
Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 158 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Software Defect Prediction across Multiple Datasets

using Classification Techniques

1Mrs. A. Priyadarshini, 2Dr. V. Krishnapriya

1Research Scholar, Sri Ramakrishna College of Arts &Science and Assistant Professor ,PSGR

Krishammal College for women, Coimbatore.

2Associate Professor &Head Department of Computer Science with Cognitive Systems, Sri

Ramakrishna College of Arts &Science, Coimbatore.

1ndpriya7@gmail.com

ARTICLE INFO ABSTRACT

Received: 17 Dec 2024

Revised: 14 Feb 2025

Accepted: 23 Feb 2025

 Defect prediction in the early phases of the software development life cycle is

a critical activity of the quality assurance process that has been extensively researched

over the last two decades. Early detection of faulty modules in software development

can assist the development team in making efficient and effective use of available

resources to provide high-quality software products in a short period of time. The

machine learning technique, which works by detecting hidden patterns among

software features, is an excellent way to discover problematic modules. The results

showed that Priority Based Fuzzy SVM yields 96% of accuracy while different defect

datasets are taken into account compared to other techniques such as decision tree,

PART, Random Forest, Naive Bayes and SVM. The mentioned existing techniques are

used for prediction using same data sets which are taken for proposed work.

Keywords: Defect Prediction, Fault Modules, Hidden Patterns, Machine Learning

INTRODUCTION

Software defects undermine software quality and pose a serious threat to its reliability. While

the size of the dataset is larger and more complicated as software development proceeds, making defects

hide deeper and more difficult to uncover. As the software replicates, hidden defects might cause more

server difficulties, ultimately in increased server implications when errors occur. Long-term research

and practise have proven that the earlier software faults are discovered, the cheaper the cost of resolving

them and the greater the amount of damage that may be restored.

The cost of identifying and resolving problems in the early coding phase of software

development is one to two orders of magnitude cheaper than the cost of finding and fixing defects in the

later testing or release phase of software development. As a result, both academics and business are

interested in detecting software flaws early and repairing them at a cheaper cost. In this context, reliable

prediction of faulty modules during the early phases of software development has emerged as a major

technological issue that must be addressed. In general, there are two types of software defect prediction:

dynamic defect prediction and static defect prediction.

A running system is usually required for static defect prediction. However, because the script is still

not ready to implement, dynamically fault prediction is not applicable as during early coding stages of

software development. Using approaches such as machine learning, static defect prediction may

anticipate problematic modules in a software system without executing the programme. As a result,

static defect prediction is perfect for detecting bugs in a programme at the early phases of software

development.

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 159 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Logistic regression, decision trees, Bayesian approaches, artificial neural networks, and support

vector machine (SVM are examples of standard machine learning methods for static defect prediction.

To develop a defect statistical method, these procedures require learning a large number of marker

samples. However, marker samples must be made manually by studying the code, which takes time.

Furthermore, obtaining numerous marker samples from a new project without a historical version is

very hard when the amount of code in the early phases of development is already little. As a result, in

the early phases of software development, defect prediction frequently encounters inadequate marker

samples.

This paper is organized as follows. In Section II, a detailed description of machine learning

techniques involved in predicting software defects are given. Sections III describe the proposed

framework for software prediction with different datasets. Experimental results are presented in

Section IV. Finally, section V concludes the paper.

LITERATURE SURVEY

During testing activities, software defect prediction (SDP) is critical in the early phases of

defect-free software development. SDP that is effective can assist test managers in locating problems

and defect-prone software modules. This allows for the most efficient and cost-effective utilisation of

limited software quality assurance resources. The problem of feature selection (FS) is difficult and has

a polynomial time complexity. The total search space for a dataset with N features includes 2N feature

subsets, implying that the technique requires an exponential running time to traverse all of these feature

subsets.

To address the issue of class imbalance, SMOTE-based oversampling techniques are frequently

used in the field of SDP. Permutation is created when SMOTE-based oversampling methods are used

[1]. However, because SMOTE-based interpolation techniques were popular baseline oversampling

techniques, comparing the performance of SMOTE-based oversampling techniques to that of freshly

presented approaches is suspicious and less compelling. They evaluated the performance of SMOTE-

based oversampling strategies empirically in their work.

The author discovers that the performance of SMOTE-based oversampling algorithms is very

unstable, and this instability has a detrimental influence on prediction model performance in terms of

AUC, balance, and MCC on the KNN, SVM, RF, and DT classifiers. We present a series of robust

SMOTE-based oversampling techniques to increase the stability of SMOTE-based oversampling

techniques. Their methodologies were theoretically and experimentally confirmed to generate more

stable and superior outcomes than SMOTE-based oversampling strategies. As a result, the authors

advocate that stable SMOTE-based oversampling techniques be used as an effective substitute for

SMOTE-based oversampling approaches.

Pandey, S.K. et colleagues [2] ran 864 tests over three public datasets, analysing the noise

endure for well-known SDP models. They have manually added noise ranging from 0% to 80%. They

employed four baseline SDP approaches and trained them on noisy datasets. To avoid the problem of

class imbalance, the author employed random sampling. They also proposed a strategy that can handle

high levels of noise while still outperforming baseline solutions. They discovered that the suggested

strategy outperforms baseline technology with noisy cases and unbalanced data.

Software defect prediction using machine learning approaches is now regarded as one of the

most promising research fields. Defect detection at an early stage of development can contribute to the

delivery of high-quality software while utilising limited resources [3]. The purpose of this research is to

conduct a comprehensive performance examination of several machine learning classification

approaches on software defect prediction utilising 12 well used and publicly available NASA datasets.

Nave Bayes (NB), Multi-Layer Perceptron (MLP), and other classification approaches are used (MLP).

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 160 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Radial Basis Function (RBF), Support Vector Machine (SVM), K Nearest Neighbor (KNN), kStar (K*),

One Rule (OneR), PART, Decision Tree (DT), and Random Forest are all examples of machine learning

algorithms (RF).

Precision, Recall, F-Measure, Accuracy, MCC, and ROC Area are some of the metrics taken from

the confusion matrix that are used to evaluate performance. The results show that neither the Accuracy

nor the ROC can be utilised as an effective performance metric since they did not respond to the class

imbalance issue.

Zhu, K et al [4] stated that when the data under examination contains a large number of

characteristics, dimensionality reduction and deep learning can be advantageous. They want to enhance

the neural network model in the future by adjusting different factors such as the number of hidden

layers, neurons in each layer, optimizers, and the cost function. Various alternative strategies must be

tried in order to reduce the dimensionality of the parameters, and according to current methodologies,

altering the number of components used can also result in some improvement. They also plan to test

other classifiers such as Naive Bayes, K-Nearest Neighbours, Kernel Support Vector Machines and

ensemble techniques such as Random Forest and compare the results to those found by using Decision

Tree classifier.

GHOST is a novel approach that combines deep learning with two helpful expansions,

according to Yedida, R et al [5]. (a) Loss functions that are weighted (b) a unique fuzzy sampling strategy

(see 3.3). SMOTE (c) They proved the effectiveness of our technique on 10 defect prediction datasets

utilising four metrics, as well as within project and cross-project defect prediction data as analysed by

Wang et al. The authors compared their results to three baselines: (a) a conventional deep learner, (b)

a prior state-of-the-art result in defect prediction using non-deep learning methods, and (c) a prior

state-of-the-art result in extracting features from code using deep learning.

Chen L et al [6] devised a unique technique for dealing with both class overlap and imbalance

difficulties in SDP. To begin, using the neighbour cleaning procedure, the overlapping majority samples

are deleted. After that, the number of classes is balanced using ensemble random under-sampling, and

an effective prediction model is constructed. They picked nine extremely imbalanced datasets from a

public SDP repository to evaluate their proposed model, and they ran a thorough empirical inquiry on

current SDP models, including conventional classifiers, imbalance learning techniques, and data

cleaning methods, in the trials.

Hammouri et al [7] created many methods that make use of various datasets, metrics, and

performance measurements. There were three machine learning techniques used: NB, DT, and ANNs.

In the assessment approach, three genuine testing/debugging datasets are employed. To collect

experimental findings, the metrics accuracy, precision, recall, F-measure, and RMSE are employed. The

findings demonstrate that ML approaches are useful tools for forecasting future software difficulties.

The results of the comparison indicated that the DT classifier outperformed the others. Furthermore,

experimental findings indicated that employing ML technique gives superior prediction model

performance than other approaches, such as linear AR and POWM model.

Matloob F et al [8] utilised SLR to track the most current research advances in ensemble

learning techniques for software fault prediction. Following a careful analysis of the most important

research articles published in three well-known online libraries: ACM, IEEE, Springer Link, and Science

Direct, this review is carried out. It is concluded that ensemble learning methodologies greatly

outperformed individual classifiers. An assessment of the effects of feature selection procedures on

ensemble learning is required. Furthermore, the variety of classifiers should be investigated while

creating the ensemble model in order to increase the efficacy of the ensembles.

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 161 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Iqbal, A., and Aftab et al [9] introduced a multi-filter feature selection based classification

approach for software fault prediction. For defect prediction, the system makes use of Machine Learning

Techniques (MLP). In addition, the framework leverages the oversampling approach to study the effect

of class imbalance on classification performance. The experiment makes use of the following NASA

MDPI cleaned datasets: "CM1, JM1, KC1, KC3, MC1, MC2, MW1, PC1, PC2, PC3, PC4, and PC5. The

performance of the proposed framework is compared to that of ten well-known supervised classification

approaches: "Nave Bayes (NB), Multi-Layer Perceptron (MLP), Radial Basis Function (RBF), Support

Vector Machine (SVM), K Nearest Neighbor (KNN), kStar (K*), One Rule (OneR), PART, Decision Tree

(DT), and Random Forest (RF)."

The above discussion showed different methodologies carried out for defect prediction in the

software dataset. In our proposed work, priority based fuzzy SVM is used for predicting defects in

various data sets taken into account. The following section elaborates the proposed methodology, and

results obtained for performance measures.

METHODOLOGY

The purpose of this research is to investigate and evaluate Machine Learning algorithms: Naive

Bayes (NB), Random Forest, PART, Support Vector Machine (SVM) and Decision Tree (DT). The study

demonstrates the accuracy and capabilities of the ML techniques are used in the prediction of software

defects and give a comparison of the selected ML algorithms. The supervised machine learning

algorithms endeavour to create an inferring function based on relationships and relationships between

the system's known inputs and outputs labelled training data, allowing us to predict output values for

fresh input data based on the inferring function obtained

Fig 3.1 Flow Chart for Proposed Methodology

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 162 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Fig 3.1 shows the flow of the proposed framework. It depicts that defected data set is taken as

input. The data set having defections are predicted by priority based fuzzy SVM technique. If the error

count is greater than zero the data set is defective otherwise non defective.

A. Data Set Pre Processing

The acquired data sets were pre-processed to prepare them for subsequent machine learning

approaches.

B. Apply Naive Bayes, Random Forest and SVM

Naive Bayes (NB): NB is a simple and efficient probabilistic classifier based on the Bayes theorem

and the independence assumption between features. NB is a family of algorithms based on a common

premise, which asserts that the presence or lack of a certain characteristic of the class is unrelated to

the presence or absence of any other features.

Decision Tree (DT): DT is a common learning method used in data mining. DT refers to a hierarchal

and predictive model which uses the item’s observation as branches to reach the item’s target value in

the leaf. DT is a tree with decision nodes, which have more than one branch and leaf nodes, which

represent the decision.

The Naive Bayes Classifier is a basic and effective Classification method that aids in the

development of rapid machine learning models capable of making quick predictions. It is a probabilistic

classifier, which means it predicts based on an object's likelihood. A random forest algorithm is made

up of several decision trees. The random forest algorithm generates a "forest" that is trained via bagging

or bootstrap aggregation. Bagging is a meta-algorithm that increases the accuracy of machine learning

algorithms using an ensemble approach. The outcome is determined by the (random forest) algorithm

based on the predictions of the decision trees. It forecasts by averaging or averaging the output of several

trees. The precision of the output improves as the number of trees grows.

SVM is a supervised machine learning technique that may be used to solve classification and

regression problems. Individual observation coordinates are used to calculate support vectors. The SVM

classifier is a frontier that best distinguishes between the two classes (hyper-plane/line). The pre-

processed data sets are run through three machine learning algorithms: Naivy Bayes, Random Forest,

and Support Vector Machine.

C. Proposed Priority Based Fuzzy SVM

The FSVM algorithm may assign fuzzy membership values to distinct samples to represent their

relevance for their own class, with more significant samples receiving higher fuzzy membership values

and less important samples receiving lower fuzzy membership values, such as outliers or noise.

D. Performance Evaluation

Classification accuracy, commonly known as the right classification rate, is one of the most

important basic measures for evaluating the effectiveness of predictive models. It is used to calculate

the proportion of correctly categorised cases to total occurrences.

I. RESULTS AND DISCUSSIONS

The used datasets in this study are three different datasets, namely DS1, DS2 and DS3. Accuracy

(ACC) is the proportion of true results (both TP and TN) among the total number of examined instances.

The best accuracy is 1, whereas the worst accuracy is 0. ACC can be computed by using the following

formula: ACC = (TP + TN) / (TP + TN+ FP + FN)

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 163 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

The following table shows the accuracy values obtained for various machine learning

algorithms used and for the dataset CM1.

TABLE I ACCURACY FOR THE USED ML ALGORITHMS IN THE DATASET – CM1

Fig 4.1 Accuracy for the used ML algorithms in the dataset – CM1

The following table shows the accuracy values obtained for various machine learning

algorithms used and for the dataset KC1.

TABLE II ACCURACY FOR THE USED ML ALGORITHMS IN THE DATASET – KC1

Decision

Tree
PART

Random

Forest

Naive

Bayes
SVM

Priority

Based

Fuzzy

SVM

Accuracy 86.95 87.55 87.15 91.5 94.8 96

82

84

86

88

90

92

94

96

98

m
et

ri
cs

(%
)

Dataset -CM1

Algorithm name Accuracy

Decision Tree 86.95

PART 87.55

Random Forest 87.15

Naive Bayes 91.5

SVM 94.8

Priority Based Fuzzy SVM 96

Algorithm name Accuracy

Decision Tree 79.42

PART 83.26

Random Forest 79.14

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 164 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Fig 4.2 Accuracy for the used ML algorithms in the dataset – KC1

The following table shows the accuracy values obtained for various machine learning

algorithms used and for the dataset KC2.

TABLE III ACCURACY FOR THE USED ML ALGORITHMS IN THE DATASET – KC2

Decision

Tree
PART

Random

Forest

Naive

Bayes
SVM

Priority

Based

Fuzzy

SVM

Accuracy 79.42 83.26 79.14 89 91 93.29

70

75

80

85

90

95

M
et

ri
cs

(%
)

Dataset -KC1

Naive Bayes 89.0

SVM 91.0

Priority Based Fuzzy SVM 93.29

Algorithm name Accuracy

Decision Tree 75.86

PART 80.84

Random Forest 75.86

Naive Bayes 90.2

SVM 89.9

Priority Based Fuzzy SVM 93

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 165 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Fig 4.3 Accuracy for the used ML algorithms in the dataset – KC2

The following table shows the accuracy values obtained for various machine learning

algorithms used and for the dataset KC2.

TABLE IV ACCURACY FOR THE USED ML ALGORITHMS IN THE DATASET – PC1

Decision

Tree
PART

Random

Forest

Naive

Bayes
SVM

Priority

Based

Fuzzy

SVM

Accuracy 75.86 80.84 75.86 90.2 89.9 93

0

10

20

30

40

50

60

70

80

90

100

M
et

ri
cs

(%
)

Dataset -KC2

Algorithm name Accuracy

Decision Tree 90.71

PART 91.79

Random Forest 91.43

Naive Bayes 94.1

SVM 96.4

Priority Based Fuzzy SVM 97.47

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 166 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Fig 4.4 Accuracy for the used ML algorithms in the dataset – PC1

The Accuracy measures for applying DT, PART, Random Forest, NB, SVM and Priority Based

Fuzzy SVM classifiers on CM1, KC1, KC2 and PC1 datasets are shown in Table I, II, III and IV. Results

show that these ML algorithms can be used for defect prediction effectively with a good accuracy. The

average accuracy values for all classifiers in the four datasets are more than 96%.

CONCLUSION

Software Defect prediction is a technique in which a prediction model is created in order to

predict the future software faults based on data. Various approaches have been proposed using different

datasets, different metrics and different performance measures. This paper evaluated the using of

machine learning algorithms in software defect prediction problem. Machine learning techniques have

been used, which are NB, DT, PART, Random Forest, SVM and Priority Based Fuzzy SVM. The

evaluation process is implemented using three real testing/debugging datasets.

Experimental results are collected based on accuracy measures. Results reveal that the ML

techniques are efficient approaches to predict the future software defects. The comparison results

showed that the Priority Based Fuzzy SVM classifier has the best results over the others. As a future

work, we may involve deep learning techniques and provide an extensive comparison among them.

Furthermore, adding more software metrics in the learning process is one possible approach to increase

the accuracy of the prediction model.

REFERENCES

[1]. Feng, S., Keung, J., Yu, X., Xiao, Y. and Zhang, M., 2021. Investigation on the stability of SMOTE-

based oversampling techniques in software defect prediction. Information and Software

Technology, 139, p.106662.

[2]. Pandey, S.K. and Tripathi, A.K., 2021. An empirical study toward dealing with noise and class

imbalance issues in software defect prediction. Soft Computing, 25(21), pp.13465-13492.

[3]. Iqbal, A., Aftab, S., Ali, U., Nawaz, Z., Sana, L., Ahmad, M. and Husen, A., 2019. Performance

analysis of machine learning techniques on software defect prediction using NASA

datasets. International Journal of Advanced Computer Science and Applications, 10(5).

Decision

Tree
PART

Random

Forest

Naive

Bayes
SVM

Priority

Based

Fuzzy

SVM

Accuracy 90.71 91.79 91.43 94.1 96.4 97.47

86

88

90

92

94

96

98
M

et
ri

cs
(%

)

Dataset -PC1

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 167 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

[4]. Zhu, K., Ying, S., Zhang, N. and Zhu, D., 2021. Software defect prediction based on enhanced

metaheuristic feature selection optimization and a hybrid deep neural network. Journal of

Systems and Software, 180, p.111026.

[5]. Yedida, R. and Menzies, T., 2021. On the value of oversampling for deep learning in software

defect prediction. IEEE Transactions on Software Engineering.

[6]. Chen L, Fang B, Shang Z, Tang Y. Tackling class overlap and imbalance problems in software

defect prediction. Software Quality Journal. 2018 Mar;26(1):97-125.

[7]. Hammouri A, Hammad M, Alnabhan M, Alsarayrah F. Software bug prediction using machine

learning approach. International journal of advanced computer science and applications. 2018

Apr;9(2):78-83.

[8]. Matloob F, Ghazal TM, Taleb N, Aftab S, Ahmad M, Khan MA, Abbas S, Soomro TR. Software

Defect Prediction Using Ensemble Learning: A Systematic Literature Review. IEEE Access. 2021

Jul 8.

[9]. Iqbal, A. and Aftab, S., 2020. A Classification Framework for Software Defect Prediction Using

Multi-filter Feature Selection Technique and MLP. International Journal of Modern Education

& Computer Science, 12(1).

[10]. Ali, A. and Gravino, C., 2019. A systematic literature review of software effort prediction using

machine learning methods. Journal of software: evolution and process, 31(10), p.e2211.

[11]. Prabha, C.L. and Shivakumar, N., 2020, June. Software defect prediction using machine learning

techniques. In 2020 4th International Conference on Trends in Electronics and Informatics

(ICOEI)(48184) (pp. 728-733). IEEE.

[12]. Malhotra, R., 2016. An empirical framework for defect prediction using machine learning

techniques with Android software. Applied Soft Computing, 49, pp.1034-1050.

[13]. Jaiswal, A. and Malhotra, R., 2018. Software reliability prediction using machine learning

techniques. International Journal of System Assurance Engineering and Management, 9(1),

pp.230-244.

[14]. Sharma, D. and Chandra, P., 2018. Software fault prediction using machine-learning techniques.

In Smart computing and informatics (pp. 541-549). Springer, Singapore.

[15]. Matloob, F., Ghazal, T.M., Taleb, N., Aftab, S., Ahmad, M., Khan, M.A., Abbas, S. and Soomro,

T.R., 2021. Software defect prediction using ensemble learning: A systematic literature

review. IEEE Access.

[16]. Prabha, C.L. and Shivakumar, N., 2020, June. Software defect prediction using machine learning

techniques. In 2020 4th International Conference on Trends in Electronics and Informatics

(ICOEI)(48184) (pp. 728-733). IEEE.

