1, while the 

concatenation of 𝐶𝐴2 and 𝑆𝐴2 yields𝐹2. The concatenation of 𝐹𝑃𝐸𝑀03 and 𝐹𝑃𝐸𝑀06 results in𝐹3. This 

procedure is applied to both the top and bottom layers, as shown in the following equations: 

𝐶𝐴1 = 𝐹𝑃𝐸𝑀01(𝐹𝑃𝐸𝑀1)                                                                                                                                 (16)        

𝑆𝐴1 = 𝐹𝑃𝐸𝑀04(𝐹𝑃𝐸𝑀2)                                                                                                                                  (17) 

𝐹1 = 𝑎𝑑𝑑 (𝐶𝐴1, 𝑆𝐴1)                                                                                                                                         (18) 

𝐶𝐴2 = 𝐹𝑃𝐸𝑀02(𝐹𝑃𝐸𝑀1)                                                                                                                                  (19) 

𝑆𝐴2 = 𝐹𝑃𝐸𝑀05(𝐹𝑃𝐸𝑀2)                                                                                                                                  (20) 

𝐹2 = 𝑎𝑑𝑑(𝐶𝐴2, 𝑆𝐴2)                                                                                                                                           (21) 

𝐹3 = 𝑎𝑑𝑑(𝐹𝑃𝐸𝑀03, 𝐹𝑃𝐸𝑀06)                                                                                                                          (22) 

The output 𝐹3 is then sent into a de-convolution layer (Deconvlayer1) with a filter size of 128 and a 

kernel size of 3×3, followed by an up-sampling step. This output is combined with F2. The result of this 

concatenation (Concat1) is processed through Convolutional Layer 9 with 256 filters and a kernel size 

of 1×1, followed by Convolutional Layer 10 with a filter size of 128 and a kernel size of 3×3. The output 

from this process is then sent into another de-convolution layer (Deconvlayer2) followed by an up-

sampling step. The resulting output g1 is concatenated with𝐹1, producing another concatenated result 

(Concat2) that is fed into Convolutional Layer 11 with a kernel size of 128 and a kernel size of 1×1, 

followed by Convolutional Layer 12 with a filter size of 128 and a kernel size of 3×3. This process is 

summarized in the following equations: 

𝐷𝑒𝑐𝑜𝑛𝑣𝑙𝑎𝑦𝑒𝑟1 = 2𝐷𝐷𝑒𝑐𝑜𝑛𝑣 128,3 × 3(𝐹3)                                                             (23) 

𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒1 = 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝐷𝑒𝑐𝑜𝑛𝑣𝑙𝑎𝑦𝑒𝑟1)                                                              (24) 

𝐶𝑜𝑛𝑐𝑎𝑡1 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒1, 𝐹2)                                                                           (25) 

𝐶𝑜𝑛𝑣𝑙𝑎𝑦𝑒𝑟9 = 2𝐷𝑐𝑜𝑛𝑣256,1 × 1(𝑐𝑜𝑛𝑐𝑎𝑡1)                                                                                        

(26) 

𝐶𝑜𝑛𝑣𝑙𝑎𝑦𝑒𝑟10 = 2𝐷𝑐𝑜𝑛𝑣128,3 × 3(𝑐𝑜𝑛𝑣𝑙𝑎𝑦𝑒𝑟9)                                                                          (27) 

𝐷𝑒𝑐𝑜𝑛𝑣𝑙𝑎𝑦𝑒𝑟2 = 2𝐷𝐷𝑒𝑐𝑜𝑛𝑣 128,3 × 3(𝑐𝑜𝑛𝑣 𝑙𝑎𝑦𝑒𝑟10)                                                            (28) 

𝐺1 = 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝐷𝑒𝑐𝑜𝑛𝑣𝑙𝑎𝑦𝑒𝑟2)                                                                             (29) 

𝐶𝑜𝑛𝑐𝑎𝑡2 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑔1, 𝑓1)                                                                                          (30) 

𝐶𝑜𝑛𝑣𝑙𝑎𝑦𝑒𝑟11 = 2𝐷𝑐𝑜𝑛𝑣128,1 × 1(𝑐𝑜𝑛𝑐𝑎𝑡2)                                                             (31) 

𝐶𝑜𝑛𝑣𝑙𝑎𝑦𝑒𝑟12 = 2𝐷𝑐𝑜𝑛𝑣128,3 × 3(𝑐𝑜𝑛𝑣𝑙𝑎𝑦𝑒𝑟11)                                                                           (32) 

𝐺2 =  𝐶𝑜𝑛𝑣𝑙𝑎𝑦𝑒𝑟12                                                                (33) 

The final output G2 is then sent for further processing.  

Density Map Estimation  
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Extracting crowd features is crucial for evaluating crowd density. We proposed a method that utilizes 

local feature points to characterize the crowd based on the premise that areas with low population 

density exhibits sparser local features compared to region with high density. The process begins with 

density by assessing the proximity of these features. Visual surveillance systems have investigated 

various techniques for crowd management and monitoring, including crowd density analysis. From this 

perspective, generating region-specific crowd density maps is more advantageous than calculating a 

single overall density or simply counting the total number of individuals in a frame. Our approach 

transitions from global per-frame information to detailed local pixel-level analysis. Below is an outline 

of our method for estimating density maps. To assess each analysed frame, local features are first 

extracted.  

 

Figure 6. Density Map Estimation  

 

The proposed methods for density map estimation is illustrated in Figure 6. The task consists of three 

processing stage and three distinct inputs. The initial input frame 𝐹3 undergoes spatial attention 

processing 𝑆𝑎1 followed by a convolution layer 𝐶𝑂𝑁𝑉𝐹, 1 × 1 kernel and up sampling𝑈𝑝1. Next, the 

second input 𝐺2 is concatenate with the output from the initial up sampling𝑈𝑝1. Subsequently, the 

second input 𝑔2 is concatenated with the output from the initial up-sampling𝑈𝑝1. This concatenated 

output is then fed into another spatial attention layer𝑆𝑎2. After processing, it passes through the 

convolution layer CONVFCONVFagain, followed by another up-sampling layer𝑈𝑝2. The third input 𝑔1 

is combined with the output from the second input𝑔2. The result of this concatenation is then directed 

into channel attention 𝐶𝑎1  for further processing through the third convolution layer 𝐶𝑂𝑁𝑉𝐹, 3 ×

3 kernel. The entire procedure is detailed in the following equations. 

𝐶𝑜𝑛𝑐𝑎𝑡1𝑜𝑢𝑡𝑝𝑢𝑡 =  𝐶𝑜𝑛𝑐𝑎𝑡1(𝑈𝑝1(𝐶𝑜𝑛𝑣𝐹1 × 1(𝑆𝑎1(𝐹3))), 𝑔2)                                                                    (34) 

𝐶𝑜𝑛𝑐𝑎𝑡2𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡2 (𝑈𝑝2 (𝐶𝑜𝑛𝑣𝐹1 × 1(𝑆𝑎2(𝐶𝑜𝑛𝑐𝑎𝑡1𝑜𝑢𝑡𝑝𝑢𝑡))), 𝑔1)                                             (35) 

𝐹𝑖𝑛𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 =  (𝐶𝑜𝑛𝑣𝐹3 × 3 (𝐶𝑎1(𝐶𝑜𝑛𝑐𝑎𝑡2𝑜𝑢𝑡𝑝𝑢𝑡)                                                                                     (36) 
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Localized Map Estimation 

The proposed localized estimation approach employs a local temporal estimator to highlight the overall 

shape of prominent objects in each current frame. This method effectively leverages the temporal 

consistency and strong correlations between adjacent frames. To capitalize on these temporal 

correlations, we introduce a novel localized estimation method, as shown in figure 7.  

 

Figure 7. Localized Map Estimations 

To capitalize on these temporal correlations, we introduce a novel localized estimation method, as 

shown in figure 7. The conventional layer 𝐶𝑂𝑁𝑉𝐹 processes the initial inputs frame𝐹3, which is then 

directed to an up sampling layer. Meanwhile, the conventional layer also received input. The output 

from 𝐹3 and 𝑔2 are sub sequential combined. This concatenated output is then sent to the Bi Pooling 

Squeeze Excitation block (Bi PSE layer) for further processing, followed by another up-sampling step. 

On the other hand, the convolution layer 𝐶𝑂𝑁𝑉𝐹  receives input𝑔1, and the outputs from 𝑔2 and 𝑔1 are 

merged. The resulting concatenated output is then passed to the Bi Pooling Squeeze Excitation block 

(Bi PSE layer), which serves as a localized map layer. The explanation of this process is illustrated in the 

following equations. 

𝐶𝑜𝑛𝑐𝑎𝑡𝑒1𝑜𝑢𝑡𝑝𝑢𝑡 =  𝐶𝑜𝑛𝑐𝑎𝑡𝑒1(𝑈𝑝1(𝐶𝑜𝑛𝑣𝐹1 × 1(𝐹3)), (𝑔2)𝐶𝑜𝑛𝑣𝐹1 × 1))                                                    (34) 

𝐶𝑜𝑛𝑐𝑎𝑡𝑒2𝑜𝑢𝑡𝑝𝑢𝑡 =  𝐶𝑜𝑛𝑐𝑎𝑡𝑒2 (𝑈𝑝2(𝐶𝑜𝑛𝑣𝐹1 × 1(𝐶𝑜𝑛𝑐𝑎𝑡𝑒1𝑜𝑢𝑡𝑝𝑢𝑡), (𝑔1) 𝐶𝑜𝑛𝑣𝐹1 × 1))                       (35) 

𝐹𝑖𝑛𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 =  𝐶𝑜𝑛𝑐𝑎𝑡𝑒2𝑜𝑢𝑡𝑝𝑢𝑡(𝐶𝑜𝑛𝑣𝐹1 × 1)                                                                                        (36) 

1.6.1 Bi Pooling Squeeze and Excitation Block  

The computing unit known as the Squeeze and excitation block can be integrated into any 

transformation. This block enhances the representation capacity of CNN by allowing dynamic 



Journal of Information Systems Engineering and Management 
2025, 10(38s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 818 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

recalibration of channel wise features with minimal computational overhead. It not only fits 

seamlessly into existing architectures but also significantly improves performance. Essentially, 

the squeeze-and-excitation block enhances neural networks' ability to accurately map global 

information and channel dependencies, resulting in performance improvements through better 

calibration of filter outputs. 

 

Figure. Bi-pooling Squeeze and Excitation  

The proposed novel Bi-pooling Squeeze-and-Excitation Block employs both max pooling and 

average pooling techniques. Max pooling provides a more abstract representation, reducing 

over fitting and offering fundamental translation invariance to the internal representation, 

while also decreasing the learning burden by lowering the number of parameters. In contrast, 

average pooling generates a down-sampled feature map by calculating the average value of 

patches within a feature map, typically following a convolutional layer. Consequently, while 

max pooling captures the most prominent feature in a specific patch, average pooling yields the 

average of all features within that patch. The block receives a convolutional input and applies 

both average and max pooling to condense each channel into a single numerical value. 

Following this, non-linearity is introduced after a dense layer, which reduces the output channel 

complexity. Each channel is assigned a smooth gating function through a second dense layer 

followed by a sigmoid activation. Ultimately, this process assigns weights to each feature map 

from the convolution block on the "excitation" side of the network. 

To extract features from an input image, a feature transformation (such as convolution) is first 

applied. The squeeze operation then condenses each output channel into a single value. Next, 

an excitation operation is performed on the output from the squeeze step to derive per-channel 

weights. The final output of the block is obtained by rescaling the feature map using these 

activations after determining the per-channel weights. The study illustrates how these building 

blocks can be stacked to create Squeeze-and-Excitation structures that generalize effectively 

across various datasets. Additionally, proposed model demonstrates that SE blocks 

significantly enhance performance for existing state-of-the-art CNNs with minimal additional 

computational cost.  

RESULT AND DISCUSSION 

1.7 Dataset Description 

The drone crowd dataset comprises 112 videos segments, amounting to a total of 33,600 high 

definition frame (1920*1080 Pixels), captured under 70 distinct lighting conditions. It features 

28800 person trajectories and over 4.8 million hand annotations along with various video leveling 
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sequence elements. This extensive dataset was compiled using drones equipped with mounted 

cameras in four Chinese cities namely Daqing, Hong Kong, Tianjin, and Guangzhou. Currently, the 

Drone Crowd dataset is recognized as the most comprehensive resource available for crowd density 

estimation and localization tasks. 

The complete workflow was developed using Python 3.7 and PyTorch 1.5, running on an Intel Core 

i7 processor with 16GB of RAM and an RTX-2060 6GB NVidia graphics card. For analysis, Tensor 

Flow-GPU 2.1.0 libraries were utilized, with a learning rate set at 0.01 and RMSprop as the chosen 

optimizer. The evaluation process was carried out over 200 epochs. 

1.8 Performance Metrics 

Density map estimation, as highlighted in previous studies, involves calculating the per pixel 

density while preserving spatial information about the number of individuals present at each 

location in the image. To evaluate performance, we utilize the Mean Absolute Error (MAE) [36] and 

Mean Square Error (MSE) [5]. 

𝑀𝐴𝐸 =
1

∑𝑘
𝑖=1 𝑁𝑖

∑𝑘
𝑖=1 ∑

𝑁𝑖
𝑗=1 |𝑧𝑖,𝑗 − 𝑧̂𝑖,𝑗|,                                                                                                              (37) 

𝑀𝑆𝐸 = √
1

∑𝑘
𝑖=1 𝑁𝑖 ∑𝑘

𝑖=1 ∑
𝑁𝑖
𝑗=1

|𝑧𝑖,𝑗−𝑧̂𝑖,𝑗|
2                                                                                                                   (38) 

Where Ni represent the count of frames in the 𝑖𝑡ℎ  video and K denotes he overall number of video 

clips. The actual count of individuals in the 𝑗𝑡ℎ frame of thee 𝑖𝑡ℎ video clip is denoted by 𝑍𝑖.𝑗  while 

the projected count is indicating by𝑍𝑖.𝑗 . MAE and MSE as noted indicates the accuracy and 

dependability of the estimation.  

Crowd Localization 

As noted in, the optimal technique for assessing the number of people in a crowd involves 

recognizing each individual in a photo a counting these identifications, which is essential for uses 

like security and monitoring.   

Every assesse method must deliver a list of recognized points along with confidences scores for ach 

test image. Ground truth localization are paired with estimated localization through a greedy 

algorithm that relies on confidence thresholds. To assess the localization through a greedy 

algorithm that relies on confidence thresholds. To assess the localization outcomes, we calculate the 

mean average precision (L-mAP) at different distance threshold (1, 2, 3, …, 25 Pixel) distance limits. 

These metrics consider both duplicate detection and those that were missed for example, several 

detection of the same people.  

Experimental Results 
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Figure 9. Full Image of the Location  

 

 

Test Sample Outcome image of TLFA_PF 
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Figure 10. Output Images of the Proposed Work (A, B, C, and D) Correspond to the 

Input Images with Indication the Presence of Crowd to Assist In Localization  

1.9 Performance Analysis  

The performance analysis of the TLFA_PF model shown an overall MAE and MSE that reflects 

similar trends across environmental conditions. The model achieves its best accuracy in all 

methods. While both MAE and MSE values surge in sunny conditions, indicating potential 

challenges in maintaining accuracy under varying lighting conditions.  

Table 1. MAE outperforms on TLFA_PF 

Method 

Spee

d 

FPS 

Overa

ll 

MAE 

High 

MAE 

Low   

MAE 

Cloud

y 

MAE 

Sunn

y 

MAE 

Nigh

t 

MAE 

Crowd

ed 

MAE 

Spars

e 

MAE 

TLFA_P

F 
2.94 15.4 15.7 15.9 13.8 18.7 14.8 18.1 13.5 
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Figure 9. Graphical MAE in TLFA_PF 

The table 1 and figure 9 highlights the performance of the TLFA_PF, which operates at a speed 

of 2.94 FPS and achieves an overall MAE of 15.4 across various conditions. Notably, TLFA_PF 

excels in cloudy conditions with the lowest MAE of 13.8, while its highest error occurs in sunny 

conditions at 18.7. Overall, the model demonstrates strong accuracy and consistent performance in 

crowd density estimation, making it a valuable tool for real-time monitoring applications 

 

Table 2. MSE outperforms on TLFA_PF 

Method 

Spee

d   

FPS 

Overa

ll 

MSE 

High    

MSE 

Low      

MSE 

Cloud

y 

MSE 

Sunn

y 

MSE 

Night 

MSE 

Crowd

ed 

MSE 

Spars

e 

MSE 

TLFA_PF 2.94 18.2 17.7 19.3 16.5 20.4 18.6 21.2 16.3 
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Figure 10. Graphical MSE in TLFA_PF  

Similar to MAE Figure 10 and table 2 highlights the TLFA_PF, which operates at a speed of 2.94 

FPS and achieves an overall MAE of 18.2. The model performs best in cloudy conditions with an 

MAE of 16.5, while the highest error occurs in sunny conditions at 20.4.  

1.10 Comparison Analysis  

 The density map estimation is performed by analyzing pixel values across various environment, 

including cloudy environments, including cloudy, sunny, night, crowded, and sparse conditions. 

MAE is calculated at both high and low levels to derive an overall MAR. The performance 

evaluations includes algorithm such as MCNN [37], MSCNN [38], C-MTL [5], ACSSCP[39], LCFCN 

[27], SwitchCNN, CSRNet, AMCN, StackPoolig, STANet (w/o ms), DA-Net and STNNet [37]. Table 

1 and 2 present the MAE and MSE results for the density map on the Drone Crowd dataset, 

respectively.  

Table 3. MAE of the density map on Drone Crowd dataset 

Method 

Spee

d 

FPS 

Overa

ll 

MAE 

Hig

h 

MA

E 

Low 

MA

E 

Cloud

y 

MAE 

Sun

ny 

Nig

ht 
Crowd

ed 

MAE 

Spar

se 

MAE 
MA

E 
MAE 

MCNN  
28.9

8 
34.7 36.8 31.7 21 39 67.2 29.5 37.7 

C-MTL  2.31 56.7 53.5 61.5 59.5 56.6 48.2 81.6 42.2 

MSCNN 1.76 58 58.4 57.5 64.5 53.8 46.8 91.4 38.7 

LCFCN 3.08 136.9 
126.

3 

152.

8 
147.1 137.1 105.6 208.5 95.4 

SwitchCN

N 
0.014 66.5 61.5 74 56 69 92.8 67.7 65.7 

ACSCP  1.58 48.1 57 34.8 42.5 37.3 86.6 36 55.1 

AMDCN 0.16 165.6 166.7 
163.

8 
160.5 174.8 162.3 165.5 165.6 

CSRNet  3.92 19.8 17.8 22.9 12.8 19.1 42.3 20.2 19.6 

Stack 

Pooling 
0.73 68.8 68.7 68.8 66.5 74 65.2 95.7 53.1 

DA-Net  2.52 36.5 41.5 28.9 45.4 26.5 29.5 56.5 24.9 

STANet 

(w/o ms) 
9.49 26.3 27.3 24.7 21.3 29.5 34.7 22.4 28.5 

STNNet  3.41 15.8 16 15.6 14.1 19.9 12.9 18.5 14.3 

TLFA_P

F 
2.94 15.4 15.7 15.9 13.8 18.7 14.8 18.1 13.5 

 

From Table 3. Present the performance metrics of various crowd counting methods, highlighting 

their processing speed I frame per second (FPS) alongside their MAE across different conditions. 

For instance, MCNN operates at 28.98 FPS with an overall MAE of 34.7, showing high MAE of 36.8 

and low MAE of 31.7. In contrast, C-MTL has a slower speed of 2.31 FPS but achieves a higher 

overall MAE of 56.7. The MSCNN model runs at 1.76 FPS, maintaining an overall MAE of 58, 

indicating consistent performance across various conditions. Notably, LCFCN demonstrates the 
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highest speed at 3.08 FPS with an impressive overall MAE of 136.9, while SwitchCNN operates at a 

very low speed of 0.014 FPS with an overall MAE of 66.5. The lightweight model AMDCN excels 

with a high speed of 165.6 FPS and an overall MAE of 15.4, showcasing its efficiency in real-time 

applications. Other models like CSRNet and DA-Net perform at speeds of 3.92 FPS and 2.52 FPS, 

respectively, with overall MAEs of 19.8 and 36.5, reflecting competitive accuracy in various 

environments. Overall, the results illustrate a trade-off between speed and accuracy, as evidenced 

by the varying MAE values across different environmental conditions such as cloudy, sunny, night, 

crowded, and sparse scenarios.  

 

Figure 9. Overall MAE 

 

Figure 10. MAE estimation for all methods  
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Table 4. MSE of the Density Map on the Drown Crowd Dataset 

Method 
Spee

d FPS 

Overa

ll 
High Low 

Cloud

y 

Sunn

y 

Nigh

t 

Crowd

ed 

Spar

se 

MSE MSE MSE MSE MSE MSE MSE MSE 

MCNN 28.98 42.5 44.1 40.1 27.5 43.9 68.7 35.3 46.2 

C-MTL 2.31 65.9 63.2 69.7 66.9 67.8 58.3 88.7 47.9 

MSCNN  1.76 75.2 77.9 71.1 85.8 65.5 57.3 106.4 48.8 

LCFCN 3.08 150.6 140.3 164.8 160.3 151.7 113.8 211.1 110 

SwitchCN

N  
0.014 77.8 74.2 83 63.4 80.9 105.8 79.8 76.7 

ACSCP  1.58 60.2 70.6 39.7 46.4 44.3 106.6 41.9 68.5 

AMDCN  0.16 167.7 168.9 165.9 162.3 177.1 164.3 167.7 167.8 

CSRNet  3.92 25.6 25.4 25.8 16.6 22.5 45.8 24 26.5 

Stack 

Pooling 
0.73 77.2 77.1 77.3 75.9 83.4 67.4 101.1 59.1 

DA-Net  2.52 47.3 54.7 33.1 58.6 31.3 34 68.3 28.7 

STANet 

(w/o ms)  
9.49 31.4 33.9 27.1 23.2 37.7 38 25 34.5 

STNNet  3.41 18.7 18.4 19.2 17.2 22.5 14.4 21.6 16.9 

TLFA_P

F 
2.94 18.2 17.7 19.3 16.5 20.4 18.6 21.2 16.3 

 

The table 4, compares various neural network method based on their performance metrics, 

specifically MSE and processing speed in FPS as in MAE, across different environment conditions. 

Notably, CSRNet emerges as the best performer with the lowest overall MSE of 25.6, indicating high 

accuracy, while also maintaining a moderate speed of 3.92 FPS. In contrast, AMDCN and LCFCN 

exhibit high processing demands with speeds of 0.16 FPS and 3.08 FPS, respectively, but suffer 

from higher MSE values, suggesting lower accuracy. Environmental conditions significantly affect 

performance; for example, MCNN performs best at night with an MSE of 27.5 but struggles in other 

scenarios. C-MTL excels in sunny conditions with an MSE of 66.9, highlighting the variability in 

model effectiveness based on context. Overall, this analysis underscores the trade-offs between 

speed and accuracy among the different architectures, providing insights for their application in 

tasks such as crowd counting and image recognition. 
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Figure 11. Overall MSE 

 

Figure 12. MSE estimation for all methods 

From the above figures 10, 11,12 shows the proposed work performs better than other existing 

methods. The crowd localization on Drone Crowd dataset is analyzed using average precision.  

CONCLUSION 

The TLFA_PF marks a substantial advancement in the field of crowd density estimation and 

localization utilizing drone imagery. This innovative model effectively overcomes the limitations 

associated with traditional crowd monitoring methods, which often struggle with challenges such as 

occlusion, low resolution, and high crowd density. By achieving an overall Mean Absolute Error (MAE) 

of 15.4 and a Mean Squared Error (MSE) of 18.2, TLFA_PF demonstrates its capability to accurately 

predict crowd densities across various environmental conditions. The model's architecture incorporates 

advanced techniques such as spatial and temporal attention mechanisms, which allow it to extract 
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critical features from drone-captured images at multiple scales while minimizing computational 

complexity. A key innovation is the introduction of the Bi Pooling Squeeze and Excitation Block, which 

enhances the model's ability to emphasize important features selectively, thereby improving its 

performance in discerning variations in crowd density. Furthermore, TLFA_PF exhibits superior 

Average Precision values for crowd localization compared to existing methods, highlighting its 

effectiveness in accurately identifying individuals within a crowd. The experimental results underscore 

the robustness and reliability of TLFA_PF, making it a valuable tool for real-time crowd monitoring 

applications. Ultimately, this research contributes significantly to the field of computer vision by 

providing an efficient and effective solution for enhancing safety and management in public spaces. The 

successful implementation of TLFA_PF paves the way for future advancements in aerial surveillance 

technologies, further improving our ability to monitor and manage crowded environments effectively. 
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