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             Defect prediction in the early phases of the software development life cycle is 

a critical activity of the quality assurance process that has been extensively researched 

over the last two decades. Early detection of faulty modules in software development 

can assist the development team in making efficient and effective use of available 

resources to provide high-quality software products in a short period of time. The 

machine learning technique, which works by detecting hidden patterns among 

software features, is an excellent way to discover problematic modules. The results 

showed that Priority Based Fuzzy SVM yields 96% of accuracy while different defect 

datasets are taken into account compared to other techniques such as decision tree, 

PART, Random Forest, Naive Bayes and SVM. The mentioned existing techniques are 

used for prediction using same data sets which are taken for proposed work. 
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INTRODUCTION 

Software defects undermine software quality and pose a serious threat to its reliability. While 

the size of the dataset is larger and more complicated as software development proceeds, making defects 

hide deeper and more difficult to uncover. As the software replicates, hidden defects might cause more 

server difficulties, ultimately in increased server implications when errors occur. Long-term research 

and practise have proven that the earlier software faults are discovered, the cheaper the cost of resolving 

them and the greater the amount of damage that may be restored. 

The cost of identifying and resolving problems in the early coding phase of software 

development is one to two orders of magnitude cheaper than the cost of finding and fixing defects in the 

later testing or release phase of software development. As a result, both academics and business are 

interested in detecting software flaws early and repairing them at a cheaper cost. In this context, reliable 

prediction of faulty modules during the early phases of software development has emerged as a major 

technological issue that must be addressed. In general, there are two types of software defect prediction: 

dynamic defect prediction and static defect prediction. 

A running system is usually required for static defect prediction. However, because the script is still 

not ready to implement, dynamically fault prediction is not applicable as during early coding stages of 

software development. Using approaches such as machine learning, static defect prediction may 

anticipate problematic modules in a software system without executing the programme. As a result, 

static defect prediction is perfect for detecting bugs in a programme at the early phases of software 

development. 
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Logistic regression, decision trees, Bayesian approaches, artificial neural networks, and support 

vector machine (SVM are examples of standard machine learning methods for static defect prediction. 

To develop a defect statistical method, these procedures require learning a large number of marker 

samples. However, marker samples must be made manually by studying the code, which takes time. 

Furthermore, obtaining numerous marker samples from a new project without a historical version is 

very hard when the amount of code in the early phases of development is already little. As a result, in 

the early phases of software development, defect prediction frequently encounters inadequate marker 

samples. 

This paper is organized as follows. In Section II, a detailed description of machine learning 

techniques involved in predicting software defects are given. Sections III describe the proposed 

framework for software prediction with different datasets. Experimental results are presented in 

Section IV. Finally, section V concludes the paper. 

LITERATURE SURVEY 

During testing activities, software defect prediction (SDP) is critical in the early phases of 

defect-free software development. SDP that is effective can assist test managers in locating problems 

and defect-prone software modules. This allows for the most efficient and cost-effective utilisation of 

limited software quality assurance resources. The problem of feature selection (FS) is difficult and has 

a polynomial time complexity. The total search space for a dataset with N features includes 2N feature 

subsets, implying that the technique requires an exponential running time to traverse all of these feature 

subsets. 

To address the issue of class imbalance, SMOTE-based oversampling techniques are frequently 

used in the field of SDP. Permutation is created when SMOTE-based oversampling methods are used 

[1]. However, because SMOTE-based interpolation techniques were popular baseline oversampling 

techniques, comparing the performance of SMOTE-based oversampling techniques to that of freshly 

presented approaches is suspicious and less compelling. They evaluated the performance of SMOTE-

based oversampling strategies empirically in their work. 

The author discovers that the performance of SMOTE-based oversampling algorithms is very 

unstable, and this instability has a detrimental influence on prediction model performance in terms of 

AUC, balance, and MCC on the KNN, SVM, RF, and DT classifiers. We present a series of robust 

SMOTE-based oversampling techniques to increase the stability of SMOTE-based oversampling 

techniques. Their methodologies were theoretically and experimentally confirmed to generate more 

stable and superior outcomes than SMOTE-based oversampling strategies. As a result, the authors 

advocate that stable SMOTE-based oversampling techniques be used as an effective substitute for 

SMOTE-based oversampling approaches. 

Pandey, S.K. et colleagues [2] ran 864 tests over three public datasets, analysing the noise 

endure for well-known SDP models. They have manually added noise ranging from 0% to 80%. They 

employed four baseline SDP approaches and trained them on noisy datasets. To avoid the problem of 

class imbalance, the author employed random sampling. They also proposed a strategy that can handle 

high levels of noise while still outperforming baseline solutions. They discovered that the suggested 

strategy outperforms baseline technology with noisy cases and unbalanced data. 

Software defect prediction using machine learning approaches is now regarded as one of the 

most promising research fields. Defect detection at an early stage of development can contribute to the 

delivery of high-quality software while utilising limited resources [3]. The purpose of this research is to 

conduct a comprehensive performance examination of several machine learning classification 

approaches on software defect prediction utilising 12 well used and publicly available NASA datasets. 

Nave Bayes (NB), Multi-Layer Perceptron (MLP), and other classification approaches are used (MLP). 
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Radial Basis Function (RBF), Support Vector Machine (SVM), K Nearest Neighbor (KNN), kStar (K*), 

One Rule (OneR), PART, Decision Tree (DT), and Random Forest are all examples of machine learning 

algorithms (RF). 

Precision, Recall, F-Measure, Accuracy, MCC, and ROC Area are some of the metrics taken from 

the confusion matrix that are used to evaluate performance. The results show that neither the Accuracy 

nor the ROC can be utilised as an effective performance metric since they did not respond to the class 

imbalance issue. 

Zhu, K et al [4] stated that when the data under examination contains a large number of 

characteristics, dimensionality reduction and deep learning can be advantageous. They want to enhance 

the neural network model in the future by adjusting different factors such as the number of hidden 

layers, neurons in each layer, optimizers, and the cost function. Various alternative strategies must be 

tried in order to reduce the dimensionality of the parameters, and according to current methodologies, 

altering the number of components used can also result in some improvement. They also plan to test 

other classifiers such as Naive Bayes, K-Nearest Neighbours, Kernel Support Vector Machines and 

ensemble techniques such as Random Forest and compare the results to those found by using Decision 

Tree classifier. 

GHOST is a novel approach that combines deep learning with two helpful expansions, 

according to Yedida, R et al [5]. (a) Loss functions that are weighted (b) a unique fuzzy sampling strategy 

(see 3.3). SMOTE (c) They proved the effectiveness of our technique on 10 defect prediction datasets 

utilising four metrics, as well as within project and cross-project defect prediction data as analysed by 

Wang et al. The authors compared their results to three baselines: (a) a conventional deep learner, (b) 

a prior state-of-the-art result in defect prediction using non-deep learning methods, and (c) a prior 

state-of-the-art result in extracting features from code using deep learning. 

Chen L et al [6] devised a unique technique for dealing with both class overlap and imbalance 

difficulties in SDP. To begin, using the neighbour cleaning procedure, the overlapping majority samples 

are deleted. After that, the number of classes is balanced using ensemble random under-sampling, and 

an effective prediction model is constructed. They picked nine extremely imbalanced datasets from a 

public SDP repository to evaluate their proposed model, and they ran a thorough empirical inquiry on 

current SDP models, including conventional classifiers, imbalance learning techniques, and data 

cleaning methods, in the trials. 

Hammouri et al [7] created many methods that make use of various datasets, metrics, and 

performance measurements. There were three machine learning techniques used: NB, DT, and ANNs. 

In the assessment approach, three genuine testing/debugging datasets are employed. To collect 

experimental findings, the metrics accuracy, precision, recall, F-measure, and RMSE are employed. The 

findings demonstrate that ML approaches are useful tools for forecasting future software difficulties. 

The results of the comparison indicated that the DT classifier outperformed the others. Furthermore, 

experimental findings indicated that employing ML technique gives superior prediction model 

performance than other approaches, such as linear AR and POWM model. 

Matloob F et al [8] utilised SLR to track the most current research advances in ensemble 

learning techniques for software fault prediction. Following a careful analysis of the most important 

research articles published in three well-known online libraries: ACM, IEEE, Springer Link, and Science 

Direct, this review is carried out. It is concluded that ensemble learning methodologies greatly 

outperformed individual classifiers. An assessment of the effects of feature selection procedures on 

ensemble learning is required. Furthermore, the variety of classifiers should be investigated while 

creating the ensemble model in order to increase the efficacy of the ensembles. 
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Iqbal, A., and Aftab et al [9] introduced a multi-filter feature selection based classification 

approach for software fault prediction. For defect prediction, the system makes use of Machine Learning 

Techniques (MLP). In addition, the framework leverages the oversampling approach to study the effect 

of class imbalance on classification performance. The experiment makes use of the following NASA 

MDPI cleaned datasets: "CM1, JM1, KC1, KC3, MC1, MC2, MW1, PC1, PC2, PC3, PC4, and PC5. The 

performance of the proposed framework is compared to that of ten well-known supervised classification 

approaches: "Nave Bayes (NB), Multi-Layer Perceptron (MLP), Radial Basis Function (RBF), Support 

Vector Machine (SVM), K Nearest Neighbor (KNN), kStar (K*), One Rule (OneR), PART, Decision Tree 

(DT), and Random Forest (RF)." 

The above discussion showed different methodologies carried out for defect prediction in the 

software dataset. In our proposed work, priority based fuzzy SVM is used for predicting defects in 

various data sets taken into account. The following section elaborates the proposed methodology, and 

results obtained for performance measures. 

METHODOLOGY 

The purpose of this research is to investigate and evaluate Machine Learning algorithms: Naive 

Bayes (NB), Random Forest, PART, Support Vector Machine (SVM) and Decision Tree (DT). The study 

demonstrates the accuracy and capabilities of the ML techniques are used in the prediction of software 

defects and give a comparison of the selected ML algorithms. The supervised machine learning 

algorithms endeavour to create an inferring function based on relationships and relationships between 

the system's known inputs and outputs labelled training data, allowing us to predict output values for 

fresh input data based on the inferring function obtained  

 

Fig 3.1 Flow Chart for Proposed Methodology 
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Fig 3.1 shows the flow of the proposed framework. It depicts that defected data set is taken as 

input. The data set having defections are predicted by priority based fuzzy SVM technique. If the error 

count is greater than zero the data set is defective otherwise non defective. 

A. Data Set Pre Processing  

The acquired data sets were pre-processed to prepare them for subsequent machine learning 

approaches. 

B. Apply Naive Bayes, Random Forest and SVM  

Naive Bayes (NB): NB is a simple and efficient probabilistic classifier based on the Bayes theorem 

and the independence assumption between features. NB is a family of algorithms based on a common 

premise, which asserts that the presence or lack of a certain characteristic of the class is unrelated to 

the presence or absence of any other features. 

Decision Tree (DT): DT is a common learning method used in data mining. DT refers to a hierarchal 

and predictive model which uses the item’s observation as branches to reach the item’s target value in 

the leaf. DT is a tree with decision nodes, which have more than one branch and leaf nodes, which 

represent the decision. 

The Naive Bayes Classifier is a basic and effective Classification method that aids in the 

development of rapid machine learning models capable of making quick predictions. It is a probabilistic 

classifier, which means it predicts based on an object's likelihood. A random forest algorithm is made 

up of several decision trees. The random forest algorithm generates a "forest" that is trained via bagging 

or bootstrap aggregation. Bagging is a meta-algorithm that increases the accuracy of machine learning 

algorithms using an ensemble approach. The outcome is determined by the (random forest) algorithm 

based on the predictions of the decision trees. It forecasts by averaging or averaging the output of several 

trees. The precision of the output improves as the number of trees grows. 

SVM is a supervised machine learning technique that may be used to solve classification and 

regression problems. Individual observation coordinates are used to calculate support vectors. The SVM 

classifier is a frontier that best distinguishes between the two classes (hyper-plane/line). The pre-

processed data sets are run through three machine learning algorithms: Naivy Bayes, Random Forest, 

and Support Vector Machine. 

C. Proposed Priority Based Fuzzy SVM  

The FSVM algorithm may assign fuzzy membership values to distinct samples to represent their 

relevance for their own class, with more significant samples receiving higher fuzzy membership values 

and less important samples receiving lower fuzzy membership values, such as outliers or noise. 

D. Performance Evaluation  

Classification accuracy, commonly known as the right classification rate, is one of the most 

important basic measures for evaluating the effectiveness of predictive models. It is used to calculate 

the proportion of correctly categorised cases to total occurrences. 

I. RESULTS AND DISCUSSIONS 

The used datasets in this study are three different datasets, namely DS1, DS2 and DS3. Accuracy 

(ACC) is the proportion of true results (both TP and TN) among the total number of examined instances. 

The best accuracy is 1, whereas the worst accuracy is 0. ACC can be computed by using the following 

formula: ACC = (TP + TN) / (TP + TN+ FP + FN) 
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The following table shows the accuracy values obtained for various machine learning 

algorithms used and for the dataset CM1. 

TABLE I ACCURACY FOR THE USED ML ALGORITHMS IN THE DATASET – CM1 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 4.1 Accuracy for the used ML algorithms in the dataset – CM1 

 

The following table shows the accuracy values obtained for various machine learning 

algorithms used and for the dataset KC1. 

TABLE II ACCURACY FOR THE USED ML ALGORITHMS IN THE DATASET – KC1 

Decision

Tree
PART

Random

Forest

Naive

Bayes
SVM

Priority

Based

Fuzzy

SVM

Accuracy 86.95 87.55 87.15 91.5 94.8 96
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Dataset -CM1

Algorithm name Accuracy 

Decision Tree 86.95 

PART 87.55 

Random Forest 87.15 

Naive Bayes 91.5 

SVM 94.8 

Priority Based Fuzzy SVM 96 

Algorithm name Accuracy 

Decision Tree 79.42 

PART 83.26 

Random Forest 79.14 
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Fig 4.2 Accuracy for the used ML algorithms in the dataset – KC1 

 

The following table shows the accuracy values obtained for various machine learning 

algorithms used and for the dataset KC2. 

TABLE III ACCURACY FOR THE USED ML ALGORITHMS IN THE DATASET – KC2 
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Naive Bayes 89.0 

SVM 91.0 

Priority Based Fuzzy SVM 93.29 

Algorithm name Accuracy 

Decision Tree 75.86 

PART 80.84 

Random Forest 75.86 

Naive Bayes 90.2 

SVM 89.9 

Priority Based Fuzzy SVM 93 
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Fig 4.3 Accuracy for the used ML algorithms in the dataset – KC2 

 

The following table shows the accuracy values obtained for various machine learning 

algorithms used and for the dataset KC2. 

TABLE IV ACCURACY FOR THE USED ML ALGORITHMS IN THE DATASET – PC1 
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Decision Tree 90.71 

PART 91.79 

Random Forest 91.43 

Naive Bayes 94.1 

SVM 96.4 

Priority Based Fuzzy SVM 97.47 
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Fig 4.4 Accuracy for the used ML algorithms in the dataset – PC1 

 

The Accuracy measures for applying DT, PART, Random Forest, NB, SVM and Priority Based 

Fuzzy SVM classifiers on CM1, KC1, KC2 and PC1 datasets are shown in Table I, II, III and IV. Results 

show that these ML algorithms can be used for defect prediction effectively with a good accuracy. The 

average accuracy values for all classifiers in the four datasets are more than 96%. 

CONCLUSION 

Software Defect prediction is a technique in which a prediction model is created in order to 

predict the future software faults based on data. Various approaches have been proposed using different 

datasets, different metrics and different performance measures. This paper evaluated the using of 

machine learning algorithms in software defect prediction problem. Machine learning techniques have 

been used, which are NB, DT, PART, Random Forest, SVM and Priority Based Fuzzy SVM. The 

evaluation process is implemented using three real testing/debugging datasets.  

Experimental results are collected based on accuracy measures. Results reveal that the ML 

techniques are efficient approaches to predict the future software defects. The comparison results 

showed that the Priority Based Fuzzy SVM classifier has the best results over the others. As a future 

work, we may involve deep learning techniques and provide an extensive comparison among them. 

Furthermore, adding more software metrics in the learning process is one possible approach to increase 

the accuracy of the prediction model. 

REFERENCES 

[1]. Feng, S., Keung, J., Yu, X., Xiao, Y. and Zhang, M., 2021. Investigation on the stability of SMOTE-

based oversampling techniques in software defect prediction. Information and Software 

Technology, 139, p.106662. 

[2]. Pandey, S.K. and Tripathi, A.K., 2021. An empirical study toward dealing with noise and class 

imbalance issues in software defect prediction. Soft Computing, 25(21), pp.13465-13492. 

[3]. Iqbal, A., Aftab, S., Ali, U., Nawaz, Z., Sana, L., Ahmad, M. and Husen, A., 2019. Performance 

analysis of machine learning techniques on software defect prediction using NASA 

datasets. International Journal of Advanced Computer Science and Applications, 10(5). 

Decision

Tree
PART

Random

Forest

Naive

Bayes
SVM

Priority

Based

Fuzzy

SVM

Accuracy 90.71 91.79 91.43 94.1 96.4 97.47

86

88

90

92

94

96

98
M

et
ri

cs
(%

)

Dataset -PC1



Journal of Information Systems Engineering and Management 
2025, 10(41s) 
e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  
 

 167 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

[4]. Zhu, K., Ying, S., Zhang, N. and Zhu, D., 2021. Software defect prediction based on enhanced 

metaheuristic feature selection optimization and a hybrid deep neural network. Journal of 

Systems and Software, 180, p.111026. 

[5]. Yedida, R. and Menzies, T., 2021. On the value of oversampling for deep learning in software 

defect prediction. IEEE Transactions on Software Engineering. 

[6]. Chen L, Fang B, Shang Z, Tang Y. Tackling class overlap and imbalance problems in software 

defect prediction. Software Quality Journal. 2018 Mar;26(1):97-125.  

[7]. Hammouri A, Hammad M, Alnabhan M, Alsarayrah F. Software bug prediction using machine 

learning approach. International journal of advanced computer science and applications. 2018 

Apr;9(2):78-83.  

[8]. Matloob F, Ghazal TM, Taleb N, Aftab S, Ahmad M, Khan MA, Abbas S, Soomro TR. Software 

Defect Prediction Using Ensemble Learning: A Systematic Literature Review. IEEE Access. 2021 

Jul 8.   

[9]. Iqbal, A. and Aftab, S., 2020. A Classification Framework for Software Defect Prediction Using 

Multi-filter Feature Selection Technique and MLP. International Journal of Modern Education 

& Computer Science, 12(1).  

[10]. Ali, A. and Gravino, C., 2019. A systematic literature review of software effort prediction using 

machine learning methods. Journal of software: evolution and process, 31(10), p.e2211. 

[11]. Prabha, C.L. and Shivakumar, N., 2020, June. Software defect prediction using machine learning 

techniques. In 2020 4th International Conference on Trends in Electronics and Informatics 

(ICOEI)(48184) (pp. 728-733). IEEE. 

[12]. Malhotra, R., 2016. An empirical framework for defect prediction using machine learning 

techniques with Android software. Applied Soft Computing, 49, pp.1034-1050. 

[13]. Jaiswal, A. and Malhotra, R., 2018. Software reliability prediction using machine learning 

techniques. International Journal of System Assurance Engineering and Management, 9(1), 

pp.230-244. 

[14]. Sharma, D. and Chandra, P., 2018. Software fault prediction using machine-learning techniques. 

In Smart computing and informatics (pp. 541-549). Springer, Singapore. 

[15]. Matloob, F., Ghazal, T.M., Taleb, N., Aftab, S., Ahmad, M., Khan, M.A., Abbas, S. and Soomro, 

T.R., 2021. Software defect prediction using ensemble learning: A systematic literature 

review. IEEE Access. 

[16]. Prabha, C.L. and Shivakumar, N., 2020, June. Software defect prediction using machine learning 

techniques. In 2020 4th International Conference on Trends in Electronics and Informatics 

(ICOEI)(48184) (pp. 728-733). IEEE. 

 


