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Cloud computing (CC) provides dynamic computation services to offer a reliable and cost-

effective cloud service to the customer. The selection of the best software as a service (SaaS) 

cloud services provider by ensuring considering various MCDM criteria (Cost, Ease of Use, 

Features and Functionalities, Security, Scalability, and Customer Support). For the selection of 

the best SaaS providers, we have considered Zoho CRM, Google Workspace, Microsoft 365, 

Slack, Asana, Dropbox, Shopify, Zoom, and AWS for evaluating the service consistency and 

high accuracy. The Multi-Criteria Decision Making (MCDM) provides a platform for selecting 

the best SaaS based on Quality of Service(QoS). Therefore, the proposed work has introduced a 

novel Bhattacharya and Cosine operator-based enhanced Trapezoidal Bipolar Fuzzy Analytic 

Hierarchy Process (AHP) with the Technique for Order of Preference by Similarity to Ideal 

Solution (Topsis) based decision-making for selecting the best SaaS. Thus, the proposed 

method minimizes the complexity of decision-making in uncertain scenarios. The Python-

based experimental tool is utilized to evaluate the effectiveness of the proposed with the 

conventional techniques. Moreover, the case study and the sensitivity analysis prove the SaaS 

adoption while ensuring the robustness and stability of the suggested work. 

Keywords: SaaS Provider Selection, Multi-Criteria Decision Making, Trapezoidal Bipolar 

Fuzzy AHP, Bhattacharya and Cosine Similarity Operators, TOPSIS Decision-Making. 

 

1. INTRODUCTION 

Cloud computing (CC) is a web-based system that offers computing services like storage, processing, networking, 

and software [1]. CC allows organizations and individuals to use scalable, affordable, and elastic resources on-

demand without on-premise infrastructure [2]. CC enhances productivity, collaboration, and security of data, and 

reduces the costs of maintenance as well as operational complexity [3]. 

Cloud computing has transformed how firms use and gain access to computer programs via Software as a Service 

(SaaS) platforms that provide cheap, elastic, and versatile solutions [4]. SaaS vendors deliver software via the 

Internet, removing on-site installations and minimizing maintenance requirements. However, choosing the best 

SaaS vendor remains a complicated decision-making issue since different service vendors provide comparable 

features but differ in significant Quality of Service (QoS) aspects such as price, ease of use, security, scalability, 

customer support, and feature sets [5][6]. MCDM techniques have been widely researched for many years in an 

attempt to make more dependable decisions. The MCDM technique is meant to pick the optimum choice from 

among alternative criteria [7][8]. To assist decision-makers in making the optimum SaaS provider choice, MCDM 

methods are now more and more being applied to assess and score cloud services methodically [9]. 

Despite developments in SaaS selection frameworks, current MCDM techniques have numerous drawbacks. 

Traditional AHP, TOPSIS [10][11], and other MCDM approaches frequently struggle with uncertainty, subjectivity, 

and the ambiguity of decision-making criteria. These models usually rely on discrete values, which fail to convey the 

inherent ambiguity found in expert judgments and QoS metrics. Additionally, previous methods do not adequately 

integrate uncertainty metrics with similarity-based ranking strategies, resulting in inconsistent decision outcomes. 
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Furthermore, most comparison assessments of SaaS providers are either qualitative or lack resilience in dealing 

with dynamic QoS variations [12]. The lack of an integrated fuzzy-based strategy that incorporates both bipolarity 

and trapezoidal membership functions creates a research gap in ensuring an accurate, adaptive, and scalable SaaS 

selection process [13]. 

To solve these limitations, this work proposes a new Bhattacharya and Cosine Operator-Based Enhanced 

Trapezoidal Bipolar Fuzzy AHP with TOPSIS for SaaS provider selection under uncertainty. By adding the 

Bhattacharya and Cosine similarity operators, the model increases the accuracy of measuring similarity between 

choice criteria, addressing vagueness and uncertainty in expert opinion. The Trapezoidal Bipolar Fuzzy AHP 

promotes weight allocation through positive and negative decision attributes to provide an enhanced ranking 

process while addressing the intrinsic uncertainty in SaaS provider decision-making. The TOPSIS method solidifies 

decision-making through the selection of the best SaaS provider based on similarity with the ideal solution, 

reducing ambiguity and improving decision trustworthiness. An experimental Python-based tool is utilized to 

analyze performance, creating a systematic, clear, and reliable selection tool able to address uncertainty in decision-

making situations. 

Objectives of the paper 

To analyze cloud computing service providers for software as a service (SaaS) based on the Trapezoidal Bipolar 

Fuzzy Analytic Hierarchy Process (AHP) and TOPSIS. The research intends to rank essential criteria such as cost, 

scalability, reliability, and security in order to find the optimal provider. This approach provides a systematic 

decision-making framework for SaaS adoption. 

Contribution of the paper 

• This is the first study to introduce Trapezoidal Bipolar Fuzzy in the context of SaaS provider selection, as no 

prior research has utilized this approach. 

• Unlike traditional Trapezoidal Bipolar Fuzzy, this paper proposes an improvised Trapezoidal Bipolar Fuzzy 

model to enhance decision-making accuracy. 

• While many studies have used Bipolar Fuzzy and Trapezoidal Fuzzy separately, limited research has integrated 

Trapezoidal Bipolar Fuzzy, this study represents a substantial advancement in the profession. 

• Most existing papers rely on the Euclidean operator for similarity measurement; this study replaces Euclidean 

operators with Bhattacharya and Cosine operators to improve similarity measurement accuracy. 

• The proposed approach combines Bhattacharya and Cosine operators, leveraging their mutual strengths to 

enhance Trapezoidal Bipolar Fuzzy AHP with TOPSIS, ensuring a more robust and reliable decision-making 

strategy. 

2. LITERATURE REVIEW  

Chakraborty et al. (2021) [14] introduced Trapezoidal Bipolar Neutrosophic Numbers (TrBNN) to enhance 

decision-making under uncertainty. They classified TrBNNs into three categories based on membership 

dependencies and developed the Debipolarization scheme, a ranking method using the removal area technique. 

Applied to MCGDM, their approach improved accuracy, reliability, and robustness, effectively capturing 

uncertainty for more precise and ethical decision-making. 

Liu and Wang (2023) [15] developed a VIKOR technique using trapezoidal fuzzy numbers for multi-attribute group 

decision-making under uncertainty. Expert weights were established through distance measurement, whereas 

criterion weights employed deviation maximization. Also used in an emergency alternative choice problem, 

followed by sensitivity analysis and contrast tests, the method improved judgment accuracy and objectivity, 

demonstrating its validity for complex, uncertain decision-making situations. 

Mustafa et al. (2021) [16] investigated bipolar fuzzy Multi-Criteria decision-making to assist students in selecting 

the most suitable university. To study factors that affect admissions, the authors constructed a hierarchical 

structural model with bipolar fuzzy and soft expert sets. A new algorithm was designed to enhance decision 

accuracy. The model was tested based on university choice cases, confirming its ability to grade institutions and 

advise candidates. The findings established that the approach produced greater clarity and accuracy in decision-
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making, thus being suitable for multi-criteria educational decision issues and helping students select the optimal 

university under varying influencing factors. 

Suresh et al. (2021) [17] aimed to enhance neutrosophic trapezoidal fuzzy number ranking, which is essential in 

addressing uncertain and vague decision-making situations. 

To rank the numbers systematically, the authors proposed a centroid approach rooted in Euclidean distances. Some 

details of the ranking function were investigated and comparison cases employed to verify the method. Finally, the 

ranking system was tested on a problem of a purchase decision in order to show its usefulness. The results indicated 

that the proposed method effectively managed uncertainty, enhanced ranking accuracy, and provided a systematic 

decision-making methodology, which is useful in a large variety of real-world applications. 

Kamacı et al. (2021) [18] proposed a bipolar trapezoidal neutrosophic set structure to deal with complex 

multicriteria decision problems. Its mathematical behavior was explained by the authors, and they developed 

Dombi-based aggregation operators, such as weighted averaging and weighted geometric operators, for 

neutrosophic data processing. Two different decision-making approaches were provided for different situations. 

Effectiveness was measured through sensitivity analysis and multiple comparison testing. The results showed that 

the suggested strategies improved decision accuracy and reliability, thus making them suitable for handling 

uncertainty in complex decision-making situations, especially when inputs are given in a bipolar trapezoidal 

neutrosophic environment. 

Mostafa (2021) [19] developed an efficient and completely consistent strategy for selecting cloud service providers 

(CSPs) by tackling computational complexity and inconsistency in multi-criteria decision-making (MCDM). The 

proposed Best-Only Method (BOM) was presented and compared to the Analytical Hierarchical Process (AHP) and 

the Best-Worst Method (BWM) in terms of efficiency, consistency ratio (CR), and total deviation. The findings 

indicate that BOM needs considerably less comparisons, having a CR of 0% and a TD of 0, outdoing AHP (37.92%, 

21.26) and BWM (13.35%, 8.65). The research compares BOM's effectiveness and reliability. With the help of an 

example use-case scenario, showing its excellence over traditional MCDM methods. 

Liu et al. (2021) [20] developed a comprehensive MCDM model to assess and choose cloud services against quality 

of service (QoS) factors when solving uncertainty and linguistic assessment problems. The proposed solution 

applies the cloud model for converting qualitative ideas into quantitative scores and suggests an improved distance 

measure algorithm with the use of cloud droplet distribution. To make the best decisions, we employ a dynamic 

expertise weighting approach and an enhanced TOPSIS supported by grey relational analysis (GRA). Tested using a 

real mining enterprise's cloud service choice, the results support the scheme's strength and practicability, 

presenting a sound theory base for cloud service assessment. 

Alhalameh and Al-Tarawneh (2022) [21] developed a hybrid MCDM approach for effective service brokering in 

cloud-IoT networks, where the optimal selection of data centers is made based on cost and performance criteria. 

The methodology is based on the TOPSIS technique and tested in two modes: Integrated-TOPSIS, where the 

criteria weights are predefined by the user, and Entropy-TOPSIS, where the weights are determined using the 

Entropy method. The findings, implemented through an open-source simulation platform, reveal that the approach 

can effectively optimize brokering performance by taking into account diverse service provider traits. The findings 

demonstrate the feasibility of optimizing service brokering for cloud-IoT contexts. 

Zhang and Bai (2024) [22] suggested UBQoS_ESDM, a robust SaaS decision-making approach, to optimize Quality 

of Service (QoS) selection in the scenario of enormous, fuzzy big QoS data. The process employs a cloud model to 

optimize QoS specification defects, a Skyline query to minimize the search space, and TOPSIS-based algorithms to 

evaluate SaaS options. Besides, reverse QoS cloud generators and an adaptive QoS cloud model adjustment 

mechanism are implemented to add flexibility to dynamic QoS changes. Theoretical analysis and experiments 

demonstrate the superiority of the approach in accurately selecting QoS-optimized SaaS, enhancing decision-

making efficiency, and adhering to user expectations. 

Problem Statement 
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As cloud computing is on the rise, organizations and individuals are scrambling to determine the most suitable 

Software as a Service (SaaS) provider that best meets their unique requirements. Cost, scalability, reliability, 

security, simplicity, and customer support are some of the key deciding factors in the usage of SaaS solution. But 

doubts and subjectivism in assessing those characteristics render decision-making challenging. Conventional 

approaches such as AHP and TOPSIS are challenged by imprecision and subjectivity in the opinion of experts, 

resulting in inappropriate rankings. This paper resolves these limitations and enhances decision consistency and 

weight allocation precision by introducing a Novel Bhattacharya and Cosine Operator-Based Enhanced Trapezoidal 

Bipolar Fuzzy AHP with TOPSIS. With cloud computing on the rise, organizations and individuals are struggling to 

determine the most suitable Software as a Service (SaaS) provider that best meets their unique requirements. Cost, 

scalability, reliability, security, ease, and consumer support are some of the key determining factors in SaaS 

solution adoption.  The proposed method enhances scalability and cross-industry applicability, leading to a more 

robust, data-driven, and systematic assessment framework.  This research fills these gaps, offering a more precise 

and adaptable approach to SaaS provider selection, which is advantageous to businesses in dynamic cloud 

computing environments. 

3. PRELIMINARIES 

Definition 1: Fuzzy set: [24]  

A set 𝐸̃ , defined as 𝐸̃  =  {(𝐵, 𝜏𝐸̃(𝐵) )  ∶  𝐵 ∈  𝐸, 𝜏𝐸̃(𝐵) ∈ [0, 1] } and usually denoted by the pair as(𝐵, 𝜏𝐸̃(𝐵)), 𝐵 ∈

 𝐸 and𝜏𝐸̃(𝐵) ∈ [0, 1] , then, 𝐸̃ is said to be a fuzzy set. 

Definition 2: Bipolar fuzzy number [25] 

A bipolar fuzzy number 𝐵 =≺ 𝐾,𝑀 ≻=≺ [𝑘1, 𝑘2, 𝑘3, 𝑘4], [𝑚1,𝑚2, 𝑚3,𝑚4] ≻ is a bipolar fuzzy subset of a real line 

ℝ with satisfaction degree 𝜆𝑘 and dissatisfaction degree 𝜆𝑚 satisfying the following postulates:  

a) 𝜆𝐾  is a piecewise continuous function from the real line to [0,1], while 𝜆𝑀 is a piecewise continuous 

function from real line to [−1,0].   

b) 𝜆𝐾(𝑦) = 0, for all 𝑦 ∈ (−∞,𝐾1], 𝜆𝑀(𝑦) = 0 for all 𝑦 ∈ (−∞,𝑚1] 

c) 𝜆𝐾(𝑦) is strongly increasing on [𝑘1, 𝑘2] and 𝜆𝑀(𝑦) is strongly decreasing on [𝑚1,𝑚2] 

d) 𝜆𝐾(𝑦) = 1 for all   𝑦 ∈ [𝑘2, 𝑘3], 𝜆𝑀(𝑦) = −1 for all 𝑦 ∈ [𝑚2,𝑚3] 

e) 𝜆𝐾(𝑦) is strongly decreasing on [𝑘3, 𝑘4], and 𝜆𝑀(𝑦) is strongly increasing on [𝑚3,𝑚4] 

f) 𝜆𝐾(𝑦) = 0, for all 𝑦 ∈ [𝑘4,∞), 𝜆𝑚(𝑦) = 0, for all 𝑦 ∈ [𝑚4,∞). 

g) For ease of reference, the satisfaction and dissatisfaction degrees can be defined as 

𝜆𝐾(𝑦) =

{
 

 
𝜆𝑘
𝐿(𝑦),  if 𝑦 ∈ [𝑘1, 𝑘2]

1,  if 𝑦 ∈ [𝑘2, 𝑘3]

𝜆𝑘
𝑅(𝑦),  if 𝑦 ∈ [𝑘3, 𝑘4]

0,  otherwise 

              (1) 

and 

𝜆𝑀(𝑦) =

{
 

 
𝜆𝑚
𝐿 (𝑦),  if 𝑦 ∈ [𝑚1,𝑚2]

−1,  if 𝑦 ∈ [𝑚2,𝑚3],

𝜆𝑚
𝑅 (𝑦),  if 𝑦 ∈ [𝑚3,𝑚4]

0,  otherwise 

        (2) 

where
𝜆𝑘
𝐿(𝑦): [𝑘1, 𝑘2] → [0,1], 𝜆𝑘

𝑅(𝑦): [𝑘3, 𝑘4] → [0,1]

𝜆𝑚
𝐿 (𝑦): [𝑚1, 𝑚2] → [−1,0], 𝜆𝑚

𝑅 (𝑥): [𝑚3,𝑚4] → [−1,0]
 

𝜆𝐾(𝑦)
𝐿  and 𝜆𝑀(𝑦)

𝐿  denote left membership functions for 𝜆𝐾(𝑦) and 𝜆𝑀(𝑦), respectively. Similarly, 𝜆𝐾(𝑦)
𝑅  and 𝜆𝑀(𝑦)

𝑅  

denote the right membership functions for 𝜆𝐾(𝑦) and 𝜆𝑀(𝑦), respectively. 
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A BFN is represented graphically in Figure 1, where 𝜆𝐾 and 𝜆𝑀 are satisfaction and dissatisfaction degrees 

respectively. 

(0,0)

(0,1)

(0,-1)

(k1,0) (k2,0) (m1,0) (k3,0) (k4,0)(m2,0) (m3,0) (m4,0)

(k2,1)
(k3,1)

(m2,-1) (m3,-1)

λM

λK

 

Figure 1: Graphical representation of BFN 

Definition 3: Trapezoidal Bipolar Fuzzy Number [25] 

A BFN 𝐵 = ⟨𝐾,𝑀⧽ =< [𝑘1, 𝑘2, 𝑘3, 𝑘4], [𝑚1, 𝑚2, 𝑚3, 𝑚4] > is a trapezoidal bipolar fuzzy number (TrBFN), denoted by <

(𝑘1, 𝑘2, 𝑘3, 𝑘4), (𝑚1, 𝑚2, 𝑚3, m4) >, if its satisfaction degree 𝜆𝐾 and dissatisfaction degree 𝜆𝑀 are given as: 

𝜆𝐾 =

{
 
 

 
 
𝑦−𝑢1

u2−𝑢1
,  if 𝑦 ∈ [𝑘1, 𝑘2]

1,  if 𝑥 ∈ [𝑘2, 𝑘3],
𝑢4−𝑦

𝑢4−𝑢3
,  if 𝑥 ∈ [𝑘3, 𝑘4]

0,  otherwise 

         (3) 

and 

𝜆𝑀 =

{
 
 

 
 

𝑚1−𝑦

𝑚2−𝑚1
,  if 𝑦 ∈ [𝑚1, 𝑚2]

−1,  if 𝑦 ∈ [𝑚2, 𝑚3],
𝑦−𝑚4

𝑚4−𝑚3
,  if 𝑦 ∈ [𝑚3, 𝑚4]

0,  otherwise 

        (4) 
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Figure 2 : Graphical representation of TrBFN 

Example 1:  

If we consider the trapezoidal bipolar fuzzy number with the following parameters: 𝜆𝐾 = (2,4,6,8) and 𝜆𝑀 =

(3,5,7,9). Now, by using the satisfaction and dissatisfaction degree formulas: 

𝜆𝐾 =

{
 
 

 
 
𝑦−2

4−2
,  if 𝑦 ∈ [2 to 4]

1,  if 𝑥 ∈ [4 to 6],
8−𝑦

8−6
,  if 𝑥 ∈ [6 to 8]

0,  otherwise 

         (5) 

and 

𝜆𝑀 =

{
 
 

 
 
3−𝑦

5−3
,  if 𝑦 ∈ [3 𝑡𝑜 5]

−1,  if 𝑦 ∈ [5 to 7],
𝑦−9

9−7
,  if 𝑦 ∈ [7 to 9]

0,  otherwise 

        (6) 
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1 2 3 4 5 6 7 8 9
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Figure 3 : Graphical representation of TrBFN 
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Definition 4: Bipolar Fuzzy Linguistic Variables [25] 

Linguistic variables are defined by sentences or words in natural or artificial language, rather than numerical 

quantities.  For example, the variable "Categorization Levels" with values or phrases set as {very low, low, medium 

low, medium, medium high, high, very high} is linguistic. 

4. Formulation of Trapezoidal Bipolar Fuzzy AHP  

In Trapezoidal Bipolar Fuzzy AHP (TBF-AHP), we integrate both positive and negative membership values to 

evaluate decision alternatives. Below is a step-by-step derivation of how weights are computed. 

Step 1: Define Trapezoidal Bipolar Fuzzy Numbers (TBFNs) 

We are considering a Trapezoidal Bipolar Fuzzy Number (TBFN), represented as λ𝐽and λ𝑀 for the positive impact 

(membership function) and the negative impact (non-membership function). This trapezoidal representation helps 

handle uncertainty by capturing favorable and unfavorable aspects in decision-making. 

Step 2: Construct a Pairwise Comparison Matrix 

For each criterion C𝑖, a pairwise comparison matrix is formed using decision-maker judgments. 

Given criteria C1, C2,…… C𝑛, we construct a trapezoidal fuzzy pairwise matrix: 

𝐵̃ =

[
 
 
 
 
〈𝐾11,𝑀11〉 〈𝐾12,𝑀12〉 〈𝐾13,𝑀13〉 … 〈𝐾1𝑛,𝑀1𝑛〉

〈𝐾21,𝑀21〉 〈𝐾22,𝑀22〉 〈𝐾23,𝑀23〉 … 〈𝐾2𝑛,𝑀2𝑛〉
⋮ ⋮ ⋮ ⋱ ⋮

〈𝐾11,𝑀11〉 〈𝐾11,𝑀11〉 〈𝐾11,𝑀11〉 … 〈𝐾11,𝑀11〉
]
 
 
 
 

                                         (7) 

where each element 〈K𝑖𝑗 , 𝑀𝑖𝑗〉 is a bipolar trapezoidal fuzzy number.  

Step 3: Normalize the Fuzzy Pairwise Matrix 

Each element of the pairwise comparison matrix is normalized by: 

𝐾𝑖𝑗
𝑁 =

𝐾𝑖𝑗

∑ 𝐾𝑖𝑗
𝑛
𝑘=1

, 𝑀𝑖𝑗
𝑁 =

𝑀𝑖𝑗

∑ 𝑀𝑖𝑗
𝑛
𝑚=1

         (8) 

Where: 𝐾𝑖𝑗
𝑁 represents the normalized satisfaction degree, and 𝐾𝑖𝑗

𝑁 represents the normalized dissatisfaction degree. 

For each criterion C𝑖, we compute the row-wise sum and normalize. 

Step 4: Compute the Bipolar Fuzzy Weight Vector 

The fuzzy weight vector for each criterion is computed as: 

𝑊𝑖̃ = 〈𝑊𝑖
+,𝑊𝑖

−〉 = (
∑ 𝐾𝑖𝑗

𝑁𝑛
𝑗=1

𝑛
,
∑ 𝑀𝑖𝑗

𝑁𝑛
𝑗=1

𝑛
)        

where: 𝑊𝑖
+ represents the positive weight (satisfaction degree λ𝐾), 𝑊𝑖

− represents the negative weight 

(dissatisfaction degree λ𝑀). 

Thus, each criterion has a bipolar fuzzy weight. 

5. Group Decision Making by Using TrBF-TOPSIS 
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In this section, we present a multi-criteria group decision-making model based on the TOPSIS method in a bipolar 

fuzzy environment. The excellence of using this approach is to assess alternatives and criteria using BFNs instead of 

BFSs. The steps for the decision-making model are given in the following: 

Step 1: The bipolar fuzzy MCDM problem is expressed in the form of a matrix as follows: 

𝐴1
𝐴2
⋅
⋅
𝐴𝑡 [
 
 
 
 
 
𝐶1 𝐶2 ⋅ ⋅ 𝐶𝑠
𝑦11𝑚 𝑦12𝑚 ⋅ ⋅ 𝑦𝑠1𝑚
𝑦21𝑚 𝑦22𝑚 ⋅ ⋅ 𝑦𝑠2𝑚
⋅ ⋅ ⋅ ⋅ ⋅
⋅ − ⋅ ⋅ ⋅

𝑥𝑡1𝑚 𝑥𝑡2𝑚 ⋅ ⋅ 𝑦𝑡𝑠𝑚]
 
 
 
 
 

                (9) 

𝑊𝑚 = [𝑤1𝑚 𝑤2𝑚 ⋯ 𝑤𝑛𝑚]𝑇                             (10) 

where 𝑦𝑖𝑗𝑚 = ⟨(𝑘𝑖𝑗𝑚
1 , 𝑘𝑖𝑗𝑚

2 , 𝑘𝑖𝑗𝑚
3 , 𝑘𝑖𝑗𝑚

4 ), (𝑚𝑖𝑗𝑚
1 , 𝑚𝑖𝑗𝑚

2 , 𝑚𝑖𝑗𝑚
3 , 𝑚𝑖𝑗𝑚

4 ) ⧽ 𝑖 = 1,2, … ,𝑚 𝑗 = 1,2, … , 𝑛 are TrBFNs 

representing the BFLVs with the domain as interval [0,1] and 𝑤𝑗𝑚 represents fuzzy values. Here 𝑦𝑖𝑗𝑚, is the 

performance rating of 𝑖𝑡ℎ alternative 𝐴𝑖 for 𝑗𝑡ℎ criterion 𝑐 and 𝑤𝑗𝑚, is the weight of the 𝑗𝑡ℎ  criterion assigned by the 

𝑚𝑡ℎ  decision-maker  𝐹𝑚,m=1,2,…,q. 

Step 2 : The aggregated performance rating 𝑦𝑖𝑗 = ⟨(𝑘𝑖𝑗
1 , 𝑘𝑖𝑗

2 , 𝑘𝑖𝑗
3 , 𝑘𝑖𝑗

4 ), (𝑚𝑖𝑗
1 , 𝑚𝑖𝑗

2 , 𝑚𝑖𝑗
3 , 𝑚𝑖𝑗

4 )⟩ of alternative 𝐴𝑖  

for criterion 𝐶𝑗 assessed by q decision-makers can be evaluated as: 

𝑘𝑖𝑗
1 =

1

𝑞
∑  

𝑞

𝑚=1

 𝑘𝑖𝑗𝑚
1 ,  𝑘𝑖𝑗

2 =
1

𝑞
∑  

𝑞

𝑚=1

 𝑘𝑖𝑗𝑚
2 , 𝑘𝑖𝑗

3 =
1

𝑞
∑  

𝑞

𝑚=1

 𝑘𝑖𝑗𝑚
3 , 𝑘𝑖𝑗

4 =
1

𝑞
∑  

𝑞

𝑚=1

 𝑘𝑖𝑗𝑚
4

𝑚𝑖𝑗
1 =

1

𝑞
∑  

𝑞

𝑚=1

 𝑚𝑖𝑗𝑚
1 ,  𝑚𝑖𝑗

2 =
1

𝑞
∑  

𝑞

𝑚=1

 𝑚𝑖𝑗𝑚
2 , 𝑚𝑖𝑗

3 =
1

𝑞
∑  

𝑞

𝑚=1

 𝑚𝑖𝑗𝑚
3 , 𝑚𝑖𝑗

4 =
1

𝑞
∑  

𝑞

𝑚=1

 𝑚𝑖𝑗𝑚
4 .

 

                                 (11) 

Similarly, the aggregated importance weights 𝑤𝑗 can be calculated as: 

𝑤𝑗 =
1

𝑞
∑  
𝑞
𝑚=1 𝑤𝑗𝑚                                    (12) 

Step 3 : The weighted bipolar fuzzy decision matrix is given as: 

𝐻 = [ℎ𝑖𝑗]                  (13) 

Where ℎ𝑖𝑗 = 𝑦𝑖𝑗𝑤𝑗 = ⟨(𝛿𝑖𝑗
1 , 𝛿𝑖𝑗

2 , 𝛿𝑖𝑗
3 , 𝛿𝑖𝑗

4 ), (𝜀𝑖𝑗
1 , 𝜀𝑖𝑗

2 , 𝜀𝑖𝑗
3 , 𝜀𝑖𝑗

4 )⟩ 

Step 4 : The bipolar fuzzy positive ideal solution (BFPIS) 𝑨∗and bipolar fuzzy negative ideal 

solution (BFNIS) 𝑨− are identified as: 
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𝐵∗  = {ℎ1
∗, ℎ2

∗ , … , ℎ𝑡
∗}

 = {(maxℎ𝑖𝑗 ∣ 𝑗 ∈ 𝐴), (minℎ𝑖𝑗 ∣ 𝑗 ∈ 𝐷) ∣ 𝑖 = 1,2, … , 𝑠),

𝐵−  = {ℎ1
−, ℎ2

−, … , ℎ𝑛
−}

 = {(minℎ𝑖𝑗 ∣ 𝑗 ∈ 𝐴), (maxℎ𝑖𝑗 ∣ 𝑗 ∈ 𝐷) ∣ 𝑖 = 1,2, … , 𝑠).

                                (14) 

Step 5 : The distance 𝒅𝒊
+ of each alternative from BFPIS solution is given as: 

√
1

2
∑  𝑡
𝑗=1  {

(𝛿𝑖𝑗
1 − 𝛿𝑗∗

1 )
2
+ (𝛿𝑖𝑗

2 − 𝛿𝑗∗
2 )

2
+ (𝛿𝑖𝑗

3 − 𝛿𝑗∗
3 )

2
+ (𝛿𝑖𝑗

4 − 𝛿𝑗∗
4)

2

+(𝜀𝑖𝑗
1 − 𝜀𝑗∗

1 )
2
+ (𝜀𝑖𝑗

2 − 𝜀𝑗∗
2 )

2
+ (𝜀𝑖𝑗

3 − 𝜀𝑗∗
3 )

2
+ (𝜀𝑖𝑗

4 − 𝜀𝑗
4)
2}            (15) 

Similarly, the distance 𝑑𝑖
− of each alternative from BFNIS is given as: 

√
1

2
∑  𝑡
𝑗=1  {

(𝛿𝑖𝑗
1 − 𝛿𝑗̅

1)
2
+ (𝛿𝑖𝑗

2 − 𝛿𝑗̅
2)
2
+ (𝛿𝑖𝑗

3 − 𝛿𝑗̅
3)
2
+ (𝛿𝑖𝑗

4 − 𝛿𝑗̅
4)
2

+(𝜀𝑖𝑗
1 − 𝜀𝑗̅

1)
2
+ (𝜀𝑖𝑗

2 − 𝜀𝑗̅
2)
2
+ (𝜀𝑖𝑗

3 − 𝜀𝑗̅
3)
2
+ (𝜀𝑖𝑗

4 − 𝜀𝑗̅
4)
2}       (16) 

Step 6 : The closeness coefficient of alternative 𝐴𝑖  from BFPIS is given as: 

𝐷𝑖 =
𝑑𝑖
−

𝑑𝑖
++𝑑𝑖

−   for 𝑖 = 1,… , 𝑠               (17) 

𝐴𝑗 is closer to 𝐴∗as 𝐷𝑖approaches 1. A preference order can be determined by the descending order of 𝐶𝑖,  (i =

1,… , s) 

6. Defuzzification using the Bhattacharya and Cosine Operator by including the TOPSIS  

To convert the fuzzy weight into a crisp value, we use the defuzzification formula: 

𝐷(𝑊𝑖) =
𝑘1+𝑘2+𝑘3+𝑘4

4
−
𝑚1+𝑚2+𝑚3+𝑚4

4
                     (18) 

Where The first term represents the average positive weight, The second term represents the average negative 

weight, The difference provides the final crisp weight. 

Compute the Normalized Weight using Delta Based Aggregation. 

The final normalized weight is computed as: 

𝑊𝑖
∗ =

𝐷(𝑊𝑖)

∑ 𝐷(𝑊𝑖)
𝑛
𝑖=1

           (19) 

Where 𝑊𝑖
∗represents the final priority weight for each criterion. 

The Trapezoidal Bipolar Fuzzy AHP method effectively handles uncertainty by integrating positive and negative 

membership values. The final defuzzified and normalized weights guide decision-making, ensuring accuracy in 

ranking alternatives. 

7. Ranking of Bipolar Fuzzy Numbers 
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Let 𝐺 = {𝑔1, 𝑔2, … , 𝑔𝑛}be the set of BFNs then for any distinct  𝑔𝑖 , 𝑔𝑗 ∈ G , the ranking function Re from G to real 

line R is mapping satisfying the following characteristics. 

(a) If 𝑅𝑒(𝑔𝑖) < 𝑅𝑒(𝑔𝑗), then 𝑔𝑖 < 𝑔𝑗, 

(b) If 𝑅𝑒(𝑔𝑖) = 𝑅𝑒(𝑔𝑗),then 𝑔𝑖 = 𝑔𝑗, 

(c) If 𝑅𝑒(𝑔𝑖) > 𝑅𝑒(𝑔𝑗),then 𝑔𝑖 > 𝑔𝑗 . 

We define here the ranking function for a BFN𝑔𝑖 =≺ (𝐾𝑖 , 𝑀𝑖) ≻=≺ (𝑘𝑖1, 𝑘𝑖2, 𝑘𝑖3, 𝑘𝑖4), (𝑚𝑖1,𝑚𝑖2, 𝑚𝑖3, 𝑚𝑖4) ≻ as: 

[𝑝(𝐾𝑖𝑚) + 𝛾(𝐾𝑖)] − [|𝑝(𝑀𝑖𝑚)| + 𝛾(𝑀𝑖)],𝑚 = 1,2,3,4.    (20) 

Where, 𝑝(𝐾𝑖𝑚)and 𝑝(𝑀𝑖𝑚)represent the mean of 𝐾𝑖𝑚 and mean of 𝑀𝑖𝑘  respectively, 𝛾(𝐾𝑖) denotes the area of 𝐾𝑖 

and 𝛾(𝑀𝑖) denotes the area of𝑀𝑖. The areas can be calculated by taking the mode value of integration of left and 

right membership functions separately and then adding it into ∫  
1

0
𝑑𝑥 𝑜𝑟 |∫  

0

−1
  (−1)𝑑𝑥| 

Therefore, for any BFNs 𝑔𝑖 and 𝑔𝑗, 

If [𝑝(𝐾𝑖𝑚) + 𝛾(𝐾𝑖)] − [|𝑝(𝑀𝑖𝑚)| + 𝛾(𝑀𝑖)] < [𝑝(𝐾𝑗𝑚) + 𝛾(𝐾𝑗)] − [|𝑝(𝑀𝑗𝑚)| + 𝛾(𝑀𝑗)], then 𝑔𝑖 < 𝑔𝑗; (21) 

If [𝑝(𝐾𝑖𝑚) + 𝛾(𝐾𝑖)] − [|𝑝(𝑀𝑖𝑚)| + 𝛾(𝑀𝑖)] = [𝑝(𝐾𝑗𝑚) + 𝛾(𝐾𝑗)] − [|𝑝(𝑀𝑗𝑚)| + 𝛾(𝑀𝑗)],  then 𝑔𝑖 = 𝑔𝑗; (22) 

and 

if [𝑝(𝐾𝑖𝑚) + 𝛾(𝐾𝑖)] − [|𝑝(𝑀𝑖𝑚)| + 𝛾(𝑀𝑖)] > [𝑝(𝐾𝑗𝑚) + 𝛾(𝑀𝑗)] − [|𝑝(𝑀𝑗𝑚)| + 𝛾(𝑀𝑗)], then 𝑔𝑖 > 𝑔𝑗.  (23) 

If 𝛾(𝐾𝑖), 𝛾(𝑀𝑖)≥ 1, for each i, then ranking function for BFNs can also be defined as  

𝑝(𝐾𝑖𝑚)𝛾 (𝐾𝑖) − |𝑝(𝑀𝑖𝑚)|𝛾 (𝑀𝑖),𝑚 =  1, 2, 3, 4.           (24) 

8. Sensitivity Analysis Process in Relative Closeness (RC) Ranking 

Step 1: Define the Decision Matrix 

The decision matrix consists of alternatives 𝐴1 𝑡𝑜 𝐴9 and criteria 𝐶1 𝑡𝑜 𝐶6 . Each alternative is assigned a value for 

each criterion based on performance. 

Step 2: Normalize the Decision Matrix 

Normalization ensures all values are within the same scale (typically between 0 and 1). The most common 

normalization method used in MCDM (Multi-Criteria Decision Making) is: 

𝑌𝑖𝑗
𝑛𝑜𝑟𝑚 =

𝑌𝑖𝑗

√∑ 𝑌𝑖𝑗
2𝑡

𝑖−1

                         (25) 

Where 𝑌𝑖𝑗
𝑛𝑜𝑟𝑚norm is normalized value, 𝑌𝑖𝑗  is an original value in decision matrix, t is total number of alternatives 

Step 3: Apply Weighting to Criteria 

Different weight distributions (Ω) are considered to analyze their impact. The weighted normalized decision matrix 

is created by multiplying each normalized value by its appropriate weight: 
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𝑈𝑖𝑗 = 𝑌𝑖𝑗
𝑛𝑜𝑟𝑚 × 𝑤𝑗                (26) 

Where 𝑈𝑖𝑗  the weighted normalized value, 𝑤𝑗 is is the weight allocated to criterion j 

𝑝(𝐾𝑖𝑚)𝛾 (𝐾𝑖) − |𝑝(𝑀𝑖𝑚)|𝛾 (𝑀𝑖),𝑚 =  1, 2, 3, 4.   

Step 4: Compute the Ideal and Negative-Ideal Solutions 

Two reference points are determined: 

 Ideal Solution (B⁺): The best value for each criterion 

 Negative-Ideal Solution (B⁻): The worst value for each criterion 

𝐵+ = (𝑚𝑎𝑥𝑈𝑖𝑗|𝑗 ∈ 𝐷 

𝐵− = (𝑚𝑖𝑛𝑈𝑖𝑗|𝑗 ∈ 𝐷        (27) 

Step 5: Calculate the Separation Measures 

For each alternative, compute its distance from an ideal and negative-ideal solutions using Euclidean distance: 

𝑇𝑖
+ = √∑ (𝑈𝑖𝑗 − 𝐵𝑗

+)
2𝑠

𝑗=1
 

𝑇𝑖
− = √∑ (𝑈𝑖𝑗 − 𝐵𝑗

−)
2𝑠

𝑗=1                      (28) 

Where 𝑇𝑖
+ is the distance from an ideal solution, 𝑇𝑖

− is the distance from the negative-ideal solution 

Step 6: Compute Relative Closeness (𝐶𝐶𝑖)for Each Alternative 

The RC coefficient for each alternative is computed as: 

𝐶𝐶𝑖 =
𝑇𝑖
−

𝑇𝑖
++𝑇𝑖

−         (29) 

A higher 𝐶𝐶𝑖 value means the alternative is closer to an ideal solution, making it preferable. 

Step 7: Rank the Alternatives 

Alternatives are ranked descending based on their RC (𝐶𝐶𝑖) scores. The option with the highest 𝐶𝐶𝑖 is the most 

suitable. 

Step 8: Perform Sensitivity Analysis 

9. Illustrative Example: 

Let’s assume we are evaluating nine alternatives (𝐴1 𝑡𝑜 𝐴9) based on six criteria (𝐶1 𝑡𝑜 𝐶6) using the Trapezoidal 

Bipolar Fuzzy AHP approach. Each alternative is assigned trapezoidal fuzzy numbers representing both positive 

and negative membership values, which help in decision-making under uncertainty.  

                                                Table 1: Number of Alternatives and Criteria 

Alternatives Criteria 

A𝟏 Zoho CRM C𝟏 Cost 

A𝟐 Google Workspace C𝟐 Ease of Use 

A𝟑 Microsoft 365 C𝟑 Features and Functionalities 

A𝟒 Slack C𝟒 Security 

A𝟓 Asana C𝟓 Scalability 
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A𝟔 Dropbox C𝟔 Customer Support 

A𝟕 Shopify 

A𝟖 Zoom 

A𝟗 AWS 

Three decision makers 𝐷1, 𝐷2 and 𝐷3 are responsible for the selection. Let us consider the Bipolar fuzzy linguistic 

rating set of SaaS, 

𝑆1 = {Very Low =  VL, Low =  L,Medium Low =  ML,Medium =  M,Medium High =  MH,High =

 H, Very High =  VH} for all the six Criteria. Figure 4 shows the trapezoidal bipolar fuzzy numbers that represent 

these linguistic values. The numerical domain of linguistic values considered here is the closed interval [0, 1]. 

                                        

                                                       Table 2: Bipolar Linguistic Variables 

Linguistic Term  Abbreviations 
 

Very Low VL (0, 0, 0.1, 0.2), (0.7, 0.8, 0.9, 1.0) 

Low L (0.1, 0.2, 0.3, 0.4), (0.6, 0.7, 0.8, 0.9) 

Medium Low  ML (0.3, 0.4, 0.5, 0.6), (0.5, 0.6, 0.7, 0.8) 

Medium  M (0.5, 0.6, 0.7, 0.8), (0.3, 0.4, 0.5, 0.6) 

Medium High  MH (0.6, 0.7, 0.8, 0.9), (0.2, 0.3, 0.4, 0.5) 

High  H (0.7, 0.8, 0.9, 1.0), (0.1, 0.2, 0.3, 0.4) 

Very High  VH (0.8, 0.9, 1.0, 1.0), (0, 0.1, 0.2, 0.3) 

 

Tables 3 and 4 display the linguistic values and their related trapezoidal bipolar fuzzy numbers, as illustrated in 

Figure 4, which indicate the performance rate of the alternatives (proposals). Using Eq. 11, the aggregated weights 

of the criteria across three decision-makers are obtained. Similarly, by Eq. 12, the aggregated performance ratings 

of alternatives for given conflicting criteria across the three decision-makers, are obtained and are also presented in 

Tables 3 and 4. Table 5 provides the weighted bipolar fuzzy decision matrix for criteria 𝐶1, 𝐶2 and 𝐶3, while Table 6 

provides results for criteria C4, C5 and C6 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(0,0)

Very Low Low 

Low 

Medium Low

Medium Low

Medium

Medium

Medium High

Medium High

High

High

V
e

ry
 H

ig
h

(0,1)
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                      Figure 4: Satisfaction and dissatisfaction degree for linguistic values 

 

                   Table 3 : Performance rating of alternatives and Weighted Decision Matrix for 𝐶1, 𝐶2, and 𝐶3  

Decision Makers Alternatives A1 A2 A3 A4 A5 A6 A7 A8 A9 

D1 

C1 M ML MH H MH ML M H MH 

C2 ML M M MH M MH VH M ML 

C3 MH M M H MH M ML MH L 

D2 

C1 M L MH H MH L MH H MH 

C2 L M ML MH M MH M MH M 

C3 MH ML M H MH M M H MH 

D3 

C1 M ML H VH H ML L MH H 

C2 ML M MH H M MH M ML MH 

C3 H MH M VH MH M ML M H 

 

                      

                      Table 4: Performance rating of alternatives and Weighted Decision Matrix for 𝐶4, 𝐶5, and 𝐶6 

Decision Makers Alternatives A1 A2 A3 A4 A5 A6 A7 A8 A9 

D1 

C4 H MH H M H MH M L L 

C5 MH M MH H M ML M MH M 

C6 ML MH M MH ML M M VH MH 

D2 

C4 H MH H M H MH H M H 

C5 MH M MH H M L MH H M 

C6 L MH M MH L M M MH ML 

D3 

C4 VH H VH M H MH MH H M 

C5 H M MH H M ML M MH H 

C6 ML MH M MH ML M MH M MH 

 

                                                       Table 5: Weighted Decision Matrix for 𝐶1, 𝐶2, and 𝐶3 

 C1 C2 C3 

A1 (0.17,0.2,0.23,0.27),(0.1,0.13,0.17,0.2) (0.08,0.11,0.15,0.18),(0.18,0.21,0.24,0.28) (0.21,0.24,0.28,0.31),(0.06,0.09,0.12,0.16) 
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A2 (0.08,0.11,0.15,0.18),(0.18,0.21,0.24.28) (0.17,0.2,0.23,0.27),(0.1,0.13,0.17,0.2) (0.16,0.19,0.22,0.26),(0.11,0.14,0.18,0.21) 

A3 (0.21,0.24,0.28,0.31),(0.06,0.09,0.12,0.16) (0.16,0.19,0.22,0.26),(0.11,0.14,0.18,0.21) (0.17,0.2,0.23,0.27),(0.1,0.13,0.17,0.2) 

A4 (0.24,0.28,0.31,0.33),(0.02,0.06,0.09,0.12) (0.21,0.24,0.28,0.31),(0.06,0.09,0.12,0 .16) (0.24,0.28,0.31,0.33),(0.02,0.06,0.09,0.12) 

A5 (0.21,0.24,0.28,0.31),(0.06,0.09,0.12,0.16) (0.17,0.2,0.23,0.27),(0.1,0.13,0.17,0.2) (0.2,0.23,0.27,0.3),(0.07,0.1,0.13,0.17) 

A6 (0.08,0.11,0.15,0.18),(0.18,0.21,0.24,0.28) (0.2,0.23,0.27,0.3),(0.07,0.1,0.13,0.17) (0.17,0.2,0.23,0.27),(0.1,0.13,0.17,0.2) 

A7 (0.13,0.17,0.2,0.23),(0.12,0.16,0.19,0.22) (0.2,0.23,0.27,0.29),(.07,0.1,0.13,0.17) (0.12,0.15,0.19,0.22),(0.15,0.18,0.21,0.25) 

A8 (0.22,0.26,0.29,0.32),(0.04,0.08,0.11,0.14) (0.15,0.19,0.22,0.25),(0.11,0.15,0.18,0.21) (0.2,0.23,0.27,0.3),(0.07,0.1,0.13,0.17) 

A9 (0.21,0.24,0.28,0.31),(0.06,0.09,0.12,0.16) (0.15,0.19,0.22,0.25),(0.11,0.15,0.18,0.21) (0.15,0.19,0.22,0.25),(0.1,0.13,0.17,0.2) 

 

Table 6: Weighted Decision Matrix for 𝐶4, 𝐶5, and 𝐶6 

 C4 C5 C6 

A1 (0.24,0.28,0.31,0.33),(0.02,0.06,0.09,0.12) (0.21,0.24,0.28,0.31),(0.06,0.09,0.12,0.16) (0.08,0.11,0.15,0.18),(0.18,0.21,0.24,0.28) 

A2 (0.21,0.24,0.28,0.31),(0.06,0.09,0.12,0.16) (0.17,0.2,0.23,0.27),(0.1,0.13,0.17,0.2) (0.2,0.23,0.27,0.3),(0.07,0.1,0.13,0.17) 

A3 (0.24,0.28,0.31,0.33),(0.02,0.06,0.09,0.12) (0.2,0.23,0.27,0.3),(0.07,0.1,0.13,0.17) (0.17,0.2,0.23,0.27),(0.1,0.13,0.17,0.2) 

A4 (0.17,0.2,0.23,0.27),(0.1,0.13,0.17,0.2) (0.23,0.27,0.3,0.33),(0.03,0.07,0.1,0.13) (0.2,0.23,0.27,0.3),(0.07,0.1,0.13,0.17) 

A5 (0.23,0.27,0.3,0.33),(0.03,0.07,0.1,0.13) (0.17,0.2,0.23,0.27),(0.1,0.13,0.17,0.2) (0.08,0.11,0.15,0.18),(0.18,0.21,0.24,0.28) 

A6 (0.2,0.23,0.27,0.3),(0.07,0.1,0.13,0.17) (0.08,0.11,0.15,0.18),(0.18,0.21,0.24,0.28) (0.17,0.2,0.23,0.27),(0.1,0.13,0.17,0.2) 
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A7 (0.2,0.23,0.27,0.3),(0.07,0.1,0.13,0.17) (0.18,0.21,0.24,0.28),(0.09,0.12,0.16,0.19) (0.18,0.21,0.24,0.28),(0.09,0.12,0.16,0.19) 

A8 (0.14,0.18,0.21,0.24),(0.11,0.15,0.18,0.21) (0.21,0.24,0.28,0.31),(0.06,0.09,0.12,0.16) (0.21,0.24,0.28,0.3) (0.05,0.09,0.12,0.15) 

A9 (0.14,0.17,0.21,0.24),(0.11,0.15,0.18,0.21) (0.19,0.22,0.26,0.29),(0.08,0.11,0.14,0.18) (0.17,0.2,0.24,0.27),(0.1,0.13,0.16,0.2) 

Since decision-making requires crisp values, we apply the defuzzification formula: 

Table 7: Defuzzification for 𝐶1, 𝐶2, and 𝐶3 

 C1 C2 C3 

A1 (0.535, 0.535, 0.53 , 0.535) (0.45 , 0.45 , 0.455, 0.45) (0.575, 0.575, 0.58 , 0.575) 

A2 (0.45 , 0.45 , 0.455, 0.45) (0.535, 0.535, 0.53 , 0.535) (0.525, 0.525, 0.52 , 0.525) 

A3 (0.575, 0.575, 0.58 , 0.575) (0.525, 0.525, 0.52 , 0.525) (0.535, 0.535, 0.53 , 0.535) 

A4 (0.61 , 0.61 , 0.61 , 0.605) (0.575, 0.575, 0.58 , 0.575) (0.61 , 0.61 , 0.61 , 0.605) 

A5 (0.575, 0.575, 0.58 , 0.575) (0.535, 0.535, 0.53 , 0.535) (0.565, 0.565, 0.57 , 0.565) 

A6 (0.45 , 0.45 , 0.455, 0.45) (0.565, 0.565, 0.57 , 0.565) (0.535, 0.535, 0.53 , 0.535) 

A7 (0.505, 0.505, 0.505, 0.505) (0.565, 0.565, 0.57 , 0.56) (0.485, 0.485, 0.49 , 0.485) 

A8 (0.59 , 0.59 , 0.59 , 0.59 ) (0.52 , 0.52 , 0.52 , 0.52) (0.565, 0.565, 0.57 , 0.565) 

A9 (0.575, 0.575, 0.58 , 0.575) (0.52 , 0.52 , 0.52 , 0.52) (0.525, 0.53 , 0.525, 0.525) 

 

Table 8: Defuzzification for 𝐶4, 𝐶5, and 𝐶6 

 C4 C5 C6 

A1 (0.61 , 0.61 , 0.61 , 0.605) (0.575, 0.575, 0.58 , 0.575) (0.45 , 0.45 , 0.455, 0.45) 

A2 (0.575, 0.575, 0.58 , 0.575) (0.535, 0.535, 0.53 , 0.535) (0.565, 0.565, 0.57 , 0.565) 

A3 (0.61 , 0.61 , 0.61 , 0.605) (0.565, 0.565, 0.57 , 0.565) (0.535, 0.535, 0.53 , 0.535) 

A4 (0.535, 0.535, 0.53 , 0.535) (0.6  , 0.6  , 0.6  , 0.6) (0.565, 0.565, 0.57 , 0.565) 

A5 (0.6  , 0.6  , 0.6  , 0.6) (0.535, 0.535, 0.53 , 0.535) (0.45 , 0.45 , 0.455, 0.45) 

A6 (0.565, 0.565, 0.57 , 0.565) (0.45 , 0.45 , 0.455, 0.45) (0.535, 0.535, 0.53 , 0.535) 

A7 (0.565, 0.565, 0.57 , 0.565) (0.545, 0.545, 0.54 , 0.545) (0.545, 0.545, 0.54 , 0.545) 

A8 (0.515, 0.515, 0.515, 0.515) (0.575, 0.575, 0.58 , 0.575) (0.58 , 0.575, 0.58 , 0.575) 

A9 (0.515, 0.51 , 0.515, 0.515) (0.555, 0.555, 0.56 , 0.555) (0.535, 0.535, 0.54 , 0.535) 

 

Delta-based aggregation is used in MCDM to regulate the best alternative by considering normalized decision values 

and a weighting factor. This approach follows defuzzification, meaning it works with crisp numerical values derived 

from fuzzy data. 
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The Delta values (0.2099, 0.1852, 0.1605, 0.1358, 0.1111, 0.0864, 0.061, 0.0370, 0.0123) represent differences 

between alternatives based on their weighted normalized scores. A smaller Delta value, such as 0.0123, indicates 

higher preference, while a larger Delta value, like 0.2099, suggests lower preference in decision-making. 

This matrix represents the final weights assigned to each criterion after normalization and weighting. The values for 

each criterion 𝐶1 𝑡𝑜 𝐶6 are given as: 

Table 9: Delta Based Aggregation (Weighted Normalized Decision Matrix) 

C𝟏 0.57117284 0.57117284 0.57302469 0.57012346 

C𝟐 0.55037037 0.55037037 0.55154321 0.5495679 

C𝟑 0.5654321 0.56574074 0.5667284 0.56438272 

C𝟒 0.5854321 0.58537037 0.58679012 0.58345679 

C𝟓 0.56858025 0.56858025 0.57067901 0.56858025 

C𝟔 0.55197531 0.55092593 0.55308642 0.55092593 

 

Table 10: Final Criteria Weight 

 Final Criteria Weight 

C𝟏 0.5714 

C𝟐 0.5505 

C𝟑 0.5656 

C𝟒 0.5853 

C𝟓 0.5691 

C𝟔 0.5517 

 

Relative Closeness ranking  

In MCDM, RC ranking is used to evaluate and prioritize alternatives in relation to an ideal solution. Weighted scores 

are produced, the option matrix is normalized, and each alternative is compared to the ideal and anti-ideal solutions. 

In the given data, each alternative A1 to A9 is assessed across six criteria (C𝟏 − C𝟔) with different performance 

values. The RC value indicates how close an alternative is to an ideal solution. A higher RC value signifies a better and 

more preferred alternative, while a lower RC value indicates a less favorable option. 

Table 11: Sample Data 

 
C𝟏 C𝟐 C𝟑 C𝟒 C𝟓 C𝟔 

A1 0.7 0.8 0.6 0.7 0.8 0.7 

A2 0.8 0.7 0.7 0.8 0.7 0.8 

A3 0.7 0.7 0.8 0.7 0.7 0.7 

A4 0.8 0.8 0.7 0.7 0.8 0.8 

A5 0.7 0.7 0.7 0.8 0.7 0.7 

A6 0.6 0.7 0.6 0.6 0.7 0.7 

A7 0.7 0.7 0.7 0.8 0.7 0.8 

A8 0.7 0.6 0.7 0.7 0.7 0.6 

A9 0.6 0.7 0.6 0.7 0.6 0.7 

 

Table 12: Relative Closeness Rank 
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Relative Closeness Rank 

A1 0.5542 6 

A2 0.5561 5 

A3 0.5729 4 

A4 0.5989 2 

A5 0.5775 3 

A6 0.4415 8 

A7 0.6352 1 

A8 0.372 9 

A9 0.4444 7 

The omega value provided is (0.35, 0.31, 0.34) 

 

Table 13: Sensitivity Analysis 

Omega Relative Closeness Rank 

(0.3,0.3, 0.4) 0.554 A7> A4> A5> A3> A2> A1> A9> A6> A8 

0.556 

0.5731 

0.5987 

0.5777 

0.4411 

0.6351 

0.3723 

0.4443 

(0.1, 0.5, 0.4) 0.553 A7> A4> A5> A3> A2> A1> A9> A6> A8 

0.5559 

0.5738 

0.5978 

0.5785 

0.4398 

0.6349 

0.3738 

0.4433 

(0.6, 0.2, 0.2) 0.5552 A7> A4> A5> A3> A2> A1> A9> A6> A8 

0.5561 

0.5723 

0.6 

0.5764 

0.4428 

0.6353 

0.37 

0.4453 

(0.1, 0.7, 0.2) 0.553 A7> A4> A5> A3> A2> A1> A9> A6> A8 

0.5557 
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0.5739 

0.5979 

0.5783 

0.4399 

0.6346 

0.3738 

0.4432 

 

4. CONCLUSION 

The study successfully applied the Trapezoidal Bipolar Fuzzy AHP and TOPSIS to assess and rank leading SaaS 

cloud service providers, including Zoho CRM, Google Workspace, Microsoft 365, Slack, Asana, Dropbox, Shopify, 

Zoom, and AWS. By prioritizing key MCDM aspects such as cost, ease of use, features, security, scalability, and 

customer support, the study provided a systematic decision-making framework for selecting the best SaaS provider. 

The Bhattacharya and Cosine operator-based enhancement improved decision-making accuracy under uncertainty. 

A Python-based experimental tool validated the approach, and sensitivity analysis confirmed its robustness and 

stability. The findings indicate that the proposed model effectively minimizes complexity in uncertain SaaS 

selection scenarios and enhances service consistency and accuracy. This study contributes to optimized cloud 

computing adoption, assisting businesses in making data-driven, reliable, and cost-effective SaaS selection 

decisions. 
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