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Diabetic Kidney Disease (DKD), a complication of diabetes, leads to the gradual decline of renal 

function. Screening individuals for DKD is essential, as a timely intervention has been shown to 

improve patient outcomes. Although early detection of DKD can prevent its progression, 

systematic screening is not universally feasible, which can result in missed or delayed 

diagnoses. Deep learning (DL) models have shown promise in the medical field, providing 

promising results. Many researchers have proposed DL models for DKD classification, but 

achieving reliable accuracy has still been challenging due to the presence of noise and 

unwanted features in medical data. To address this issue, the paper proposes a hybrid DL 

model by integrating Long Short-Term Memory (LSTM) into an Autoencoder (AE) 

architecture, called LSTM-AE, for effective DKD prediction. The combination of these two 

models effectively identifies important features, resulting in accurate classification. The data 

used to analyze the DL model's performance was collected from the UCI repository. The data 

was affected by various issues, and several preprocessing steps were performed to clean the 

data. This preprocessing also contributed to achieving effective outcomes. The proposed model 

was compared with three popular DL models: Convolutional Neural Network (CNN), LSTM, 

and AE. The LSTM-AE achieved the highest accuracy of 99% in DKD prediction, while the 

other models produced accuracies ranging from 94% to 97%. The proposed model was also 

compared with existing models from recent studies, and in all experimental outcomes, the 

LSTM-AE outperformed the others. The results demonstrate that the proposed model is 

reliable for DKD prediction and can be deployed in real-time practice. 

Keywords: Diabetic Kidney Disease, Hybrid Deep Learning, Autoencoder, Long Short-Term 

Memory, UCI Repository 

 

INTRODUCTION 

DKD is one of the most severe problem of diabetes [1]. Traditional thought held that DKD was distinct from 

macrovascular disease (peripheral vascular disease, coronary heart disease, and cerebrovascular disease) and was 

more closely related to microvascular disorders (neuropathy and retinopathy) [2]. Nonetheless, each disease can be 

viewed as a specific tissue's expression of a common pathogenetic process; in this case, DKD is the kidney's 

expression of a glucose-driven process that occurs in other sensitive areas of the body. Microalbuminuria referred to 

as occult or incipient nephropathy, is a degenerative condition characterized by a gradual increase in urinary 

albumin excretion (30-300 mg/day), originally described by Mogensen in 1980 regarding DKD [3]. When 

albuminuria became identifiable with conventional dipstick urinalysis (>300 mg/day), macroalbuminuria was 

introduced to denote the escalating quantity of albumin excreted in the urine. 

DKD affects 20-40% of Chinese adults and is the primary cause of last-stage renal disease in the country [4] . This 

disorder has a terrible effect on diabetes sufferers' quality of life. Patients, their families, and society as a whole bear 

a disproportionate amount of the financial costs involved with DKD therapy. Microalbuminuria levels are commonly 

used in the early clinical stages of DKD. Unfortunately, by the time DKD is diagnosed, irreversible damage to the 

kidney has already occurred[5]. Even with aggressive treatment, the condition will worsen for more than one-third of 

patients. The implementation of preventative interventions for all diabetic patients will require substantial human 

resources and medical expenses. Considering the low incidence of DKD in certain diabetic patients, it is essential to 
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identify those at high risk for future preventative interventions, thus demanding the implementation of advanced 

screening technology [6] [7]. 

Early detection of DKD can save a patient's life. To accurately diagnose kidney problems, medical practitioners use a 

variety of standard approaches, including physical examinations and laboratory tests [8]. Building trustworthy and 

generalizable diagnostic models that may assist medical practitioners in making swift and informed judgments is 

critical, especially given new potential data sources that can help medical diagnosis. 

In the realm of medical diagnosis, machine learning (ML) has lately aided in the development of efficient models 

capable of reaching quick and correct results. DL is a subset of ML that employs a sequence of operations conducted 

during training to uncover hidden correlations in a dataset [9]. Medical applications are heavily influenced by DL, a 

multilayer DL model that can potentially handle nonlinear data. Medical data heterogeneity presents a variety of 

issues for DL in terms of generalizability and robustness, potentially leading to erroneous rules and unreproducible 

diagnostic models unless DL becomes more widely used [10]. As a result, even if ideal weights are reached during DL 

training, the model may still have significant variance. Using a range of DL models could help overcome this 

challenge. The term for this strategy is hybrid learning. By combining the benefits of more than one DL model, we 

may overcome the limitations of single models and obtain higher generalizability and flexibility [11, 12]. Multiple 

studies [13, 14] have demonstrated that hybrid learning yields accurate and efficient models. The most crucial aspect 

of developing a decent model is selecting the appropriate set of features. The DL field has done extensive research on 

feature selection, with promising results in biomedical applications [15]. Based on the information supplied, the 

primary purpose of this work is to develop a hybrid DL model that can improve DKD prediction performance by 

using the best features from the dataset. 

The contribution of the research is as follows: 

• Develop a hybrid DL model, LSTM-Autoencoder, for effective feature extraction from the data and to improve 

DKD prediction accuracy. 

• A detailed exploratory data analysis and visualization are conducted to clean the data, which helps improve 

the proposed model's performance. 

• The proposed hybrid DL model is evaluated using positive and negative metrics, in comparison with other 

single DL models such as CNN, LSTM, and AE. 

• A comparison with existing studies also demonstrates the promising results of the proposed model. 

The research paper is organized in the following manner: Section 1 discusses DKD, traditional identification 

methods, and the need for integrating AI in DKD prediction. Section 2 discusses recent related works in kidney 

disease detection. Section 3 provides the architecture and working of the proposed hybrid LSTM-AE model. Section 

4 presents the experimental setup, results, and their related discussion, and also covers data acquisition and 

preprocessing. Finally, the research concludes with a discussion of future work in Section 5. 

LITERATURE SURVEY 

The literature discusses and applies a range of approaches to the DKD categorization problem. Given the current 

literature, the proposed study contributes to the field's efforts to improve the discoveries that are now possible in 

DKD prediction. The paper [16] introduces a novel AI method for estimating chronic kidney disease (CKD), 

incorporating numerous pre-process steps, feature selection, and hyperparameter optimization. To fill in missing 

values in the dataset, a new sequential data scaling method and iterative imputation are employed. The Boruta 

approach is utilized for feature selection, while ML methods are employed to build the model. During validation on 

the UCI dataset, the proposed model performed quite well. The strategy, which uses unique preprocessing 

procedures, enhances the early detection of CKD. As proven in this work, ML methods can improve clinical support 

systems as well as the role of uncertainty in chronic disease prognosis. A bagging classifier and voting algorithms are 

employed to combine the DL methodology known as artificial neural network (ANN) with the CKD dataset available 

from the UCI. The dataset contains four hundred cases and twenty-five features. This work is described in article 

[17]. Three EDL models are constructed as a foundation for the study: Model-1, which integrates an ANN with a 
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voting method; Model-2, which incorporates a bagging method; and Model-3, which integrates both methods. 

Considering the experimental metrics for performance, it is evident that the suggested model surpasses all previously 

examined methodologies.  

The research study [18] provides a new model for early detection and prediction of CKD that employs a hybrid DL 

network. This paper presents a DL strategy for early CKD detection based on a Deep Separable Convolution Neural 

Network (DSCNN). To detect kidney abnormalities, the Capsule Network pulls additional processing features from 

certain attributes. The Aquila Optimization Algorithm is used to swiftly select the most relevant attributes for 

categorization. With the correct features, categorization becomes more successful and requires less computational 

power. The Sooty Tern Optimization Algorithm is employed to enhance the DSCNN method for diagnosing CKD in 

patients. The dataset is subsequently evaluated using the CKD dataset from the UCI ML repository. The 

experimental results indicate that the proposed strategy surpasses the current state-of-the-art method for classifying 

CKD.  

In the study [19], it was demonstrated using huge data that AI could forecast the progression of DKD. The study used 

three distinct strategies to improve the capacity to predict disease-specific outcomes. A new diabetic complications 

prediction model was developed before patients exhibiting clinical signs such as microalbuminuria. Second, 

instances that were not clinically defined as type 2 diabetes in their EMR text were included, and massive amounts of 

data from electronic medical records were used for ML, with no intention of performing clinical trials. Third, to 

estimate DKD progression for the six months after the reference periods, AI used time-series data obtained six 

months before those periods. An AI-powered predictive model for DKD progression detection may result in more 

precise and efficient intervention, reducing the requirement for hemodialysis. The goal of this study [20] is to offer a 

new ensemble DL method for detecting CKD; multiple feature selection approaches were used to choose the optimal 

features. Furthermore, from a medical standpoint, the study looks into how the best features selected affect CKD. 

The proposed ensemble model employs a support vector machine as the meta-learner model and includes pre-

trained DL models. Extensive testing was conducted using UCI repository data. The findings indicate that the 

proposed model is more effective than existing models in predicting CKD. The suggested model with the given 

features produced the best results.  

PROPOSED LSTM-AE MODEL 

In this section, we first provide a general architecture of AE and LSTM, and the proposed hybrid LSTM-AE 

architecture is explained with a block diagram. 

Autoencoder 

AE, a significant type of neural network, exhibits characteristics that render them advantageous for various 

applications [21]. Figure 1 illustrates the architecture of the AE, comprising an encoder, a bottleneck layer, and a 

decoder [22].  

 

Figure 1. Autoencoder architecture, comprising an encoder, bottleneck layer, and decoder. 

The AE architecture compels data to traverse the bottleneck layer, which has fewer nodes than the input layer, to 

achieve the objective of reconstructing the input [23]. This architectural characteristic compels the encoder to 
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identify the essential hidden attributes required for supplying the decoder with reconstruction data from the input 

[24]. Equation (1) is employed to define 𝐿 as the AE reconstruction. 

                                                       𝐿 = 𝐷(𝐸(𝑋))        (1) 

𝐿𝑎 = 𝐷(𝐸(𝑋𝑑𝑘𝑑))    (2) 

𝐿𝑏 = 𝐷(𝐸(𝑋𝑛𝑜𝑛−𝑑𝑘𝑑))    (3) 

When the initial input is represented by 𝑋, the encoder by 𝐸, and the decoder by 𝐷, Equations (2) and (3) are 

obtained from subscripted versions of 𝑋  and  𝐿 that are specific to the investigation. 𝑋𝑑𝑘𝑑  and 𝐿𝑑𝑘𝑑  are used 

exclusively for DKD data, while 𝑋𝑛𝑜𝑛−𝑑𝑘𝑑 and 𝐿𝑛𝑜𝑛−𝑑𝑘𝑑  are used only for non-DKD data. AE training seeks to reduce 

the disparity between the actual input and the reconstructed output. This is achieved by computing the equation 

𝑙(𝑋 − 𝐿), where 𝑙 represents a loss function. According to the notation, when inferring from new samples, 𝐿𝑛𝑜𝑛−𝑑𝑘𝑑 

contains more data than 𝐿𝑑𝑘𝑑 . AE feature residuals are the differences between an AE's initial input and its 

reconstruction, as studied independently for each feature. As illustrated in Equation (4), the AE feature residuals are 

defined as 𝑆. 

𝑆 = 𝑋 − 𝐿     (4) 

𝑆𝑑𝑘𝑑 = 𝑋𝑑𝑘𝑑 − 𝐿𝑑𝑘𝑑    (5) 

𝑆𝑛𝑜𝑛−𝑑𝑘𝑑 = 𝑋𝑛𝑜𝑛−𝑑𝑘𝑑 − 𝐿𝑛𝑜𝑛−𝑑𝑘𝑑   (6) 

In this scenario, 𝑋 represents the original input, and 𝐿 is the AE reconstruction stated in Equation (1). The same 

subscript notation for 𝑆 is used as for 𝑋 and 𝐿. 𝑆𝑑𝑘𝑑 focuses solely on DKD data, whereas 𝑆𝑛𝑜𝑛−𝑑𝑘𝑑 focuses solely on 

non-DKD data, yielding Equations (5) and (6). When discussing 𝑆 in this study, it is critical to note that a summary 

statistic for each group is not employed. The number of dimensions in 𝑆 remains the same as in 𝑋. This ensures that 

each feature in a sample has a residue. It is expected that 𝐿𝑛𝑜𝑛−𝑑𝑘𝑑 will be larger than 𝐿𝑑𝑘𝑑 after pretraining with only 

𝑋𝑛𝑜𝑛−𝑑𝑘𝑑 . As a result, 𝑆𝑛𝑜𝑛−𝑑𝑘𝑑  is expected to have fewer data points than 𝑆𝑑𝑘𝑑 , as they are directly related to 

reconstruction performance. 

An alternative perspective on 𝑆 is that it retains the parts of 𝑋 that are difficult to reconstruct, whereas 𝐿 holds the 

parts that are easier to reconstruct. Equations (7)–(9) reinforce this way of thinking by demonstrating that 𝐿 and 𝑆 

are distinct portions of 𝑋. 

𝑋 = 𝐿 + 𝑆     (7) 

𝑋𝑑𝑘𝑑 = 𝐿𝑑𝑘𝑑 + 𝑆𝑑𝑘𝑑    (8) 

𝑋𝑛𝑜𝑛−𝑑𝑘𝑑 = 𝐿𝑛𝑜𝑛−𝑑𝑘𝑑 + 𝑆𝑛𝑜𝑛−𝑑𝑘𝑑   (9) 

Using this strategy, the following theoretical conditions can be derived for obtaining the best features to get the best 

classification: flawless reconstruction of non-DKD data; and an inability to reconstruct DKD data. All non-DKD data 

exhibit zero AE feature residuals, while for DKD data, the input matches the AE feature residuals. 

LSTM 

The LSTM network is a common variation of the RNN that can learn long-term dependencies and address the 

vanishing gradient issue. It was first introduced in 1997 [25] but has only recently gained prominence due to its 

widespread application in commercial contexts. Training with backpropagation over time often results in the 

vanishing or expanding gradient issue in RNN architectures [26]. As the calculation progresses through the network, 

the computed derivatives during training can expand or shrink exponentially. In extreme cases, the model either 

stops training entirely when the gradient diminishes or trains erratically, failing to minimize loss. The RNN weight 

values remain either unchanged or are significantly altered. Figure 2 depicts a visualization of LSTM model. 
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Figure 2: Architecture of the LSTM,  employs forget, input, and output gates to regulate the flow of data and 

address the vanishing gradient issue. These gates enable the model to learn long-term dependencies by controlling 

what data is forgotten, retained, or passed on to subsequent time steps. 

The LSTM architecture resolves this issue by incorporating "gates" into the design, enabling the cell state (CS) to 

forget data, replace values, and determine which could be output and transferred to the other cell [27]. The input 𝑥𝑡 

and the past hidden CS ℎ𝑡−1 are fed into the forget gate's sigmoid layer, which produces the vector 𝑓𝑡. This vector 

specifies which irrelevant data from 𝐶𝑡−1 should be removed from the current CS. 

𝑓𝑡 = 𝜎(𝑊𝑓 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)   (10) 

The input gate regulates the information retained in the CS by employing a sigmoid on the 𝑥𝑡  and the ℎ𝑡−1  to 

ascertain which values to modify, 𝑖𝑡. A 𝑡𝑎𝑛ℎ produces candidate values, 𝐶̃𝑡, for updating the CS. The product of these 

vectors indicates the values to be integrated into the new CS. 

𝑖𝑡 = 𝜎(𝑊𝑖 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)   (11) 

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ (𝑊𝐶 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)   (12) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡    (13) 

The output gate decides which portion of the preceding hidden CS ℎ𝑡−1  to transmit to the subsequent cell by 

employing a sigmoid function on the 𝑥𝑡  and the  ℎ𝑡−1. Subsequently, it computes the product of the hyperbolic 

tangent of 𝐶𝑡 and 𝑜𝑡. 

𝑜𝑡 = 𝜎(𝑊𝑜 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)   (14) 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡)    (15) 

Hybrid LSTM-AE 

The architecture of the LSTM and AE models was discussed earlier. To improve the accuracy of DKD detection, we 

propose the LSTM-AE model. Figure 3 presents a detailed overview of this architecture. In the LSTM-AE model, 

the traditional encoder and decoder of the AE model are replaced by LSTM networks to process the data. The data is 

input into the network, with the encoder consisting of three layers: an input layer, a normalization layer 

(BatchNorm) [28], and an LSTM hidden layer, which produces a two-dimensional real vector sequence. The input 

layer accepts the data, and the BatchNorm layer normalizes it. The LSTM layers in the encoder then condense the 

data into a compact representation, which is output as a two-dimensional vector sequence. The decoder receives the 

encoder's output and is symmetrically designed to mirror the encoder's structure. It processes the data through three 

concealed layers: input, normalization, and LSTM. The LSTM blocks in both the encoder and decoder help condense 

and reconstruct the features by operating in the latent space. Temporal information is processed horizontally, with 

the LSTM layers being reused multiple times to refine the features. Spatial information is processed vertically, where 

the output of each hidden state serves as the input for the next layer. The depth of the network can be increased to 

enhance its performance, refining the fit between the input and output. The LSTM cells are particularly beneficial for 

preserving long-term dependencies in the data, eliminating the need for exponential decay patterns. The final output 



Journal of Information Systems Engineering and Management 
2025, 10(38s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 934 
 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

of the decoder is fed into a fully connected layer, which extracts the key features from the LSTM-AE model and 

performs classification through two output neurons. 

 

Figure 3: Proposed LSTM-AE Architecture replaces the encoder and decoder of an AE with LSTM layers. The 

LSTM-AE compresses data into a 2D latent space via the encoder, reconstructs it symmetrically through the 

decoder, and performs classification using a fully connected layer. 

EXPERIMENTAL RESULT AND ANALYSIS 

This section details the experimental setup, including the programming language, software used, and hardware 

configuration, as well as the data acquisition and processing. The performance of the proposed model is compared 

with traditional models for DKD prediction. Additionally, a comparison with recent works from journals is also 

provided. 

Experimental setup and data description 

For DKD prediction, Jupyter Notebook [29] and Python programming language were chosen. The system 

configuration includes an Intel Core i5-9500T CPU at 2.20 GHz, 8 GB RAM, and a 64-bit operating system. 

Data Acquisition: In this investigation, the dataset used to train the models was obtained from the UCI ML 

repository [30] . Classification attributes, such as DKD and non-DKD, indicate the patient's DKD status. This dataset 

contains 400 entries with 25 features, including 14 numerical and 11 categorical features. Figure 4 provides 

additional details of the data, including a comprehensive summary of the attributes analyzed in the study. 

 

Figure 4: DKD dataset Sample. The dataset contains 400 entries with 25 features, including 14 numerical and 11 

categorical attributes, which describe various factors related to the DKD and non-DKD. 
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Each feature in the dataset is analyzed for better understanding. The distribution of numerical and categorical 

features is examined using plots, as shown in Figures 5 and 6. This analysis helps to gain insights into each 

feature, such as its maximum and minimum values. 

 

Figure 5: Distribution of numerical features in the DKD dataset shows the spread of values for each numerical 

attribute, providing information on the range, tendency, and outliers. 

 

Figure 6: Distribution of categorical features in the DKD dataset, illustrating the frequency distribution of 

categorical attributes. 

Data Processing:  

Medical datasets are prone to numerous issues that might adversely affect the efficiency of the DL models [31]. 

Consequently, tackling these difficulties is crucial for improving data quality. The pre-processing phase is essential 

for enhancing data quality by addressing fundamental concerns such as handling missing data, category-to-numeric 

conversion, normalization, and outlier removal. 

Handling missing data:  

This dataset contained a substantial amount of missing values. The missing data in numerical and categorical 

features is visually depicted in Figures 7 and 8. Addressing missing data necessitates the selection of suitable 

statistical methods depending on the degree of missing values and the importance of the excluded variable. 

Conventional methods are effective when the proportion of missing values is low. To resolve this issue, iterative 
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imputation [32] was employed. This statistical method predicts missing values sequentially using observed data 

while considering the interrelationships among variables. 

 

Figure 7: Analysis of missing values in the numerical features of the DKD dataset. This figure shows that the 

"red_blood_cell_count" feature has the most missing values, while the "age" feature has the least. 

 

Figure 8: Analysis of missing values in the categorical features of the DKD dataset. This figure shows that the 

"red_blood_cell" feature has the most missing values, while the "class" feature has the least. 

Handling categorical data: The dataset included both numerical and categorical features, which were managed using 

the label encoder module [33]. This module enhanced the performance of the DL model by transforming categorical 

features into numerical representations. 

Handling imbalanced data 

An oversampling approach was employed to achieve dataset balancing. A SMOTE-based oversampling strategy was 

utilized for this purpose, avoiding the random generation of data points [34]. Specifically, k closest neighbors from 

the minority class were selected at random. A neighbor's vector was identified as the one connecting the selected data 

point. This vector was scaled by a random value between 0 and 1, and the resulting synthetic data point was 

generated by combining the scaled vector with the original data point. After dataset balancing, the next step involved 

eliminating any noise, including outliers. 

Handling outliers 

Outliers [35], which are feature values significantly deviating from the average range, present a critical challenge in 

building a reliable and meaningful model. To address this, a statistical analysis of all data was performed to detect 

outliers and evaluate their medical relevance. Outliers in the dataset were replaced using the feature mean. 

Normalization:  
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Min-max scaling [36] was employed to normalize the features within a specified range, often between 0 and 1, by 

subtracting the minimum value (𝑥𝑚𝑖𝑛) and dividing by the range (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛). Min-max scaling operation is given 

in Equation 

𝑀𝑖𝑛 − 𝑀𝑎𝑥 𝑆𝑐𝑎𝑙𝑖𝑛𝑔(𝑥) =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
   (16) 

After completing all the above-mentioned steps, the data is processed and ready to be fed into the DL model. 

EXPERIMENTAL RESULT 

The processed data is fed into the proposed LSTM-AE model for DKD prediction. To evaluate the performance of the 

LSTM-AE model, three other popular DL models—CNN, LSTM, and AE—are also utilized. For all models, the same 

configuration is maintained, including the number of neurons and activation functions in the output layer, optimizer, 

loss function, epochs, batch sizes, and training and testing samples. The outcomes of the LSTM-AE model and other 

DL models are presented in Table 1. For evaluation, positive metrics such as accuracy, precision, F1-score, true 

positive rate (TPR), and true negative rate (TNR) are utilized, along with negative metrics such as false positive rate 

(FPR) and false negative rate (FNR) [37, 38]. The formulas used to calculate these metrics are provided in Equations 

(17–23). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (17) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (18) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃+
1

2
(𝐹𝑁+𝐹𝑃)

   (19) 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
     (20) 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (21) 

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃+𝐹𝑁
     (22) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
     (23) 

In the above equations, TP (True Positive) represents the number of correctly detected DKD samples. TN (True 

Negative) represents the total number of correctly detected non-DKD samples. FP (False Positive) and FN (False 

Negative) represent the number of wrongly identified DKD and non-DKD samples, respectively. 

The performance metrics in Table 1 indicate that the LSTM-AE model achieves the highest accuracy of 99%, 

outperforming CNN (94%), LSTM (96%), and AE (97%). This demonstrates the model's ability to correctly predict a 

greater number of samples. For precision and F1-score, the LSTM-AE model again outperforms the other models, 

achieving scores of 98% and 98.99%, respectively. The TPR and TNR values of the LSTM-AE model are 100% and 

98.04%, significantly higher compared to the other three models. Additionally, the proposed model achieves an FNR 

of 0%, meaning it never misses any DKD samples, and an FPR of 1.96%, indicating minimal false positives. The table 

highlights the excellence of the proposed model in identifying important features from the dataset and delivering 

highly accurate classifications. The comparison of positive and negative metrics of the proposed model with 

conventional DL models is illustrated in Figures 9 and 10. 

TABLE I.  PERFORMANCE METRICS OF DL MODEL FOR DKD PREDICTION 

Model Accuracy Precision F1-

Score 

TNR TPR FNR FPR 

CNN 94.00 94.12 94.12 93.88 94.12 5.88 6.12 

LSTM 96.00 96.08 96.08 95.92 96.08 3.92 4.08 

AE 97.00 97.96 96.97 98.00 96.00 4.00 2.00 

Proposed 

LSTM-

AE 

99.00 98.00 98.99 98.04 100.00 0.00 1.96 
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Figure 9: Evaluation of positive metrics for DKD prediction using the LSTM-AE, CNN, LSTM, and AE models. 

 

Figure 10: Evaluation of negative metrics for DKD prediction using the LSTM-AE, CNN, LSTM, and AE models. 

A. State-of-art Comparison 

The proposed LSTM-AE model is compared with recent works in existing research from 2022 to 2024. Among the 

reviewed studies, the highest accuracy achieved was by a Random Forest model, which reached 98.45%. However, 

our proposed model achieves an accuracy of 99% in DKD prediction, surpassing the best-performing model by 

0.55%. Table 2 provides a comparison of the proposed method with existing work, highlighting the promising results 

of the proposed model in DKD prediction. While most studies focused solely on positive metrics for evaluation, this 

study considers both positive and negative metrics to comprehensively analyze the performance of the proposed 

model. 

TABLE II.  COMPARISON WITH EXISTING METHODS 

CNN

Autoencoder

LSTM

Proposed

90.00

91.00

92.00

93.00

94.00

95.00

96.00

97.00

98.00

99.00

100.00

ACCURACY PRECISION F1-Score TNR TPR

M
et

ri
cs

 in
 %

Metrics

Comparison of positive metrics on DKD 
prediction 

CNN

Autoencoder

LSTM

Proposed

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

FNR FPR

M
et

ri
cs

 In
 %

Metrics

Comparison of negative metrics on DKD prediction 

Ref  Model Accuracy Precision F1-

Score 

TNR TPR 

Our Proposed 

LSTM-AE 

99.00 98.00 98.99 98.04 100.00 

[39] Random 

Forest 

86 83.6 - - 86.2 
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CONCLUSION 

The research successfully designs a hybrid DL model, LSTM-AE, for DKD prediction, achieving a maximum accuracy 

of 99%. Early prediction of DKD is crucial for saving human lives. However, current research struggles to provide 

accurate DKD predictions, even when using AI techniques. The reasons for this include the highly noisy, imbalanced, 

and complex nature of medical data. This research offers a solution to these problems. In this study, the strengths of 

two models, AE and LSTM, are combined, resulting in improved performance. The proposed model is evaluated 

against CNN, LSTM, and AE models, demonstrating its effectiveness through various metrics. The proposed model 

achieves the highest scores for Accuracy, Precision, F1-Score, TNR, and TPR, with values of 99.00%, 98.00%, 

98.99%, 98.04%, and 100.00%, respectively. It also achieves the lowest scores for FNR and FPR at 0.00% and 

1.96%, respectively. 

The experimental results are promising. The research focuses on using a single dataset, but for real-world 

deployment, testing with diverse datasets is crucial. Further external datasets should also be used to validate the 

model. The model will eventually be made accessible to healthcare professionals and patients through an application, 

allowing anyone to access it via mobile or laptop. 
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