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Background: Surgical procedures involve prolonged static postures. There is, 

therefore, a great risk of musculoskeletal disorders since the high-risk factors are 

two: the procedure and the static posture. It is important to note that ergonomic 

posture analysis remains one of the measures toward the risk of MSDs. 

Unfortunately, existing methods of ergonomic assessment do not provide the 

surgeons with feedback in real-time. 

Purpose: This study presents an Ergonomic Monitoring System based on artificial 

intelligence, which joins YOLO version 11 for real-time posture analysis and feedback 

with special reference to occlusion-heavy operating room scenarios. The system is 

designed to improve posture correction by means of automated, data-empowered 

ergonomic risk assessments. 

Methods: The system detects key postural landmarks—neck, shoulders, back, and 

elbows—to calculate joint angles and classify postures using the RULA and REBA 

ergonomic models. A dataset of 700 annotated images was obtained in collaboration 

with the King Abdulaziz University Hospital and publicly available sources. Ground 

truth values were established using ergonomic risk models and expert validation. The 

system was evaluated against OpenPose and MediaPipe, with performance measured 

through standard pose estimation metrics. 

Results: YOLOv11 outperformed both OpenPose and MediaPipe with respect to 

mean Average Precision (mAP), achieving 94.5% with a Precision of 95% and recall 
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of 84.7%. Being able to give feedback in real-time through video and text will allow 

the surgeon to dynamically adjust his posture and reduce ergonomic risks effectively. 

Conclusions : This study presents a real-time AI-based assessment tool for surgical 

ergonomics, which was not possible with manual evaluations. The real-time posture 

correction by the system would be a major step toward MSD minimization for 

surgeons. In the time to come, 3D pose estimation will be integrated, the dataset will 

be expanded, and fatigue tracking will be included to have a complete ergonomic 

assessment. 

Keywords: Ergonomics, Pose Estimation, YOLOv11, Virtual Reality, Surgical 

Training 

1 INTRODUCTION 

1.1 Importance of Ergonomics Assessment for surgeons 

Human factors engineering—an ergonomics concept involves the design of work environments to fit 

human limitations and capabilities. Designing the workplace right under ergonomics ensures safety as 

well as efficiency and productivity, particularly in physically demanding work, such as surgery1. This is 

of special importance in surgical contexts, the OR environment has a significant impact on the well-

being of the surgeon and the outcome of the patient. Worldwide, over 70% of surgeons experience pain 

in the musculoskeletal system due to longstanding static positions, difficult movements, and repeated 

tasks during complex surgeries2. 

These ergonomic issues increase the risk of MSDs, which contribute to healthcare inefficiencies, 

early retirement, and poor-quality care. 

While traditional assessments of ergonomics, such as self-reports and observational methods, are 

beneficial in their capacity to recognize dynamic, high-stressed OR situations, they lack the ability to do 

so. Future advances in artificial intelligence (AI) have the potential to revolutionize the industry. 

Specifically, pose estimation models have demonstrated a great degree of success in real time, non-

invasive monitoring of posture in sports and rehabilitation. However, the use of these apps in the 

surgical profession is still in its infancy. The main research questions of this study are How can deep 

learning based pose estimation models YOLOv11 be used to give real-time ergonomic feedback for 

surgeons in occlusion-rich operating room environments 

1.2. Study Objective 

This research develops an AI-driven system for ergonomic evaluation that is based on the YOLOv11 

design: 

1. Real-time detection of key postures, the focus of attention is on the neck, shoulders, elbows, and back. 

2. calculates the joint angles to classify postures as being safe or dangerous based on the RULA and REBA 

frameworks. 

3. Provides immediate feedback that enables surgeons to alter their posture during surgery instead of 

analyzing the procedure afterward. 

1.3. Study Contribution 

This study bridges the gap in ergonomic assessment, especially for the surgical environment by using 

a real-time posture detection and feedback system with YOLOv11 model, respecting the state of the art. 

The major contributions and novelties of this research work are: 

1. Real-Time Ergonomic Feedback System: YOLOv11 integration enables real-time actionable feedback on 

posture for surgeons while performing surgery. It calculates joint angles and classifies postures as 

"Good," "Moderate," and "High-Risk" levels of factors to address the limitations of traditional 

ergonomic assessment and the lack of real-time monitoring and adaptability3. 

2. Advanced Occlusion Handling: Due to the self-attention mechanism of the model, even occlusion-heavy 

environments can be well accommodated for joint detection in bodies. An operating room is a good 

example where surgical instruments and personnel often obstruct key body parts. 
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3. Edge-Device Compatibility: The lightweight design of YOLOv11 ensures scalability on edge devices and 

deployment for a practical solution in resource-constrained environments like ORs, thereby widening 

the accessibility of real-time ergonomic monitoring across diverse healthcare settings. 

4. Innovative Data Augmentation: An alternative of data-augmentation techniques in the form of rotation, 

scaling, brightness adjustments, and simulated occlusions can make the system robust and 

generalizable for it to be able to work in real life with varying environmental conditions and postural 

complexities. This will guarantee robustness and generalization that is useful when adapting the system 

to various environmental conditions and postural complexities4,5. 

5. Interdisciplinary Applicability: Although the system was developed to support surgery, the general 

flexible framework and sturdy design permits its application to other fields, such as sports, 

rehabilitation, and industrial ergonomics, offering a real-time feedback mechanism to improve safety 

and performance. 

6. Comprehensive Validation: It was tested with a high level of accuracy and relevance on a curated dataset 

of 700 annotated images sourced from publicly available surgical videos (650 images) and real OR 

images (50 images) provided by the Neurosurgery Department at King Abdulaziz University Hospital. 

Each image is labeled using Rapid Upper Limb Assessment (RULA)6 and Rapid Entire Body Assessment 

(REBA)6 frameworks, defining ergonomic risk based on joint angle deviations. The practical relevance 

and work applicability of the tool in real contexts for establishing an updated standard for ergonomic 

assessments in high-stakes environments is its biggest strength. 

In this paper, we will address a critical gap in traditional ergonomic assessment methods in section 

2, the methodology used to apply the system in section 3, and the result of system in section 4. Finally, 

the conclusion and future work in section 5. 

2 RELATED WORK 

Ergonomic assessment systems have advanced greatly from manual traditional methods to the very 

sophisticated AI-based solutions that are able to overcome all the challenges of self-occlusion, dynamic 

environments, and real-time posture monitoring. This is most important in high-stakes environments 

such as OR in which ergonomic risks to surgeons are enhanced because of sustained static postures, 

repetitive motions, and awkward body postures. Traditionally, ergonomic evaluations were based on 

self-reported data, observational analysis, and direct measurement instruments to identify risks 

associated with posture. Self-reported instruments, such as the Nordic Musculoskeletal Questionnaire 

(NMQ) and the Cornell Musculoskeletal Discomfort Questionnaire (CMDQ) were popularly utilized to 

collect data on physical discomfort and posture-related strain7,8. While these instruments have a value 

in understanding the experiences of workers, they are inherently subject to biases and tend to 

misinterpretation and inconsistency in the reporting of events9. 

Direct measurement tools, including accelerometers, inclinometers, and EMG sensors, provide data 

that is objective regarding the angles of joint, muscular activity, and the loads placed on the body10,11. 

While effective in controlled environments, their high costs, invasiveness, and lack of practicality for 

long periods of use, particularly in sterile surgical settings, present significant limitations12. 

observational methods, such as the Rapid Upper Limb Assessment (RULA)13, the Rapid Entire 

Body assessment (REBA)6, 

and the Ovako Working Posture Analysis System (OWAS),14 have been shown to be effective in the 

assessment of ergonomic risk. However, these approaches are slow, labor-intensive, and susceptible to 

variability between observers. They also lack the ability to provide constant or real time monitoring, 

which is essential in dynamic environments like the OR. 

All traditional approaches have a shortfall in addressing the demands of high-stakes environments, 

they highlight the need for automated, non-interactive solutions that can provide instantaneous 

feedback with high accuracy and reliability. 

Self-occlusion, or the condition where certain parts of the body are invisible due to the overlap of 

anatomical structures or surrounding objects, is still considered an open issue regarding ergonomic risk 

assessment. Especially when applied to a dynamic environment such as the operating room. Self-
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occluded pose estimation has been receiving very active attention recently in deep learning studies; this 

emphasizes the necessity to provide very effective feature extraction techniques for accurate recognition 

of posture. In their work,15 designed a deep learning model capable of detecting major body joints either 

partially or fully occluded. This model CNNs with attention mechanisms that proved to be quite strong 

in estimating joint angles in highly occluded situations. 

This relates closely to our work, which seeks to overcome challenges of occlusion in an OR scenario, 

wherein surgical instruments and personnel frequently occlude the critical postural landmarks. To 

further generalize the problem, recent works have also proposed temporal consistency mechanisms as 

well as enhanced CNN structures for robust occlusion handling in real-time scenarios. Skeletal 

refinement techniques based on Kinect have been proposed to effectively manage occlusion. This 

robustly accommodates accurate joint finding even in visually challenging scenarios5. In the light of this 

work, in our design, 

we incorporate a self-attention mechanism within the YOLOv11 architecture to enhance the 

functionality of keypoint detection with very high reliability in real-time ergonomic monitoring. 

Temporal consistency mechanisms further augment the pose estimation models by utilizing 

historical information to ensure the robust tracking of postures across frames16 . These solutions not 

only enhance the ergonomic evaluations in ORs, although expand their scope to include sports and 

industrial environments, where the accurate recognition of posture is crucial to safety and optimization 

of performance. 

Integration of AI into surgical workflows has brought ergonomic monitoring in operating rooms to 

significantly higher levels. AI-based systems allow automatic identification of surgical steps, with 

ergonomic best practices in them and hence reduce the manual burden on surgeons. It provides 

correction feedback of posture in real time, thus assisting the surgeon in being ergonomically right while 

operating. These include AI-driven systems for the automatic recognition of laparoscopic 

workflow in operative steps and ergonomically setting the working conditions. These are new 

developments in the domain, wherein it can be seen that AI technologies can assist in creating safer 

working conditions, which will reduce the risk of work-related musculoskeletal disorders (MSDs) 

among surgeons. 

Skeleton and shape models are crucial to the analysis of ergonomics, particularly in the estimation 

and reconstruction of human positions in three-dimensional space. 

Parametric models like SMPL (Skinned Multi-Person Linear Model) offer robust solutions for 

tracking joint movements and posture alignment, enabling detailed ergonomic evaluations3. Temporal 

modeling, which ensures consistency across successive frames, increases the value of these models, 

making them appropriate for use in real time in healthcare and sports4 . By combining skeletal models 

with automated tools that are driven by AI, real-time posture monitoring systems can provide 

immediate assistance, this diminishes the risk of MSDs and improves the well-being of practitioners. 

The models, OpenPose, MediaPipe, and MoveNet, have become popular in ergonomics research 

because they can extract joint coordinates from video data and automatically assess posture. 

Kim et al.17 developed the OpenPose-based system for ergonomic posture analysis; it was based on 

determining RULA and REBA scores for ergonomic risk classification. OpenPose was validated against 

both motion capture systems and Kinectbased models. Accuracy in detecting postural deviations turned 

out relatively high, even in occlusion-rich environments. Their results proved OpenPose can be used as 

a reliable tool for semi-automatic ergonomic assessments in occupational applications. Likewise, Bagga 

& Yang18 proposed an online risk assessment framework for evaluating posture deviations in manual 

lifting tasks. The framework integrated MediaPipe with a Long Short-Term Memory model. As a result, 

their system could give feedback in real-time. Thus, their work opened new optimization avenues for 

pose estimation models in reducing musculoskeletal risks via continuous ergonomic monitoring. 

Among frameworks for estimating poses, YOLO (You Only Look Once) has become the most popular 

solution to real time object detection and posture surveying. Early iterations like YOLOv3 and YOLOv5 

had impressive efficiency, but they 
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were limited by the presence of occluding environments19,20. The recent YOLOv11 adds mechanisms for 

self-observation to improve the way they handle occlusion, heads that are free of anchors to improve 

their adaptability, and multiple scales of detection to increase their precision. 

Based on these advances, this study employs YOLOv11 to address the limitations of previous models. 

This provides a new system of ergonomic assessment that is capable of real time posture detection and 

feedback in the OR. 

3 METHODOLOGY 

3.1 Data Collection and Annotation Phase 

This study employed video recordings of surgical procedures conducted in OR environment to construct 

a comprehensive dataset representative of real-world surgical conditions. A data set of 700 frames was 

extracted from surgical videos available to the public (650 frames) varied sources guaranteeing 

variation and real images from the OR (50 frames) at King Abdulaziz University Hospital – postures 

captured authentically in live surgical settings. From these recordings, 700 frames were extracted, each 

capturing diverse postures commonly adopted by surgeons during procedures. The dataset was curated 

to reflect the complexities of OR scenarios, incorporating various angles, lighting conditions, and 

occlusions caused by surgical tools and personnel. dataset is available upon request from the author.  

The annotation process utilized the Computer Vision Annotation Tool (CVAT), chosen for its 

precision and efficiency in high-resolution image labeling. Guidelines for annotation were derived from 

established ergonomic risk assessment frameworks, emphasizing joint angles and spatial relationships 

indicative of ergonomic safety or risk. Each image was manually annotated using RULA13 and REBA6 

ergonomic risk frameworks, defining ergonomic risk levels based on: 

• Neck Angles: Neutral (<10°), Moderate (10°–20°), High Risk (>20°) 

• Shoulder Elevation: Neutral (<20°), Moderate (20°–45°), High Risk (>45°) 

• Elbow Flexion: Neutral (90°–110°), Moderate (110°–135°), High Risk (<90° or >135°) 

• Back Posture: Neutral (<5° deviation), Moderate (5°–20°), High Risk (>20°) 

3.2 Data Augmentation 

To enhance the robustness and generalizability of the model, a series of data augmentation techniques 

were applied: 

• Rotation and Scaling: Random transformations simulated variations in viewpoints and body 

orientations, improving the model’s adaptability to diverse postures. 

• Brightness and Contrast Adjustments: Variations in OR lighting conditions were replicated through 

adjustments in brightness and contrast, preparing the model for fluctuating illumination. 

• Occlusion Simulation: Artificial occlusions, such as surgical tools or partial obstructions by personnel, 

were introduced to train YOLOv11 to handle scenarios where body joints are partially obscured. 

3.3 YOLOv11 Architecture 

The key components in YOLOv11 are shown in figure 1 

 

3.4 EfficientNet-B5 Backbone 

YOLOv11 leverages the EfficientNet-B5 model for feature extraction, employing compound scaling to 

optimize network depth, width, and resolution. This ensures high-resolution spatial feature extraction 

while maintaining computational efficiency, enabling real-time operation critical for OR applications. 

1. Path Aggregation Network (PAN) for Multi-Scale Feature Fusion: 

The inclusion of a PAN enables effective fusion of multi-scale features, enhancing the detection of 

both large and small anatomical landmarks. This capability is particularly important for ergonomic 

posture recognition, where subtle changes in joint alignment can indicate significant risks. 

2. Self-Attention Mechanism for Occlusion Handling: 

YOLOv11 integrates a self-attention mechanism to dynamically focus on regions within frames that are 

partially occluded or ambiguous. This innovation enhances the model’s ability to detect occluded joints, 

such as those obscured by surgical instruments or other personnel, ensuring accurate pose estimation 

under challenging conditions. 



Journal of Information Systems Engineering and Management 
2025, 10(40s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 849 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

3. Anchor-Free Detection Head: 

YOLOv11 employs an anchor-free detection head. This simplifies the detection process, reducing 

computational overhead and enabling greater adaptability to diverse poses and scales. 

 

Figure 1. YOLOv11 architecture21 

4. Real-Time Ergonomic Feedback Integration: 

YOLOv11 includes a feedback loop that continuously monitors joint positions and angles, providing 

immediate alerts when postures deviate from ergonomic safety thresholds. This real-time capability 

fosters awareness and allows for prompt corrective actions, reducing musculoskeletal risks for 

surgeons. 

The following points are Pose Estimation and Ergonomic Analysis Process in YOLOv11: 

• Joint Detection and Localization: The model identifies key joints (neck, shoulders, elbows, and lower 

back) using the EfficientNet-B5 backbone and PAN to extract spatial features across scales. 

• Angle Calculation: Detected joint coordinates are used to compute critical angles, such as neck-to-

shoulder and shoulderto-elbow angles, which are pivotal for ergonomic assessments. 

• Risk Classification: Based on ergonomic guidelines, the model classifies postures into “Good,” 

“Moderate,” or “HighRisk” categories by comparing joint angles to predefined thresholds. These 

classifications are displayed via a color-coded user interface to facilitate intuitive feedback. These 

classifications are displayed via a color-coded user interface to facilitate intuitive feedback. This 

classification was adopted from the measured body angles according to the modified rapid upper limb 

assessment, that is, angle deviated from the neutral position of various body parts22 . 

YOLOv11’s optimized architecture ensures low-latency, high-accuracy posture detection and risk 

classification, even under the spatial and temporal constraints of OR workflows. Its robustness to 

occlusions and capability to provide real-time feedback make it an invaluable tool for improving 

ergonomic safety in surgical settings. 
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3.5 Training Setup 

3.5.1 Dataset 

We use a dataset comprising 700 annotated images of surgeons captured in OR settings. The images 

cover diverse poses under conditions that mimic real-world OR environments, such as occlusion and 

variation in lighting. Of the dataset, 90% for training and the rest 10% for testing to have postures well 

represented and balance for proper model evaluation. The 90-10 dataset split provides a good balance 

between keeping sufficient data for robust training that will allow generalization and not having too 

much data to cause overfitting. It balances model learning with a representative test set, which 

guarantees trustworthy evaluation in high precision tasks, such as ergonomic posture analysis. 

3.5.2 Model 

The system uses the YOLOv11n-pose model, an advanced framework for pose estimation in complex 

and dynamic environments. The state-of-the-art model version demonstrates multi-scale detection and 

self-attention capabilities, ensuring robustness towards occlusions and accuracy in detecting keypoints. 

3.5.3 Environment 

It was trained in a proper computational environment, defined as Hardware is Colab TPU v2-8, which 

has the ability for high-performance tensor processing with data and model scaling. Framework is 

PyTorch is a deep learning framework that is quite popular for being flexible and efficient when it comes 

to the implementation of pose detection models. 

3.5.4 Training Parameters 

The following were the training hyperparameters, balancing computational efficiency with model 

performance: - 

Batch Size:4 

Learning Rate:0.001 

Optimizer: Adam, adopted because of its adaptive learning rate capabilities that enhance convergence 

during training. Epochs:100, to allow enough iterations for the model to effectively learn key features 

from the training data. 

4 RESULTS AND DISCUSSION 

4.1 Training and Validation Loss Analysis 

The model’s pose and box losses for both training and validation phases steadily decreased across 100 

epochs: 

• Pose Loss: Training loss reduced from 7 to 2, while validation loss stabilized around 2.5, indicating that 

YOLOv11 achieved consistent and effective learning. 

• Box Loss: Training box loss decreased from 1.6 to 0.6, and validation loss stabilized around 0.9, 

demonstrating YOLOv11’s capability in accurately localizing body joints, even under partial occlusion. 

This figure 2 illustrates the complete set of metrics used to train and validate the YOLOv11n-pose 

model over the course of 100 epochs. The fields are organized into two stripes. 

The YOLOv11n-pose model learns well and generalizes during training for 100 epochs. A few very 

important observed train and validation losses regarding box loss, pose loss, and objectless loss indicate 

how well the model learns in practice to detect and localize anatomical keypoints. At all levels, average 

precision continues raising with a direct parameter at varying levels of IoU thresholds from 50 to 95%; 

hence, in real terms, the balance between precision and recall of detecting and localizing body parts is 

obtained for both training and unseen validation datasets. These results show the model can be applied 

in an occluded environment, making it quite robust for real-time ergonomic monitoring and feedback 

in dynamic operating room settings. 

4.1.1 Pose Precision curve 

In figure 3 curve plots precision on the y-axis against confidence thresholds on the x-axis. It helps 

visualize how precision varies as you change the confidence threshold for predictions. It observed that 

all classes have a precision of 1.00 at a threshold of 0.898, it means that the model has a perfect 

precision score when it makes predictions with confidence scores equal to or above 0.898. 
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4.1.2 Pose-Recall Curve 

In figure 4, a recall of 0.898 suggests that the model is good at capturing true positives. It means that 

out of all actual positive instances, the model successfully identified about 89.8% of them. The 

confidence score of 0.00 implies that the model is making predictions regardless of how confident it is. 

This can mean that all instances are classified as positive, leading to a high recall 

 
Figure 2. Training and validation performance metrics for the YOLOv11n-pose model across 100 

epochs. The top row depicts training loss (classification and distribution focal loss) and 

precision/mAP metrics, while the bottom row visualizes validation loss, recall, and mAP metrics for 

bounding box and pose estimation. The results demonstrate steady improvements in accuracy and 

generalization throughout the training process. 

4.1.3 Pose F-1 Curve 

In figure 5, the F1-score is the harmonic mean of precision and recall, providing a balance between the 

two metrics, especially useful when dealing with imbalanced datasets. An F1-score of 0.9 at a 

confidence threshold of 0.752 suggests that your model is performing quite well at that point, 

effectively balancing precision and recall. 

An F1-score of 0.9 indicates excellent performance, as it approaches the maximum value of 1. This 

means that the model is able to maintain both high precision and recall at the given threshold. 

A high F1-score indicates that the model has a good capability of distinguishing between the positive 

and negative classes effectively. 

4.1.4 Pose Confusion Matrix 

Pose confusion matrices as shown in figure 6 may be perceived as rather technical apparatus developed 

for the purposes of assessing any given model’s performance in detecting poses. This is essentially a 

breakdown of how well— at the granular level— the model predicts in comparison to ground truth. It 

could assist in pinpointing regions in which the model performs 

well or misclassify (providing actionable insights into what can be done to improve the model). The pose 

detection matrix is as follows: 
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1. Ground Truth Key points (Columns): Actual anatomical keypoints as labeled in the dataset. 

2. Predicted Keypoints (Rows): Keypoints detected by the model. 

3. Diagonal values: The keypoint class for which the predictions were correct (true positives). 

4. Off-Diagonal Values: Misclassifications; where in this case one keypoint was predicted when another 

was. 

By studying this matrix, developers can concentrate on those classes having high misclassification 

rates to further improve the model’s performance for tough cases, given occlusion or complex poses. 

 
Figure 3. Precision-confidence curve 

 
Figure 4. Recall-Confidence Curve 
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Figure 5. F1-Confidence Curve 

4.1.5 Calculation of Confusion Matrix 

The following steps explain how to calculate confusion matrix: 

1. Define Classes: Each anatomical keypoint ("Nose," "Neck," "Shoulder L") is taken as an individual 

class for classification. All keypoints in the dataset should have consistent labeling. 

2. Collect Predictions: Collect the keypoints predicted by the model of pose detection and their ground 

truth annotations from the dataset. 

3. Apply Thresholding: Set the confidence level as a threshold to decide if the keypoint prediction is valid. 

For example, detect only those keypoints with confidence scores higher than some pre-defined 

threshold (say, 0.5); reject the rest. This step will minimize the contribution of low-confidence 

predictions and, hence, some clutter of noisy predictions. 

4. Create Confusion Matrix: Compare predicted keypoints for the ground truth keypoints. For each 

keypoint: True Positive (TP),False Positive (FP), False Negative (FN),and True Negative (TN). Count 

these metrics for each class of keypoint. By doing this, you will build up the matrix and be able to see 

on a granular level performance by class, as well as where to focus effort for improvement. 

4.1.6 Performance Metrics 

The model was validated based on standard machine learning evaluation metrics to assess its ability to 

classify ergonomic postures effectively... Key performance metrics support YOLOv11 model ergonomic 

assessment Key performance metrics underscore the robustness of the YOLOv11 model in ergonomic 

assessment within OR environments: mAP 94.5%,represents high precision in detecting joint positions; 

having a rate of 95.0% of postures correctly detected legitimizes high-reliability posture correctness 

identification; a recall of 84.7% describes high sensitivity to changes in posture and good detection of 

ergonomic risks; and an F1-score, circa 89.5, balances a little more on the side of precision. Hence, these 

results reflect the ability of YOLOv11 to maintain high accuracy and low error rates, even in complex, 

occlusion-heavy OR conditions; hence, it is considered a powerful tool for real-time ergonomic 

monitoring. 

To comprise our model YOLOv11 with OpenPose and MediaPipe. We test and train each model on 

the same annotated dataset. Table 1 indicates the comparative results of the three models of pose 

estimation—namely OpenPose, MediaPipe, and YOLOv11—in terms of their ability to detect ergonomic 

risk factors in a surgical environment. Of the three models, YOLOv11 produced the highest overall 
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performance. It yielded a mean Average Precision value amounting to 94.5%, with a score of precision 

as high as 95% and an F1-score of 89.5%, which greatly outstripped the other two, OpenPose and 

MediaPipe. The 

 
Figure 6. Confusion Matrix for Keypoint Detection: This matrix compares predicted keypoints to 

ground truth labels across 

13 anatomical landmarks. The diagonal values represent accurate detections, while off-diagonal 

entries highlight misclassifications. The darker the shade, the higher the frequency of predictions for a 

given keypoint. The accompanying table provides keypoint indices and names for reference 

Table 1. Performance Comparison of Pose Estimation Models 

Model mAP Precision Recall F1-

Score 

OpenPose 65% 67% 70% 68% 

MediaPipe 67% 66% 53% 60% 

YOLOv11 94.5% 95% 84.7% 89.5% 

high precision of YOLOv11 means that it can well determine postures of the body with very low false 

alarm probabilities. An 84.7% value of the recall score also means high sensitivity concerning the 

ergonomic risks, i.e., fewer miss false alarms of bad postures. 

Here, OpenPose has attained 70% recall with an F1-score of 68%, reflecting the trade-off between 

precision, which is estimated to be 67%, and the recall. With much lower mAP at 65%, the accuracy is 

speaking to the challenge of detecting the posture keypoints. Another system, MediaPipe, performs a 

bit better than OpenPose judging by the mAP scores, having delivered 67%. Unfortunately, it seems to 

have compromised missed detection which stands at 53% hence giving a lower F1-score of 60%. This 

means that in an environment wherein poor postures are likely to be missed by the system, such as an 

intense and high-stakes operating room, MediaPipe will be less dependent on the system. 
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Overall, the upgraded architecture of YOLOv11 as well as its occlusion-handling mechanisms speaks 

to its accuracy success in the ergonomic assessment, thereby making it the model that is most proper 

for carrying out real-time posture monitoring in surgical environments. 

 
Figure 7. Real-time video feed showcasing detected keypoints and calculated angles, overlaid with 

color-coded posture alerts 

4.2 Visual Output 

4.2.1 Live Video Feed Display 

The system will show in real-time the video feed coming from any surgical procedure with keypoints 

detected and angles calculated over it as shown in figure 7. Hence, surgeons can monitor their posture 

all the time in live applications during operations and give feedback to change ergonomics. The 

keypoints are annotated in the video feed, displaying the respective angles for immediate visual cues on 

posture (e.g., neck, shoulders, elbows). 

4.2.2 Video Playback Interface 

A playback interface for viewing recorded surgical videos, synchronized with posture analysis. The 

following features were supported for this: 

1. Video Controls: Play, pause, slow motion, fast forward, and rewind functionalities for video 

navigation. 

2. Overlaid Annotations: Keypoints and angles calculated from a video as it plays Surgeons/Trainers can 

pause the video and analyze a particular sequence in detail for post-operative analysis of the surgeon’s 

posture and ergonomic compliance. It acts as a learning and assessment tool, through which one can 

identify what needs rectification regarding posture. This can be corrected in subsequent procedures. 

4.2.3 Feedback Mechanism 

To improve usability and the results achieved in ergonomics, the system uses a feedback mechanism: 

1. Visual Alerts: Real-time Indicators of Ergonomic Posture via a Color-Coded System 

2. Green: Good posture, meeting adequate ergonomic standards 

3. Yellow: A moderate posture that requires some minor adoptions 

4. Red: Bad posture adopts immediately to cancel ergonomic risks Text-Based Recommendations 

Displayed in Real-Time: 

Alongside Visual Alerts 

4.2.4 Example Visual Representations 

• Live Keypoint Overlay: 
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– Shows detected keypoints (e.g., neck, shoulders, elbows) overlaid on a live video feed with 

corresponding angles calculated and displayed. 

• Annotated Video Playback: 

– Displays a recorded video with real-time posture analysis and color-coded alerts based on ergonomic 

assessment. 

• Feedback Overlay: 

– Text-based and visual alerts (color-coded) highlight problematic postures with corrective suggestions. 

 

5 CONCLUSION 

This study integrates YOLOv11-based deep learning models into the real-time ergonomic posture 

analysis system in surgical environments. Such integration ensures that the model will efficiently detect 

the key postural landmarks, which are the neck, shoulder, back, and elbow, followed by immediate 

feedback to be received by the surgeon to help him maintain ergonomic postures throughout the 

operations. 

Our results show that deep learning pose estimation models, like YOLOv11, can work well for real-

time ergonomic monitoring in occlusion-heavy operating room (OR) environments. The self-attention 

mechanisms and anchor-free detection heads in YOLOv11 help strong joint detection even when 

surgical instruments and personnel partially obstruct key body parts. 

A system that classifies postures into good, moderate, and high-risk categories based on the 

outcomes of calculations made from the angles of human joints, considering the ergonomic risk 

assessment frameworks RULA and REBA. Once validated, this system demonstrated high performance 

as mAP (94.5%), attesting to its trustability for ergonomic posture classification. The feedback loop 

inside the model will alert immediately when there are deviations in postures from the recommended 

ergonomic positions, hence lowering the risks of Muscular Skeletal Disorders (MSDs) for surgeons. 

This model was validated based on 700 images annotated to generalize different surgical scenarios. 

This is the first-ever system that does not follow manual observation or self-report for ergonomic 

assessment. Rather, it provides a non-intrusive continuous monitoring approach. Ergonomic safety is 

therefore achievable without disruption to the surgical workflow. Perspective for improvements may 

include: 

• Considering a bigger set of data composed of different types of surgeries as well as postural diversity. 

• Adding multi-camera views or 3D body position calculation to improve covering up one body part by 

another. 

• Putting in time tracing to study how posture changes over time, showing tiredness spotting in extended 

operations. 

This work sets up YOLOv11 as an acceptable answer for quick comfortable check in surgery places, 

giving a base for later AI changes in health at work and surgery quality. 
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