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The classification of microscopic blood cell images is a vital component in 
medical diagnostics, as accurately identifying different cell types is crucial for 
diagnosing a range of hematological conditions. Traditional Convolutional 
Neural Networks (CNNs) are used for this goal due to their effectiveness in 
extracting spatial features. However, these models often encounter challenges 
in capturing the sequential patterns present in imaging data, leading to 
limitations in classification accuracy. In this study, we propose and evaluate a 
hybrid CNN-LSTM model that leverages the strengths of CNNs for feature 
extraction combined with Long Short-Term Memory (LSTM) networks for 
managing sequential dependencies. The dataset used in this study includes 
17,092 high-quality microscopic images of peripheral blood cells, classified 
into 8 categories: neutrophils, eosinophils, basophils, lymphocytes, 
monocytes, immature granulocytes, erythroblasts, and platelets, annotated by 
pathologists to ensure the dataset's reliability for model training and 
evaluation. Our experimental findings reveal a notable enhancement in 
classification accuracy using the hybrid CNN-LSTM model, which achieved an 
impressive accuracy rate of 98%. This is a substantial improvement compared 
to the 63% accuracy reached by the traditional CNN approach. The hybrid 
model's superior performance underscores its capability to effectively capture 
both spatial and sequential features, which are critical for the accurate 
classification of blood cell images. This study not only highlights the potential 
of hybrid architectures in advancing medical image classification but also 
establishes a new benchmark for future research in the field. The results 
suggest that integrating sequential learning mechanisms with conventional 
CNN frameworks could significantly improve classification accuracy, making 
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Introduction: 
Peripheral blood cells, comprising a diverse array of cellular components, are crucial indicators of an 
individual’s hematological health. These cells circulate in the bloodstream, performing vital functions 
such as immune defense, clot formation, etc. The precise classification of peripheral blood cells is 
essential for detecting a wide range of medical conditions, including infections, anemia, leukemias, and 
other hematological disorders. Given their critical role, peripheral blood cells are routinely examined in 
clinical laboratories, where variations in their number, size, and morphology can provide insights about 
the patient’s health [1]. 

Following are the types of peripheral blood cells [2]: 

- Neutrophils: These common white blood cells are essential for shielding the body against bacterial 
and fungal infections. 

- Eosinophils: These cells are involved in combating parasitic infections and allergic reactions and 
play a role in regulating inflammation. 

- Basophils: The least common type of granulocyte, basophils are involved in allergic reactions by 
releasing histamine and other substances during immune responses. 

- Lymphocytes: This varied group of white blood cells is critical for the adaptive immune response. 

- Monocytes: These cells are crucial for engulfing pathogens and presenting antigens to trigger 
immune responses. 

- Immature Granulocytes: Typically found in the bone marrow, these precursor cells may be present 
in peripheral blood during severe infections or bone marrow disorders. 

- Erythroblasts: It is essential in the process of erythropoiesis, the production of red blood cells 
(RBCs) within the bone marrow. 

- Platelets (Thrombocytes): These small cell fragments are vital for blood clotting and wound 
healing, playing a crucial role in preventing excessive bleeding. 

The traditional manual identification and classification of these cells under a microscope is a labor-
intensive and error-prone task requiring extensive expertise. Automated systems capable of accurately 
classifying these cells could significantly enhance diagnostic efficiency and reliability, alleviating the 
workload on clinical pathologists and improving patient outcomes [3]. 

Convolutional Neural Networks (CNNs) have been important regarding this transformation due to their 
capacity to autonomously extract and learn from spatial features in images. CNNs have been effectively 
utilized across a broad spectrum of medical imaging for the purpose of disease classification [4-6]. 
However, despite their proficiency in identifying spatial patterns, CNNs often face challenges in 
recognizing the sequential or temporal patterns that are also crucial in medical image data, such as the 
subtle variations in cell morphology that may signal disease. 

To overcome this limitation, it has been proposed to combine CNNs with Long Short-Term Memory 
(LSTM) networks. LSTM networks are very effective at processing sequential data by capturing long-
range dependencies and retaining information over time, making them ideal for tasks that involve 
temporal or sequential patterns. By integrating CNNs with LSTM networks, these models leverage the 
advantages of both architectures, CNNs to extract spatial features and LSTMs for identifying sequential 
patterns [7-8]. 

Our work conducts a comparative analysis of two deep learning models for the efficient classification of 
blood cells: a traditional CNN model and a hybrid CNN-LSTM model. The dataset utilized in this study 
comprises 17,092 high-resolution microscopic images of blood cells, classified into eight distinct 
categories. 

 

it a promising approach for developing robust automatic recognition systems 
for blood cell analysis. 
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Our experimental findings reveal a considerable performance difference between the two models. The 
hybrid CNN-LSTM model achieved an outstanding accuracy of 98%, significantly outperforming the 
traditional CNN model, which attained an accuracy of 63%. This significant enhancement highlights the 
importance of incorporating sequential learning mechanisms into classification tasks, particularly in 
medical contexts where accurate and precise classification is crucial for effective diagnosis and 
treatment. 

This paper is structured as follows: Section 2 details a review of related work in blood cell image 
classification. Section 3 details the dataset and the preprocessing techniques employed. Section 4 
outlines the methodology and implementation of the CNN and CNN-LSTM models. Section 5 denotes 
the experimental results along with a discussion of their implications. At last, Section 6 concludes the 
paper and provides recommendations for future research directions. 

 

Related Work in the Field: 
Accurately classifying microscopic peripheral blood cells is crucial in hematology and diagnostic 
pathology. This process plays a key role in diagnosing various hematologic conditions, and managing 
patient care. Traditionally, blood cell classification has been performed manually by trained 
pathologists who examine stained blood smears under a microscope. However, manual analysis is time-
consuming, prone to variability among observers, and limited in scalability. To address these 
challenges, automated systems based on image processing have been developed to assist in blood cell 
classification. 

 

Traditional Image Processing Approaches 
Early efforts to automate blood cell classification relied heavily on traditional image processing 
techniques. These approaches typically involved manually extracting features, where domain experts 
defined characteristics such as cell shape, size, texture, and color to distinguish between different cell 
types. These features were then input into machine learning algorithms to perform classification. 
Despite some success, these methods were limited by their reliance on manually engineered features, 
which could not fully capture the complexity of blood cell morphology. Furthermore, the performance 
of these models often suffered from variability due to the subjective nature of feature selection. 

 

Emergence of Deep Learning and CNNs 
The emergence of deep learning has shown noticeable progress in the realm of medical imaging. CNNs 
possess the ability to automatically learn hierarchical features directly from raw input image data, which 
removes the necessity for manual feature extraction. This capability to derive significant insights from 
data has resulted in substantial enhancements in classification accuracy and generalizability [9-10]. 

Numerous studies have explored the application of CNNs for classifying blood cell images. One study 
focused on developing a CNN-framework tailored for white blood cell classification and demonstrated 
superior accuracy when compared to conventional machine learning methods [11]. Similarly, another 
study introduced a deep CNN model specifically for distinguishing between erythrocytes and 
leukocytes, resulting in significant improvements in both accuracy and processing speed over prior 
techniques [12]. 

Despite these advancements, CNNs are not without their limitations. While they excel at capturing 
spatial features, they may struggle to fully capture the sequential or contextual relationships within an 
image, especially in the case of blood cell classification, where the spatial arrangement of features such 
as the distribution of granules in granulocytes or the chromatin pattern in lymphocytes can be critical 
for accurate classification. This challenge has caused researchers to investigate hybrid models that 
integrate CNNs with other deep learning architectures to better capture these relationships. 

 

Hybrid CNN-LSTM Models 
Combining CNNs with Long Short-Term Memory (LSTM) networks has been explored in various fields 
to address the limitations of standalone CNNs. LSTMs are specifically engineered to capture 
dependencies in sequential data, making them ideal for tasks where temporal or contextual information 
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plays a critical role. When applied to image data, LSTMs can model the sequential relationships between 
features extracted by CNNs, leading to more accurate classifications [13]. 

Hybrid CNN-LSTM models have shown significant promise in medical imaging tasks that require both 
spatial and sequential analysis. For instance, one study applied a CNN-LSTM model to classify diabetic 
retinopathy, improving performance by effectively capturing the temporal progression of retinal 
changes [14]. Another study used a CNN-LSTM architecture to classify breast cancer histopathology 
images, demonstrating that the hybrid model significantly outperformed traditional CNNs [15]. 

Despite the success of hybrid models in various medical imaging tasks, their application to blood cell 
image classification has been relatively limited. This is surprising, given the advantages of combining 
CNNs and LSTMs to capture both the spatial structure of cells and the sequential dependencies between 
different regions of an image [16]. The present study aims to address this gap by comparing the 
performance of a traditional CNN model with that of a hybrid CNN-LSTM model for classifying 
microscopic peripheral blood cell images. 

 

Comparative Analysis in Blood Cell Classification 
Recent studies emphasize the importance of evaluating various deep learning model architectures for 
blood cell classification. For instance, CNNs and hybrid approaches, was conducted to classify 
leukocytes, revealing that hybrid models excel at improving classification accuracy [17]. Another study 
investigated the application of transfer learning with pre-trained CNNs for blood cell classification, 
demonstrating that although CNNs show strong performance, especially in handling class imbalances 
and subtle morphological differences [18]. 

Building on these findings, the current study introduces a novel contribution by applying a hybrid CNN-
LSTM model to the classification of peripheral blood cells. The dataset comprising over 17,000 images 
of normal blood cells provides a benchmark for assessing the effectiveness of different model 
architectures. The hybrid CNN-LSTM model developed in this study achieved an accuracy of 98%, 
significantly surpassing the traditional CNN model, which reached an accuracy of 63%. This result 
underscores the potential of hybrid models to capture the intricate morphological details and contextual 
relationships essential for accurate blood cell classification. 

The literature on blood cell image classification underscores the rapid progress enabled by deep 
learning, particularly CNNs. However, the limitations of CNNs in capturing sequential dependencies 
have led to the exploration of hybrid models that combine CNNs with LSTMs. By achieving higher 
accuracy rates, the hybrid CNN-LSTM model presents a promising avenue for developing more reliable 
and efficient automated blood cell classification systems, which could significantly impact diagnostic 
pathology [19]. 

 

Dataset Description 
The dataset used in this work is a carefully curated collection of microscopic peripheral blood cell 
images, specifically assembled to support the development of advanced blood cell classification models. 
It includes a total of 17,092 high-resolution images of individual normal blood cells at the Core 
Laboratory of the Hospital Clinic of Barcelona by applying the CellaVision DM96 analyzer [20]. The 
dataset is carefully organized into eight distinct categories of blood cells: neutrophils, eosinophils, 
basophils, lymphocytes, monocytes, immature granulocytes, erythroblasts, and platelets, as illustrated 
in Figure 1. 

The images are sized at 360 x 363 pixels in JPEG format. Expert clinical pathologists provided 
annotations, ensuring that the labels are both accurate and reliable. This dataset is particularly 
significant due to its focus on normal peripheral blood cells from healthy individuals. This emphasis on 
healthy cells makes the dataset an especially valuable reference for benchmarking machine learning 
models in the classification of normal blood cell types. 
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Figure 1: Microscopic Blood Cell Types 

 

 

Preprocessing Steps: 
Preprocessing is an important step in any machine learning, particularly in image classification tasks, 
as it prepares the raw data for effective model training and inference. In this study, several 
preprocessing steps were undertaken to ensure that the images were appropriately standardized and 
enhanced for the classification models [21]. Figure 2 represents the various operations of data 
preprocessing applied on microscopic blood cell images: 

 

 

 

Figure 2: Data Preprocessing Operations 

1. Normalization: 
Normalization is an essential preprocessing step that standardizes the pixel values to a consistent scale. 
This is done by dividing pixel value by 255, the highest possible value for an 8-bit image. This step is 
important to ensure that the neural network models operate on consistent data scales, thus facilitating 
more efficient learning during the training process. 

2. Resizing: 
Although the original images were uniformly sized at 360 x 363 pixels, resizing was necessary to ensure 
compatibility with the input dimensions required by the CNN architectures used in this study. The 
images were converted to 224 x 224 pixels required by pre-trained CNN models employed as feature 
extractors in the hybrid CNN-LSTM model. This resizing also helps reduce the computational load while 
preserving critical image details. 

3. Grayscale Conversion: 
Given that the primary focus of peripheral blood cell images is on morphology, converting images to 
grayscale can sometimes reduce computational complexity while retaining essential information. 
However, the images were stored in RGB format to preserve color information, which may be important 
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for distinguishing between certain cell types, such as eosinophils and basophils, which have unique 
staining characteristics. 

4. Label Encoding: 
The blood cell labels, which were initially in categorical format (e.g., neutrophil, lymphocyte), were 
transformed into numerical format using one-hot encoding. This encoding is vital for feeding the labels 
into the neural network during training, where each class is denoted by a vector with a '1' for the target 
class and '0' for all others. It is essential for multi-class classification to predict the probability 
distribution across different cell types. 

5. Splitting the Dataset: 
Datasets were split into training: 70%, validation: 15%, and testing: 15%. This splitting helps in fine-
tuning hyperparameters and assessing the model's performance. The split was performed in a stratified 
manner to ensure that each set had a representative distribution of all cell types, preventing any bias 
during training or evaluation. 

Methodology: 
 

1. CNN Model Architecture 
The Convolutional Neural Network (CNN) model features a straightforward, yet effective architecture 
tailored for the classification of blood cell images. The architecture consists of multiple fully connected 
layers, which are organized to sequentially extract and learn features that differentiate between various 
types of blood cells. Table 1 provides a detailed breakdown of each layer in the CNN model: 

  

Table 1: Configuration of CNN Model 

 

Overall, the CNN model contains 205,448 trainable parameters, making it a compact model with 
sufficient capacity to learn from the dataset. Despite its simplicity, the CNN model provides a solid 
baseline for comparison with more complex architectures as shown in figure 3: 
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Figure 3: CNN Architecture for Blood Cell Recognition 

 

Here are the key mathematical equations (1)-(4) for each of these components [22]: 

1. Convolution Operation: 

   The core operation in a CNN is the convolution, which is defined as: 

 

𝑍𝑖,𝑗,𝑘 = ∑ ∑ 𝑋𝑖+𝑚,𝑗+𝑛

𝑁−1

𝑛=0

𝑀−1

𝑚=0

⋅ 𝑊𝑚,𝑛,𝑘 + 𝑏𝑘  

(1) 

   - (𝑍𝑖,𝑗,𝑘) represents the feature map for the kth filter. 

   - (𝑋𝑖+𝑚,𝑗+𝑛) denotes the input patch. 

   - (𝑊𝑚,𝑛,𝑘) is the filter (or kernel) that is applied to the input patch.   

   - (𝑏𝑘) refers to the bias term associated with the kth filter.    

   - (𝑀 × 𝑁) indicates the dimensions of the filter. 

2. Activation Function (ReLU): 

   It adds non-linearity to model. In CNNs, Rectified Linear Unit (ReLU) is the most popular in this 
category, which is defined as: 

𝐴𝑖,𝑗,𝑘 = ReLU(𝑍𝑖,𝑗,𝑘) = max(0, 𝑍𝑖,𝑗,𝑘) 

(2) 

   - (𝐴𝑖,𝑗,𝑘) is the output after applying the ReLU function to the convolutional output (𝑍𝑖,𝑗,𝑘). 
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3. Pooling Operation (Max Pooling): 

   Pooling decreases spatial dimensions of the feature map, it is typically defined as: 

 

𝑃𝑖,𝑗,𝑘 = 𝑚𝑎𝑥𝑚∈[0,𝑀𝑝−1],𝑛∈[0,𝑁𝑝−1]𝐴𝑖+𝑚,𝑗+𝑛,𝑘 

3) 

   - (𝑃𝑖,𝑗,𝑘) is the pooled output for the (𝑘)-th channel. 

   - (𝑀𝑝 × 𝑁𝑝) is pooling window’s size. 

4. Fully Connected Layer: 

   The fully connected (dense) layers can be represented as: 

 

𝑦𝑖 = σ (∑ 𝑤𝑖𝑗

𝑛

𝑗=1

⋅ 𝑥𝑗 + 𝑏𝑖) 

(4) 

   - (𝑦𝑖) represents the output of the ith neuron. 

   - (𝑥𝑗) refers to the jth input from the preceding layer. 

   - (𝑤𝑖𝑗) denotes weight connecting jth input to the ith neuron. 

   - (𝑏𝑖) represents bias. 

   - (σ) is activation function, often ReLU or softmax for the output layer. 

 

2. Hybrid CNN-LSTM Model Architecture 
The hybrid CNN-LSTM model provides a more sophisticated approach by integrating spatial feature 
extraction strengths of Convolutional Neural Networks with the sequential dependency capturing 
capabilities of Long Short-Term Memory networks, as shown in Figure 4. This architecture is especially 
effective for tasks where recognizing the sequential relationships between features can improve 
classification accuracy [23].  

 

 

Figure 4: Hybrid CNN-LSTM Architecture for Blood Cell Recognition 

 

Below table is a detailed breakdown of the hybrid CNN-LSTM model architecture: 

   Table 2: Configuration of Hybrid CNN-LSTM Model 
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The hybrid CNN-LSTM model combines the CNN’s strength in capturing spatial features with the 
LSTM’s capability to capture temporal dependencies, resulting in a powerful architecture with a total of 
160,032 trainable parameters. This combination of layers enables the model to get a higher accuracy 
compared to the traditional CNN model by effectively learning both spatial and sequential patterns 
within the blood cell images. 

Here’s how you can mathematically represent the operations using equations (5)-(12) in this hybrid 
model [24]: 

 

1. Convolution Operation (Same as the CNN model): 

 

𝑍𝑖,𝑗,𝑘 = ∑ ∑ 𝑋𝑖+𝑚,𝑗+𝑛

𝑁−1

𝑛=0

𝑀−1

𝑚=0

⋅ 𝑊𝑚,𝑛,𝑘 + 𝑏𝑘  

(5) 

   This convolutional operation is applied to extract spatial features from the input image. 

 

2. LSTM Cell Operation: 

   LSTM layers are used to capture temporal dependencies in the sequences of features extracted by the 
CNN. The LSTM operations can be broken down into the following equations: 

   - Forget Gate: 
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𝑓𝑡 = σ(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

(6) 

     - (𝑓𝑡) represents activation vector of forget gate. 

     - (𝑊𝑓) refers to the weight matrix of forget gate. 

     - (ℎ𝑡−1) denotes the previous hidden state. 

     - (𝑥𝑡) is the current time stamp input. 

     - (𝑏𝑓) stands for the bias related to forget gate. 

 

   - Input Gate: 

𝑖𝑡 = σ(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

(7) 

𝐶𝑡̃ = tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) 

(8) 

     - (𝑖𝑡) denotes activation vector of input gate . 

     - (𝐶𝑡̃) is candidate cell state vector. 

     - (𝑊𝑖) and (𝑊𝐶) represent weight matrices to input gate and cell state, respectively. 

     - (𝑏𝑖) and (𝑏𝐶) are the bias terms for input gate and cell state. 

   - Updated Cell State: 

 

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ 𝐶𝑡̃ 

(9) 

     - (𝐶𝑡) is the updated state. 

     - (𝐶𝑡−1) is the previous state. 

 

   - Output Gate: 

𝑜𝑡 = σ(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

(10) 

ℎ𝑡 = 𝑜𝑡 ⋅ tanh(𝐶𝑡) 

(11) 

     - (𝑜𝑡) denotes output gate activation vector. 

     - (ℎ𝑡) hidden state, which serves as the LSTM's output for current time step. 

     - (𝑊𝑜) denotes weight matrix associated with output gate. 

     - (𝑏𝑜) refers to the bias for output gate. 

3. Combination of CNN and LSTM: 
The output from the CNN is reshaped and passed through the LSTM layers, where the LSTM processes 
the sequence of features extracted by the CNN and provide the final output for classification: 

Final Output = Softmax(𝑊𝑦 ⋅ ℎ𝑇 + 𝑏𝑦) 

(12) 
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   - (hT) represents hidden state of the LSTM. 

   - (𝑊𝑦) is weight matrix. 

   - (𝑏𝑦) denotes the output layer’s bias term. 

   - Softmax function transforms logits into probabilities for each class 

Experimental Results and Discussion: This part outlines the outcomes from applying two 
different deep learning models—a conventional Convolutional Neural Network (CNN) and a hybrid 
CNN-LSTM model—to classify microscopic blood cells images. We analyze the implications of these 
results with respect to model performance, robustness, and their practical applications in medical 
diagnostics. Furthermore, we offer an examination of the training and validation performance, 
supported by loss and accuracy graphs, along with confusion matrices that demonstrate the 
classification capabilities of the models. 

1. Performance Metrics: The models’ performance was evaluated using four key metrics: accuracy, 
precision, recall, and F1 score. Together, these metrics provide a comprehensive assessment of the 
models’ classification capabilities and overall effectiveness in handling the dataset, as detailed in Table 
3. 

Table 3: Comparison of CNN and LSTM Models Performance Parameters 

Parameters 
CNN Model 

Values 

Hybrid CNN-
LSTM Model 

Values 

Accuracy 63% 98% 

Precision 75% 98% 

Recall 60% 97% 

F-Measure 66.67% 97.50% 

 

2. Loss and Accuracy Graph 
To better understand the learning process of the CNN and hybrid CNN-LSTM models, we tracked the 
training and validation loss and accuracy over multiple epochs. The following observations were made: 

- CNN Model Training and Validation: 

  - The training accuracy started at a lower value and gradually increased over epochs, plateauing around 
63%. 

  - The validation accuracy followed a similar trend but showed more fluctuations, indicating potential 
overfitting. 

  - Training loss steadily decreased, while validation loss decreased initially but then plateaued and even 
slightly increased towards the end, further suggesting overfitting. 

- Hybrid CNN-LSTM Model Training and Validation: 

  - The training accuracy increased rapidly and reached a high value close to 98% within the early 
epochs. 

  - The validation accuracy also increased steadily, mirroring the training accuracy closely, and stabilized 
around 98%. 

  - Training loss decreased significantly and remained low throughout the training process, while 
validation loss followed a similar pattern, indicating a well-fitting model with good generalization 
capabilities. 

The following figures 5 and 6 depict loss and accuracy curves of training and validation for both models: 
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Figure 5: CNN Model: Loss and Accuracy Graphs for Training & Validation 

 

 

Figure 6: Hybrid CNN-LSTM Model: Loss and Accuracy Graphs for Training & 
Validation 

3. Analysis of Confusion Matrix 
 

To gain insight into the performance of the models, we analyzed the confusion matrices, which provide 
a detailed breakdown of the models' predictions across all classes: 

- CNN Model Confusion Matrix: 

  - The confusion matrix showed significant misclassifications across several classes. For example, 
certain blood cell types like neutrophils and lymphocytes were frequently confused with each other, 
contributing to the lower recall and F1 score. 

  - The model struggled particularly with the minority classes, where the number of samples was lower, 
leading to higher misclassification rates. 

- Hybrid CNN-LSTM Model Confusion Matrix: 

  - The confusion matrix exhibited near-perfect classification across all classes. The diagonal entries 
(true positives) were dominant, with very few off-diagonal entries (misclassifications). 

  - The model excelled in distinguishing between closely related cell types, demonstrating its ability to 
capture subtle differences and contextual information within the images. 

The confusion matrices offer a visual depiction of the model’s classification performance [25]: 
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1. CNN Model Confusion Matrix: 
Figure 7 shows the structure to the CNN model's confusion matrix with significantly lower accuracy:

 

Figure 7: Confusion Matrix of CNN Model 

 

2. Hybrid CNN-LSTM Model Confusion Matrix: 
   - Similarly structured to the CNN model's confusion matrix but with significantly higher accuracy and 
fewer misclassifications as shown in figure 8: 

 

 

Figure 8: Confusion Matrix of Hybrid CNN-LSTM Model 
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4. Analysis of the CNN Model Performance 
 

The traditional CNN model, though relatively straightforward in its architecture, achieved an accuracy 
((TP+TN)/(FP+FN)) of 63%, with a precision (TP/(TP+FP)) of 75%, recall (TP/(TP+FN)) of 60%, and 
an F1 score ((2*Recall*Precision)/(Recall+Precision)) of 66.67%. These results, while modest, highlight 
a few important characteristics of the model: 

- Accuracy and Recall: The accuracy of 63% indicates that the CNN model correctly classified a little 
over half of the microscopic blood cell images. The recall of 60% suggests that the model was somewhat 
conservative in its classification approach, missing a significant number of true positives (i.e., relevant 
instances correctly identified). 

- Precision: A precision of 75% indicates that when the CNN model predicted a specific blood cell type, 
it was correct 75% of the time. This relatively higher precision compared to recall implies that the model 
is more conservative, likely prioritizing specificity, which helps reduce false positives but may increase 
false negatives. 

- F-Measure: The F1 score of 66.67% reflects the balance between precision and recall. This score 
suggests that the overall effectiveness of the CNN model in accurately classifying and retrieving relevant 
images is somewhat limited. The F1 score, being closer to recall, indicates that the model has more 
challenges with recall than with precision. 

- Performance Analysis of the CNN Model: The performance of the CNN model relies on various factors 
including task complexity, the uniformity of the dataset, and the model's limitations in capturing 
sequential dependencies within the images—dependencies that are crucial for distinguishing between 
similar cell types. 

5. Analysis of the Hybrid CNN-LSTM Model Performance 
 

The hybrid CNN-LSTM model, by contrast, shows significant improvement across all performance 
metrics: 

- Accuracy: With an accuracy of 98%, the hybrid model accurately classified nearly all the images in the 
dataset. This high level of accuracy highlights the model's capability to understand complex patterns 
and dependencies, resulting in superior classification performance. 

- Precision and Recall: The model demonstrates exceptional performance, with precision at 98% and 
recall at 97%, indicating that it performs very well in both identifying relevant instances (recall) and 
minimizing false positives (precision). The high precision suggests reliability when the model predicts 
a particular class, while the high recall shows that it does not overlook many relevant instances. 

- F-Measure: The F1 score of 97.50% illustrates that the hybrid model is highly effective at both 
retrieving relevant images and minimizing incorrect classifications. 

The substantial improvement in performance metrics for the hybrid CNN-LSTM model compared to 
the traditional CNN model can be due to several critical factors: 

- Sequential Dependencies: The LSTM component of the hybrid model is tailored to capture sequential 
dependencies, which are crucial for tasks like blood cell classification where the spatial arrangement 
and contextual relationships within the image are significant. By combining CNNs with LSTMs, the 
model leverages both spatial and sequential information, leading to a deeper understanding of the 
image data. 

- Feature Representation: The CNN layers in the hybrid model effectively extract spatial features from 
the images, which are then processed by the LSTM layers to capture temporal dependencies. This 
combination enables the model to generate richer representations, ultimately improving classification 
accuracy. 

- Generalization: The hybrid model achieves high precision, recall, and F1 score suggests that it 
generalizes well to unseen data. This generalization is critical in medical imaging applications where 
the model needs to be reliable across diverse and potentially complex cases. 
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6. Implications of Findings 
The experimental results reveal several important implications for the development of deep learning 
models in medical imaging field: 

- Superiority of Hybrid Models: The stark contrast in performance between the CNN and hybrid CNN-
LSTM models underscores the importance of using models that can capture both spatial and sequential 
dependencies which makes it a strong candidate for real-world applications where reliability and 
accuracy are paramount. 

- Practical Utility in Diagnostics: The high performance of the hybrid model suggests that it could be 
effectively integrated into automated diagnostic systems, potentially assisting pathologists by providing 
accurate and consistent classification of blood cells. This could lead to more efficient workflows, reduce 
diagnostic errors, and support better patient outcomes. 

- Limitations of Simple CNN Models: While CNNs are powerful tools for image classification, their 
limitations in handling sequential data are evident from the results. For complex tasks such as blood 
cell classification, where understanding the relationships between different features is crucial, more 
sophisticated models like the CNN-LSTM hybrid are necessary. 

- Future Research Directions: The findings highlight the need for continued research into hybrid models 
and other advanced architectures that can further improve classification accuracy and robustness. 
Future work could explore the integration of attention mechanisms, ensemble methods, or other deep 
learning innovations to enhance model performance even further. 

In conclusion, the experimental outcomes highlight the better performance of the hybrid CNN-LSTM 
model compared to traditional CNN model in classifying microscopic peripheral blood cell images. The 
hybrid model's outstanding results across all evaluated metrics underscore its suitability for clinical 
applications, where both accuracy and reliability are paramount. It also represents the significance of 
choosing the correct model architecture. 

 

Conclusion: 
This study has examined the effectiveness of two distinct deep learning methods—a traditional 
Convolutional Neural Network (CNN) and a hybrid CNN-LSTM model—in classifying microscopic 
peripheral blood cell images. Through comprehensive experimentation and analysis, several key 
insights have been revealed including performance and potential applications of these models in 
medical domain. 

1. Summary of Key Findings 
The hybrid CNN-LSTM model denoted superior performance for evaluation metrics i.e., 98% as 
compared to the traditional CNN model i.e., 63%. These results highlight the significance of integrating 
sequential learning capabilities, as demonstrated by the LSTM component, to extract complex patterns 
and relationships. 

2. Implications for Medical Image Classification 
The outcomes show significant impacts for the medical image classification. The high performance of 
the hybrid CNN-LSTM model suggests its potential as a powerful tool for automated blood cell 
classification, which could assist pathologists in diagnosing and monitoring various hematologic 
conditions. By ensuring consistent and accurate classifications. 

3. Limitations and Future Work 
Despite these better results, this study has certain limitations that should be acknowledged. The dataset 
used consisted exclusively of images of normal blood cells from healthy individuals, which may not 
reflect the diversity of real-world clinical scenarios. Future research should expand on this study by 
including images of pathological blood cells and other hematologic abnormalities to assess the model’s 
robustness in more challenging conditions. 

Additionally, although the hybrid CNN-LSTM model performed exceptionally well, further research 
could explore the integration of additional deep learning techniques, such as attention mechanisms or 
transfer learning, to potentially enhance performance even more. Investigating ensemble methods, 
where multiple models are combined to improve classification accuracy, could also be a fruitful avenue 
for future research. 
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