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In this paper, the literature review about various feature extraction methods 

adopted for extracting feature of query image and database images has been 

discussed.   There are main two approaches to implement content based 

retrieval system. First is the conventional machine learning methods 

another is deep learning convolution neural network architectures. Efforts 

are made for detailed survey of both the machine learning and deep 

learning approaches for the purpose of extraction of most important salient 

features of images    directly affecting the retrieval performance for 

classifying the images in particular category and finally retrieving most 

relevant top images. 
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1. INTRODUCTION 

With the advancements of computing technology and digital devices billions of people are 

browsing web. There is an exponential growth of digital data in the form of texts, images and videos 

every day. Taking care of the huge information archives on web is a significant issue. The web 

repositories for multimedia data are massively used by our daily life applications. Images in web 

repositories are stored in digital format. Retrieving images from the vast multimedia databases is a big 

challenge. Image retrieval is the process of searching the digital images from the large scale databases. 

User retrieves the most similar images from the database according to features of query image. Text 

Based Image Retrieval (TBIR) (Alkhawlani, Elmogy, & El-Bakry, 2015) and the Content Based Image 

Retrieval (CBIR) (Smeulders, Worring, Santini, Gupta, & Jain, 2000)(Kokare, Chatterji, & Biswas, 

2002) are the two common information retrieval methods. In TBIR, the image search system was 

based on the information associated with images like image tags or the titles surrounding the image is 

the. A tag or a particular keyword is labeled to every database image. These assigned labels help in 

retrieving information from large scale database. There were some major problems associated with 

TBIR. The textual information may not be consistent with visual contents. Annotation or description 

of the images is done manually in the database for describing the content of images like size, format, 

dimensions or other metadata about the image. Assigning a particular tag or keyword to every image 

in the database is a laborious and monotonous task. Image retrieval depends upon matching a textual 

query with the annotations of image. Images annotations may vary from personal viewpoints about 

understanding the image. Along with these stated issues of TBIR the retrieval efficiency of TBIR is 

very low. The main issue seen in TBIR system is the direct involvement of humans for annotating the 
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images throughout the retrieval process. Assigning only a single keyword for describing the entire 

context of image is not sufficient. To overcome these shortcomings of TBIR another system retrieving 

images with more efficiency is to be put forward. The text based content retrieving information from 

large scale multimedia database is to be replaced by CBIR. Content based information retrieval system 

retrieves relevant images from the large scale archives using visual query information such as color, 

shape and texture etc. CBIR has another term as QBIC (Query By Image Content) retrieval system. 

The CBIR system is the image search system that processes the visual query image and retrieves the 

relevant visual documents or images efficiently from the very large-scale visual corpus based upon 

similar extracted. 

 

Fig 1. Query image and dataset image matching and result retrieval 

 

2. SALIENT FEATURE EXTRACTION 

Extracting candidate features to represent images is the initial and most important step of CBIR for 

selective representative image features for better design of RSIR system. Salient feature extraction is 

basically reducing the dimensions of the feature vector. Thus reduced feature vector can efficiently 

represent only meaningful parts of image as a comparative lower dimensional feature vector. 

Retrieval performance in terms of storage requirements, computational time, retrieval time, high 

similarity index of CBIR system is directly affected by quality of extracted features. Several feature 

extraction feature descriptors are used by researchers to describe the visual features of images. 

Feature in form of vector is having low dimensions. Well known feature descriptors used by 

researchers are categorized as: 

a. Global features: Global features represent the images as a whole in terms of shape, color and texture. 

Widely used global feature descriptors are Dominant Color Descriptor (DCD), Gray Level Co-

Occurrence Matrix (GLCM), Vector of Locally Aggregated Descriptors (VLAD) etc. 

b. Local features: Representing image as significant patches in terms of salient key points in the images. 

Local Feature descriptors: Scale Invariant Feature Transform (SIFT), Speed Up Robust Factor 

(SURF), Histogram of Gradients (HoG), Bag of Words (BoW), Local Binary Patterns (LBP) etc. 

c. Learned Features: Representation of image using deep learning architectures such as Convolutional 

Neural Networks (CNN), Artificial Neural Networks (ANN), pre- trained models. 

 

2.1 Feature extraction based on global and local features 

 

The image features are divided into two categories that is global features and local features. Global 

features represent the whole image. Color, shape, texture and spatial information represent the whole 

image. Specific areas of a picture, such as borders, blobs and corners represent the local features. 

(M.Shivakumar, 2021) has discussed the overview of color, shape, texture feature descriptors like LBP 

etc. 

2.2 Feature extraction based on global features descriptors 
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The color feature is the basic feature used by researchers for image classification and retrieval. It 

performs well despite of image size and orientation. (I.M.Hameed, 2021) has presented an overview of 

the CBIR framework, low-level feature extraction techniques, similarity measurements, machine 

learning methods and evaluation metrics for content-based image retrieval system. 

Color moments, color correlograms, color histograms, and Colour Co-occurrence Matrix (CCM) 

feature descriptors are the main feature (A. A.Mohamed, 2016; N.Shrivastava & V.Tyagi, 2015) to 

extract the color features. Color features are computed based on color spaces. Color spaces are of two 

types: linear color spaces like RGB and non-linear color spaces like HSV. popularly used color spaces 

used by researchers are RGB, HSV and YCbCr. The color moments, color correlogram (Huang, J., 

Kumar, S. R., Mitra, M., Zhu, W. J., & Zabih, R., 1997), color histogram (Flickner, 1995), and DCD, 

CCM (Qiu, 2003) provide the foundation of these color spaces. Color features are robust feature 

descriptors. They are invariant to translation, rotation, and scale (N.Shrivastava & V.Tyagi, 2015). 

Texture feature represents patterns of the image which is not based upon single intensity like color. 

Wavelet transform, Gabor filter (Manjunath, 2001), Markov random field (Cross, 1983), GLCM 

(Hawlick, 1979), and Edge Histogram Descriptor (EHD) (Won, 2002) are the popularly used 

algorithms used for extracting texture features of the image by the researchers. Still computational 

complexity is the main concerning issue for texture features (Alzu’bi, 2015). 

Shape is extracted on the basis of region or boundary of the image (Tian, 2018). Shape extraction is 

done either within entire region or only. Fourier descriptor (Zhang D. I., 2012) (Zhang D. &. 2004) 

and moment invariants (Suk, 2011) are popularly used shape extraction methods to extract the shape 

features of an image. Shape descriptors are variant to translation and scale. Thus it is better to merge 

shape feature descriptor with other descriptors to excel accuracy. Invariant moments, consecutive 

boundary segments, aspect ratio, polygonal approximation, fourier descriptors, b-splines etc. are the 

popular methods used to calculate shape descriptors. 

2.2 Feature extraction based on local features descriptors 

 

SIFT identifies the key points of the image (Low, 2004). It is robust against image scale and rotation. 

Still SIFT image descriptor has two main drawbacks. First, it occupies a large amount of memory. 

Second computational cost is higher (Montazer, 2015). To overcome these limitations of high 

memory consumption and computation cost the researchers have 

proposed SURF feature descriptor to reduce the feature vector dimensionality (U.Sharif, 2019). SURF 

has further reduced the feature vector dimensions. Still there is need to further reduce the 

dimensionality. 

SURF solves the high dimensionality constraint of SIFT and was introduced by (Bay, 2008).  

LBP extracts the texture of the image and computationally simpler to implement and.  

HoG represents the shape of the image objects and initially implemented by (Dalal, 2005). HoG 

depicts the distribution of local intensity gradients and the orientations of an object's edge.  

Feature extraction based on CNN (Convolution Neural Networks) 

 

Convolution neural networks learn image features through its layered architecture. CNN's have the 

multiple layers. CNN’s has fully connected, pooling, and convolutional layers. Filters are applied to 

input images using a convolutional layer to learn features. The first convolution layers learn features 

like texture and edges. Complex features are learned by later layers. Pooling layer is responsible for 

down sampling the incoming inputs. Finally fully connected layer makes predictions about the input 

image's class or label. Last layers learn features like objects. Last layers learn to connect higher 

features to individual classes. CNN’s are invariant towards translation, scaling, and rotation 

(Voulodimos, 2018). 
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2.3 Feature extraction based on Transfer Learning (TL) 

 

A neural network trained on large dataset gains knowledge from this data and this acquired 

knowledge termed as weights of the network. Only the learned features in the form of weights can be 

extracted and then transferred to any other neural network instead of training that neural network 

from the initial stage. Instead of building a model from scratch pre- trained models are trained on 

large dataset are used as a feature extractor by removing the output layer and using the entire network 

as a fixed feature extractor by freezing the weights of initial layers while retraining only higher layers 

for new problem specific dataset. Correct weights for the network are identified for the network by 

multiple forward and backward iterations. The weights and architecture acquired by pre-trained 

models previously trained on huge datasets may be used directly and apply the learned weights on our 

target problem known as transfer learning. ImageNet dataset is a rich source of millions of labelled 

images across thousands of classes that enables the ImageNet dataset a valuable source of training 

deep learning pre-trained models .Knowledge is acquired by pre-trained model on ImageNet dataset 

that helps to acquire a rich (Huang, J., Kumar, S. R., Mitra, M., Zhu, W. J., & Zabih, R., 1997) set of 

learned features and weights helps in adapting the model to specific target task and enhances 

accuracy. Transfer learning can be employed between entirely different but relevant source domain 

and target domain samples. Pre-trained models are trained on source domain and then learning can 

produce much higher accuracy results on the target task. 

Fine tuning is the most important phase of transfer learning as the experimental dataset is small and 

the selected images are different from various images in the source domain. The model is fine-tuned 

by freezing the model. 

(G.Huang, 2017) produced the Dense Convolutional Network (DenseNet) which links each and every 

layer to the other layers in a feed-forward fashion. L layers have connections with one between in each 

layer and its successive layers in the traditional convolutional networks. 

 

Table 1: Recognition results for various feature extraction methods used by researchers 

Authors Feature Extraction 

Technique 

Dataset Observations 

(N.Shrivastava & 

V.Tyagi, 2015) 

1) Corel Color (HSV) 1) Corel: 0.7690 

2) CIFAR Texture (Gabor Filter) 2) CIFAR: 0.859 

 Shape (Fourier Descriptor)  

(A.ponomarev, 2015) 1) Corel Color (DCT) 1) Corel: 0.83 

2) CIFAR Texture(DWT) 2) Caltech: 0.7 

 Shape (K-means)  

(P.shrivastava, 2017) 1) Corel 1k Texture (LBP) 1) Corel 1k: 0.9995 

2) Corel 5k Shape(Legendre Moments) 2) Corel 5k: 0.5676 

3) Corel 10k  3) Corel 10k: 0.3537 

4) Olivia 2688 4) Olivia 2688: 0.9999 

5) GHIM10k 5) GHIM10k: 0.9172 

(M.Sajjad, 2018) Corel 1k Color (CH) 0.8777 

Texture (RLBP) 

 

(Pavithra, 2018) 

1) WANG  

Color (DCD) 

1) WANG: 0.735 

2) Corel-10k 2) Corel-10k: 0.4136 

3) OxfordFlower 3) OxfordFlower: 

0.3186 

(N.Tadi Bani, 2019) Simplicity Color 0.8284 
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Texture 

 

(M.k.Alsmadi, 2020) 

 

 

Corel 

Color ( YCbCr)  

 

0.9015 
Texture (Gray level co-occurrence 

matrix) 

Shape (Canny edge detector) 

 

(S.Jabeen, 2018) 

 

SURF 

1) Corel 1k 1) Accuracy: 0.86 

2) Corel 1.5k 2) Accuracy: 0.832 

3) Caltech 256 3) Accuracy: 0.3898 

 

(U.Sharif, 2019) 

 

SIFT 

1) Corel 1k 1) Accuracy: 0.8439 

2) Corel 1.5k 2) Accuracy: 0.7814 

3) Corel 5k 3) Accuracy: 0.5737 

 

(A.sarwar, 2019) 

 

LBP 

1) Wang 1k 1) Accuracy: 0.8958 

2) Wang 1.5k 2) Accuracy: 0.7602 

3) Holiday 3) Accuracy: 0.6923 

 

Baig (2020) [49] 

HoG 1) Corel 1k 1) Accuracy: 0.8641 

SURF 2) Corel 5k 2) Accuracy: 0.8123 

 3) Caltech 256 3) Accuracy: 0.6839 

(T.Ojala, 2002) LBP16 riu2 ImageNet Average Error Rate: 

8.40% 

 

(S.S. Hussain, 2016) 

1) SIFT based 

RVD 

INRIA Holidays 1) mAP: 45.1% 

35.1% 

2) CNN based 

RVD 

Oxford 2) mAP: 63.5% 

44.5% 

 

(A.Chadha, 2017) 

1) Fast-VLAD 1) Caltech and Stanford dataset 1) mAP: 72.8% 

76.1% 

2) Multi VLAD 2) Holidays 2) mAP: 73.2% 

  

 

Holidays dataset 

73.7% 

3) CNN 3) Matching Complexity: 4 

4) Fast-VDCNN 4) Matching 

Complexity: 14 

 

 

 

 

(Yang, Jiang, Li, Tian, 

& Lv, 2017), 

 

 

 

 

 

GLCM+HOG 

+LBP 

 Average Precision: 

0.766 

1) WANG Recall: 0.164 

 Retrieval time: 0.42 sec 

 Average Precision: 

0.596 

2) Oxford Flowers dataset Recall: 0.146 

 Retrieval time: 0.83 sec 

3) CIFAR-10 Retrieval time: 19.4 

sec 

 

 

 

(Do & Cheung,  2017) 

 

 

 

 

 

1) CIFAR 10 

1) MAP: Supervised: 

53.17% 

1) MAP: 

Unsupervised 77.22% 
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SASH 

 

2) MNIST 

2) MAP: Supervised 

75.48% 

2) MAP: 

Unsupervised 63.31% 

 

3) NUS-WIDE 

3) MAP: Supervised 

64.01% 

3) MAP: 

Unsupervised 45.05% 

 

 

(Bosch, 2007) 

 

 

PHOG 

ImageNet Average Precision 

 

Caltech-101 

Average Precision : 66.50% 

(Classification) 

TRECVID 2006 Average Precision: 77.80% 

(Retrieval) 

 

(J.Li, 2017) 

 

DMINTIR 

Oxford 5k Mean Average Precision: 

85.34% 

Paris 6k Mean Average Precision: 

81.75% 

 

(He,  2016) 

Landmark Image 

Retrieval by Jointing 

Feature Refinement 

and Multimodal 

Classifier Learning 

1) MediaEval 2012 1) Mean Average 

Precision: 68.32% 

 

2) NUS-WIDE 

 

2) mAP: 60% 

(B.Chaudhuri B. 

L., 2016) 

Archive of 2100  63.56%(accuracy) 

images from 21 

different categories 

selected from 

aerial orthoimagery 

ARGMM 72.34%(Precision) 

 

69.87%(Recall) 

(B.Chaudhuri B. S., 

2017) 

UC-MERCED 

dataset 

 

MLIRM 

74.29 (Accuracy) 

85.68(Precision) 

80.25(Recall) 

 

(G.Huang, 2017) 

1) AID  

DenseNet 

1) 97.44% 

2) UCM 2) 99.50% 

3) Optimal 3) 95.89% 

4) NWPU 4) 94.98% 

 

 

 

 

 

 

(J.Zhang, 2019) 

1) UCM  

 

 

 

 

 

DenseNet 

1) 98.67(50% traing 

ratio) 

2) AID 99.50% (80% training 

ratio) 

3) Optimal-31 2) 95.37(20% traing 

ratio) 

4) NWPU- 

RESISC45 

97.19% (50% traing 

ratio) 

 3) 95.41 ( 80% 

training ratio) 

 4) 92.90% (10% 
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training ratio) 

 94.95% 20% training 

ratio) 

 

 

 

 

(Li Y. M., 2021) 

1) CIFAR-10 (1) DenseDsc Accuracy 

2) CIFAR-100 (2) Dense2Net 1) 94.05% (CIFAR- 

10) 

3) ImageNet  74.24 % (CIFAR- 

100) 

  76.3%(ImageNet) 

  2) 94.19(CIFAR-10) 

  73.68% (CIFAR-100) 

  77% (top-1 accuracy 

ImageNet) 

 

 

 

(S.Thirumaladevi, 

2023) 

1) UCM, AlexNet, 1) UCM dataset: 

2) SIRI-WHU VGG16, 93.57%(AlexNet) 

 VGG19 94.08%(VGG-16) 

  95%(VGG-19) 

  2) SIRI-WHU 

  91.34%(AlexNet) 

  92.78%(VGG-16) 

  93.4%(VGG-19) 

 

(P.S.Tan, 2023) 

Soundscapes1  

DenseNet-121 

F1-score : 80.70% 

Soundscapes2 F1-score: 87.30% 

Urban Sound 8k F1 score: 69.60% 

 

 

 

 

 

 

(F.Salim, 2023) 

1) Fruit-360 DenseNet-201 1) Test Accuracy: 

2) Fruit Recognition Xception 97.33 (DenseNet-201) 

 MobileNetV3-small 84.34 (Xception) 

 ResNet-50 95.65 (MobileNetV3- 

small) 

  98.36 (ResNet-50) 

  2) Test Accuracy: 

  99.13 (DenseNet-201) 

  97.73 (Xception) 

  62.73 (MobileNetV3- 

small) 

  76.47 (ResNet-50) 

 

 

 

 

(T.Chauhan, 2021) 

 

 

 

 

X-Ray image 

1) Adam optimizer and cross entropy loss 

function 

1) 98.45% (Accuracy) 

2) LR-Scheduler-StepLR 1) 96.63% (Precision) 

 1) 100% (Recall) 

 1) 98.27% (F1-Score) 

 2) 63.15% (Accuracy) 

 2) 64.29% (Precision) 

 2) 32.09% (Recall) 

 2) 43.22% (F1 Score) 
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(Aziz, 2021) 

 

 

 

BraTs2019 

1) ResNet-50 1) 84.4% accuracy 

(LGG) 

2) DenseNet-201 1) 86.7% accuracy 

(HGG) 

Cubic-SVM 2) 83.8 % accuracy 

(LGG) 

 2) 87.4% accuracy 

(HGG) 

(S.Dong, 2019) 1) GID ResNet-101 1) 77.74%  accuracy 

2) ISPRS 2) 86.67%  accuracy 

(Li J. W., 2018) JSRT (Japanese 

Society of 

Radiological 

Technology) 

Inception-V3 Using Accuracy: 

1) Softmax 1) 86.40% 

2) Logistic 2) 85.10% 

3) SVM 3) 85.70% 

 

(J.Xin, 2023) 

 

UCMD 

1) YOLO-ResNet-50 1) mAP: 94.03% 

 ANMR: 0.0448 

2) YOLO-ResNet-50-PCA 2) mAP: 95.17% 

3) YOLO-ResNet-50-PCA-W ANMR: 0.0345 

3) mAP: 95.94 

ANMR: 0.0325 

 

 

 

 

 

(V.Risojević, 2021) 

1) RESISC-45 Fine tuning on target dataset Classification Accuracy: 

2) AID ImageNet (SWAV) àMLRSNet Domain adaptive 

3) UCM (Single Label) 1) 95.24 

  2) 93.92 

  3) 96.89 

  Fine Tuning: 

  1) 95.89 

  2) 96.09 

  3) 97.14 

 

 

 

 

 

(Z.Zhang, 2022) 

 

1) RSSCN7 

1) MKANetClass MKANetClass: 

RSSCN7 

2) OPTIMAL-31 2) MobileNetV3 1) Precision: 0.8963 

  mAP: 0.9167 

  MobileNetV3: 

RSSCN7 

  1) Precision: 0.8573 

  mAP: 0.8586 

  MKANetClass: 

OPTIMAL-31 

  2) Precision: 0.7447 

  mAP: 0.7399 

(Y.Chen, 2023) Drone Action Deep saliency smoothing hashing 

(DSSH) 

 

Precision: 60.09% 
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(G.Cheng, 2017) 

 

 

 

 

 

NWPU- RESISC45 

CH,LBP,GIST,BOVW, Overall Accuracy: 

BOVW+SPM,LLC,AlexNet,VGG- 16 CH: 24.84% 

GoogleNet LBP: 19.20% 

 GIST: 15.90% 

 BOVW: 41.72% 

 BOVW+SPM:27.83% 

 LLC: 38.8% 

 AlexNet: 76.69% 

 VGG-Net16: 76.47% 

 GoogleNet:76.19% 

 

(G.Sumbul, 2021) 

1) UC-Merced  

DAS-RHDIS 

Accuracy: 56.8% 

2) IRS- BigEarthNet Precision: 65.3% 

 Recall: 70% 

F1-Score: 67.5% 

 

(B.Demir, 2022) 
1) DLRSD 

2) BigEarthNet- S2 

 

PLASMA-MTL 

mAP: 1) 97.5% 

 

2) 97.7% 

 

3. CONTRIBUTION OF THE WORK TO BE PROPOSED 

The content based remote sensing information retrieval system may be useful in various fields like 

agriculture and forestry. Content based image retrieval system may prove to be boon in agricultural 

fields to detect the diseased crops just by aerial view. Deforestation may be monitored by remotely 

sensing the affected area. Other applications of remote sensing image retrieval system are geosciences 

where satellites may take pictures to know about earth geological conditions at a particular time and 

space. Astrologers may take information about the movements of planets by remotely sensing the 

positions of planets. Scientists may capture information about the minerals available on planets. 

Weather forecasting department may use remote sensing for predicting the weather conditions. 

Military department may collect data about dangerous border areas by remotely sensing the border 

area. Other application areas of content based remote sensing image retrieval are oceanography, 

geology, archeology and astrology. 

 

4. CONCLUSION 

CBIR system processes the query images thus the performance of CBIR solely depends upon the visual 

features. The accuracy results for retrieval system are directly reflected by  the efficiency of feature 

extraction methods. To find more discriminating features or the combination of features capable of 

discriminating image features is still an issue. (Tong, Xia, Hu, Zhong, Datcu, & Zhang, 2019; Shao, 

Zhou, Deng, Zhang, & Cheng, 2020).This paper has discussed the literature review related to the 

recognition of various feature extraction techniques based on local, global, feature fusion based 

feature descriptors to extract the features of images. The summary of recognition results obtained for 

various feature extraction approaches has been demonstrated. In the end, the research gaps have 

been analyzed based on the literature review.  

(n.d.). 
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