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Securing virtualized infrastructures is a critical challenge in cloud computing due 

to dynamic resource allocation and sophisticated cyberattacks. Traditional 

intrusion detection systems (IDS) often fall short in addressing cloud-specific 

requirements such as scalability, elasticity, and diverse attack vectors. This work 

introduces CloudIDS, an intrusion detection system tailored for cloud 

environments. CloudIDS employs Principal Component Analysis (PCA) to extract 

key features from network traffic and applies Change Point Models (CPMs), 

including Mann-Whitney and Cramer-von-Mises statistics, to detect abrupt shifts 

in network behavior indicative of attacks. 

Two Riemannian-based sliding window algorithms—chunking and rolling—enable 

the detection of stable and transient patterns in virtual machine (VM) traffic. 

Experiments using the ISOT-CID dataset, which covers various attack types (e.g., 

scanning, dictionary attacks, reconnaissance, and denial-of-service), demonstrate 

that CloudIDS achieves high detection accuracy with minimal delay compared to 

conventional methods. Parameter tuning, particularly Average Run Length (ARL0) 

and startup length, reveals trade-offs between detection speed and false positives. 

An ablation study further validates the critical roles of PCA feature extraction and 

Riemann-based windowing. 

CloudIDS presents a flexible, adaptive solution for intrusion detection in cloud 

environments. Future work will focus on integrating real-time monitoring, 

reinforcement learning-based adaptation, and contextual metadata to further 

enhance detection performance accuracy. 

Keywords: Cloud Computing, Intrusion Detection System, Network Security, 

Security, Anomaly Detection 

 

Introduction 

Cloud computing has changed how organizations provide, scale, and pay for compute and storage, 

but its multi‑tenant, elastic fabric also expands the attack surface. Traffic volumes are orders of 

magnitude greater than in conventional data centers, virtual machines (VMs) can be spun up and down 

in a matter of seconds, and security responsibility is shared between cloud providers and tenants [1]. In 

this environment, Intrusion Detection Systems (IDS) continue to be an essential line of defense, tasked 

with identifying policy breaches, malware, and zero‑day attacks in real time. Even after decades of IDS 

research, the majority of signature bases and learning pipelines were built for static, single‑tenant 

networks. Simply transplanting them to the cloud tends to produce unaffordable false positives, 

east‑west traffic blind spots, and virtual switch performance bottlenecks [2]. As a result, the community 

still does not have an integrated framework that (a) models cloud‑specific attack vectors like VM‑escape 
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or hypervisor tampering, (b) can scale with burst workloads, and (c) minimizes overhead. The absence 

of the integrated framework motivates this research. 

 There are three detection methods, misuse, anomaly, and hybrid, are complimentary philosophies of 

detecting intrusions: 

• Misuse (Signature Based) Detection: Fast and precise for known malware but blind to zero 

days or polymorphic variants without constant updates—problematic in dynamic cloud 

workloads [3]. 

• Anomaly-Based Detection: Learns “normal” behavior and flags deviations, catching novel or 

insider attacks, but elastic cloud scaling can appear malicious, causing false alarms unless 

baselines adapt [4], [5]. 

• Hybrid Detection: Chain's signature filtering with anomaly analytics to boost both precision 

and recall; effective but requires careful threshold tuning and resource management to avoid 

excessive overhead on multi-tenant hosts [6]. 

The where of intrusion detection is as consequential as the how, because the vantage point 

dictates what telemetry an IDS can observe and how much overhead it imposes. 

• Host based IDS (HIDS) reside within every VM's OS, providing rich, syscall level insight into 

file access, privilege raises, or kernel hooks; such fine-grained granularity is optimal for 

detecting insider attacks or rootkits, but the sensor fights with the tenant's CPU cycles and 

can be disabled itself if the VM has been compromised [7]. 

• Network-based IDS (NIDS) relocate the sensor to virtual or physical firewalls, switches, or 

cloud gateways, monitoring packet flows across several tenants. This wide span renders NIDS 

highly appropriate for volumetric attack detection, worm spreading, and east-west 

movement but threatens to suffocate deep packet inspection engines with encrypted traffic 

and raw throughput unless offloaded to smart NICs or based on flow-level metadata [8]. 

• Hypervisor-based IDS is deeply integrated into the virtual machine monitor (such as Xen's 

Dom0 or KVM's host kernel modules), providing privileged views of inter-VM traffic and low-

level activity without traversing guest OSes. From this "golden" vantage point, they maintain 

tenant isolation without being easily tampered with, but they have to be surgically light in 

order not to balloon VM scheduling latency and have to be hardened against hypervisor 

escape exploits themselves [9]. 

• VM based IDS create a single sensor VM that consumes mirrored traffic or logs from adjacent 

instances; this approach makes lifecycle management easier—operators can patch or scale 

the sensor without handling production VMs—but relies on proper traffic mirroring and adds 

additional bandwidth overhead, possibly dropping intra host packets if virtual taps are not 

properly configured. Practically, cloud vendors tend to interweave a multi-layer fabric, 

hypervisor monitors for low overhead baselining, selective host agents for high value 

workloads, and edge NIDS for coarse traffic shaping—to strike a balance between coverage, 

performance, and operational complexity [10], [11]. 

When these models of IDS deployments are being replanted in active cloud environments, four real-

world challenges continue to resurface. First, the sheer volume and speed of virtualized networks, 

hypervisors processing millions of packets per second, render the possibility of capturing all traffic 

retrospectively impossible, and sensors have to examine streams in real-time. Second, elastic topology 

fluctuations like auto scaling groups, serverless functions, and transient containers make legitimate 

traffic baselines fluctuate erratically, bewildering anomaly detectors that assume steady "normal" 

profiles. Third, resource competition is a real risk: an IDS that commandeers CPU, RAM, or I/O 
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bandwidth eliminates the very performance flexibility and cost savings cloud tenants are seeking. Lastly, 

data privacy and multi-tenancy limit deep packet inspection; sensors have to respect isolation borders 

and regulatory requirements, which might hinder payload visibility and make it more difficult for cross-

tenant threat hunting. 

This paper presents Cloud-based Intrusion Detection System (CloudIDS), an unsupervised, online 

intrusion detection system that operates within the hypervisor and identifies abrupt behavior changes in 

high-speed packet streams through sequential change point analysis. The system isolates cloud-unique 

traffic features, removes redundancy with principal component analysis, and subsequently employs 

light-weight, monitors without labelled data or deep payload inspection. Proven on the public ISOT CID 

dataset, CloudIDS detects scanning, dictionary, and insider attacks in minutes and does so with minimal 

overhead on hypervisor resources. 

The contributions of this research are focused on the design and development of CloudIDS, an online, 

unsupervised cloud-based hypervisor-level intrusion detection system. CloudIDS utilizes sequential 

change point detection methods to detect abrupt changes in cloud network behavior without requiring 

labeled data or deep packet inspection. It proposes cloud-specific feature extraction with Principal 

Component Analysis (PCA) to reduce feature redundancy and facilitate real-time detection with low 

resource overhead. In contrast to conventional batch analysis methods, CloudIDS employs non-

parametric sequential change point models, including the CPM framework, to facilitate real-time 

anomaly detection in high-speed network streams. The system integrates effective windowing 

techniques, such as Riemann chunking and rolling windows, to optimize detection accuracy, latency, and 

computational performance, thereby being appropriate for dynamic, large-scale cloud environments. 

Deployed at the hypervisor level without touching guest VMs, CloudIDS provides end-to-end visibility 

into internal and external traffic and preserves tenant isolation and privacy. Its light-weight design 

imposes zero CPU and memory overhead, making it possible to deploy even in high-performance cloud 

environments (e.g., 40 Gbps environments). The system was empirically evaluated on the ISOT-CID 

public cloud intrusion dataset with fast and accurate detection of various attacks within sub-minute 

latency. Lastly, a prototype deployment in a production OpenStack cluster at Compute Canada West 

validated the real-world practicality and efficacy of CloudIDS in multi-tenant cloud environments. 

The remainder of the paper is structured as follows: Section 2 is a discussion of the state-of-the-

artwork in the area of intrusion detection systems for cloud environments. Section 3 is a description of 

the different change point detection algorithms used in the CloudIDS framework. Section 4 gives an 

overview of the overall framework of cloud-based intrusion detection. Section 5 discusses the feature 

extraction process from cloud network traffic, while Section 6 presents the computation of such features. 

Section 7 gives information regarding the implementation of the presented framework. Section 8 reports 

the experimental results and analyzes the performance of the system for different attack scenarios. 

Section 9 is reserved for the ablation study, analyzing the effect of various components and parameters 

on the performance of the system. Section 10 concludes the paper and provides directions for future 

research in the area.  

Related Work 

Cloud-based Intrusion Detection Systems (IDS) are now critical to protecting cloud computing 

environments, where dynamic resource allotment and multi-tenant architecture impose new threats. 

Signature-based and anomaly-based methods of IDS that have been used in traditional settings are too 

often inadequate to identify continually changing and sophisticated threats in cloud environments. This 

has resulted in increasing interest in combining Machine Learning (ML) and Deep Learning (DL) 

methods to improve the adaptability and precision of IDS in cloud computing. Recent research has 

investigated the use of ML and DL for intrusion detection with datasets such as KDDCup99, suggesting 

classification, clustering, and hybrid models to overcome issues such as high false positive rates and poor 

detection of zero-day attacks. This survey emphasizes major breakthroughs in cloud-based IDS, their 
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shortcomings, and provides the ground for creating stronger, scalable, and smarter intrusion detection 

systems for cloud infrastructure. 

Intrusion Detection Systems (IDS) are crucial to detect unauthorized behavior from outside. IDS is 

crucial to detect numerous types of attacks, defining intrusion detection as a classification problem. 

Typical categories include Denial of Service (DoS), probe, User to Root (U2R), Remote to Local (R2L), 

and normal traffic. IDS mechanisms typically fall into two broad categories: signature-based and 

anomaly-based [12]. Signature-based methods are efficient in discovering known attacks and generally 

have a low false positive rate. But they become ineffective in identifying new or zero-day attacks because 

they are based on pre-known patterns. They need frequent updates, so they are time-consuming to 

maintain. Anomaly-based IDS, on the other hand, can detect known and unknown threats, such as zero-

day exploits [13]. Even with this benefit, they tend to have extremely high false positive rates and are 

sensitive to tuning. Intelligent and adaptive solutions are needed in the face of mounting numbers and 

sophistication of cyberattacks. To avoid these issues, we suggest the application of machine learning-

based classification as well as clustering techniques. Classification models are trained on completely 

labeled sets of data, whereas clustering algorithms can identify patterns in unlabeled data without 

needing the data to be labeled first. 

Over the last few years, a lot of research has gone into the application of machine learning methods 

to Intrusion Detection Systems (IDS). In [14], Support Vector Machines (SVMs) have been used to 

identify anomalies in the KDD dataset. Also, in [15], deep learning-based artificial neural networks have 

been proposed to build IDS models for anomaly detection on the same dataset. Their findings reported 

good detection accuracy and low false alarm rate, which surpassed many other existing techniques. The 

work in [16] proposed cascading classifiers to detect and classify outliers in the KDD dataset, even when 

the data was not uniformly distributed. In [17], the utilization of decision tree and random forest (RF) 

for anomaly detection was utilized, whereas [18] aimed to design a decision tree classifier for accurate 

intrusion detection and proved its efficacy through experimental evaluation on two datasets. This 

method exhibited better results in terms of Accuracy (ACC), Detection Rate (DR), and False Alarm Rate 

(FAR) compared to other approaches. Also, [19] suggested blending several machine learning algorithms 

into a hybrid framework, for which experimental results indicated that hybrid models perform better 

than single algorithms. Exhaustive surveys of machine learning-based IDS approaches are available in 

[20]. 

Some recent research studies have tried to improve upon the shortcomings of classic models. For 

example, [21] proposed a four-layer classification method to differentiate between four attack types in 

the KDD dataset with low overall and misclassification errors. In addition, they proposed reducing the 

feature size of the original dataset to improve accuracy and reduce computational complexity. Yet, 

mislabeled attack types were still not resolved. Conversely, [22] used multiple supervised, unsupervised, 

and outlier detection algorithms on the same data set with lower overall accuracy because attacks were 

misclassified. Anomaly detection and classification approaches based on machine learning have found 

widespread use with the KDD data set, with four differentiated types of attacks with considerably 

dissimilar traffic patterns. In [23], misclassification errors for classification techniques based on the KDD 

data set were low. However, such models might encounter problems when operating in dynamic multi-

cloud settings, whose attack behaviors are more intricate and interwoven. In addition, the outdated 

KDDCup99 dataset would probably not capture existing network traffic and threats anymore [24]. As 

explained in [14], SVM has been utilized in data mining for predictive analytics with the use of the 

KDDCup99 IDS database for classification purposes based on neural networks. The model obtained 90% 

accuracy on the training set and 80% accuracy through 10-fold cross-validation on the test set. The 

literature discusses a wide range of classification and clustering methods, as well as unsupervised 

learning methods. The overall detection accuracy, however, falls short due to the misclassification of 

some attack types. We thus suggest the use of hybrid machine learning models to overcome these 

limitations and improve IDS performance. 
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While every cloud service model possesses inherent benefits, each also faces specific challenges. 

Virtualization becomes a requirement for IaaS resource provisioning, but it has limitations that can 

diminish the long-run value of IaaS solutions [25]. Platform as a Service (PaaS) is encumbered with 

interoperability, host dependency, confidentiality, authorization, reliability, and scalability problems. By 

a similar token, Software as a Service (SaaS) will have to face security threats to authorization, 

authentication, data confidentiality, service dependability, and network surveillance [26]. Satisfying all 

these security considerations is important to cloud service providers [27][48][49]. 

The dynamic nature of the threat horizon means that malicious actors constantly improve their tools 

and methods to utilize vulnerabilities in the cloud environment [28]. The conventional Intrusion 

Detection Systems (IDS) tend to struggle when it comes to detecting changing trends in network packets. 

Therefore, researchers recommend using Machine Learning (ML) and Deep Learning (DL) techniques 

together to enhance IDS performance [29]. ML and DL play significant roles in various fields, such as 

finance, government, scientific studies, and cybersecurity [30]. Specifically, the ability of ML to cluster 

and classify data is crucial for improving cybersecurity applications [31]. 

Change Point Detection Algorithms In Cloudids 

Change point detection simply wonders: Is the stream I am currently seeing still coming from the 

same statistical distribution as before? If not, the point in time when it changed is indicated as a change 

point. The area of study goes all the way back to 1950s quality control charts and is now found in 

genomics, finance, and, most importantly, network security monitoring [32]. Two general modes are 

present. Batch (offline) detection stores the entire sequence of NN observations and scans using 

likelihood ratio or Bayesian tests; this works well when the expected number of change points is small 

but is not feasible in clouds where traffic never subsides. Conversely, sequential (online) detection 

processes packets in sequence, maintaining a running statistic like CUSUM or EWMA and sending an 

alert as soon as a threshold is exceeded [33]. This formulation allows an algorithm to "reset" following 

an alert and keep on looking for additional shifts, and it's best suited for streams that may have numerous 

changes over time. 

Why are Sequential Methods Mandatory for Clouds? A hypervisor might observe thousands 

of packets in an eye blink; storing full traces for offline analysis would fill disk and memory. Further, 

attackers can evolve mid-campaign, so the detector has to continue running after an initial alarm. These 

limitations make a case for algorithms that (i) consume unbounded streams, (ii) have constant-time 

updates, and (iii) tolerate repeated detections without human resets. The CloudIDS design, thus, takes 

sequential, non-parametric change point models. 

CPM framework (R package) CloudIDS uses the Change Point Model (CPM) framework, which 

is a class of sequential hypothesis tests packaged in an R package. CPM considers a two-sample statistic 

at each conceivable split within the current window; the best statistic Dn is compared against a pre-

calculated threshold. When Dn exceeds the threshold value, a change is reported at time t, and monitoring 

resumes from the next packet. CPM provides a selection of statistics, Mann-Whitney (location changes), 

Mood (scale), Lepage, Kolmogorov-Smirnov, Cramer von Mises, to name a few, both parametric and 

non-parametric. Since CloudIDS can't rely on normal traffic distributions, it uses the Mann-Whitney test 

by default, which operates with unknown, continuous distributions and still efficiently identifies several 

change points [34]. 

• Single point mode: With detectChangePoint(), CloudIDS can identify the initial meaningful 

deviation, appropriate for high assurance VMs that are quarantined immediately upon any 

anomaly. Experiments indicated that a startup window of 20 observations and an Average 

Run Length (ARL₀) of 370 provided a balance between sensitivity and false alarms, 

identifying a dictionary attack within ~6 minutes of occurrence. 

• Multi-point mode: With processStream(), the monitor resets itself after every alert, catching 

consecutive events like port scans followed by insider reconnaissance. Comparative testing 
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of five CPM statistics showed that Mann-Whitney and Cramer von Mises provided the lowest 

latency (≈1 minute) at reasonable ARL₀ settings, particularly when used with a Riemann 

rolling window of 0.05 seconds. 

Window management Schemes: Since traffic is ongoing, CloudIDS reduces packets to windows 

before passing them to CPM. Two schemes are employed: 

• Riemann Chunking: Fixed-size windows (e.g., 2 s) provide homogeneous sample sizes but 

can smear short spikes. 

• Riemann Rolling: Sliding window moves by an offset (0.05–1.5 s in experiments). Lower 

offsets make the system more responsive at the cost of correlated samples and increased rates of 

false alarms. Experimentally, an offset of 0.05 seconds with startup = 2000 and ARL₀ = 500 best 

traded speed against accuracy for high volume hypervisor data. 

Practical Outcomes: Operating on a single day of ISOT CID hypervisor traces, the sequential CPM 

pipeline, supplied with PCA reduced traffic features, identified scanning, dictionary, ping, and 

unsuccessful DoS attacks with sub-minute latency and minimal overhead. Change point estimates 

frequently preceded complete attack manifestation by several seconds, providing operators with an 

important reaction window. 

Framework Of The Cloud Intrusion Detection 

CloudIDS is designed as a hypervisor-resident, all-stream pipeline to translate live packet flows to 

security verdicts with second-level latency. The sensor resides on every virtual switch tap, thereby 

observing both north–south (tenant ↔ Internet) and east–west (VM ↔ VM) traffic without software 

installation in guests. Every packet is time-stamped with nanoseconds, parsed in RAM by a headless 

TShark process, and payloads discarded immediately to respect privacy and reduce I/O overhead. The 

produced header record rows go into an in-memory column store where vectorised operations compute 

dozens of statistics every few milliseconds. A stage involving incremental PCA retains only the four 

orthogonal components that explain > 90 % of variance, so memory is constant irrespective of traffic rate. 

They are the input to sequential, non-parametric change point monitors, which operate in O(i) per packet 

time. If a monitor's metric crosses its threshold, CloudIDS labels the shift with the offending VM, its 

severity, and the relevant features, then it can auto throttle or quarantine the instance through the cloud 

control plane. Because the pipeline is streaming end-to-end and keeps only sliding window state in 

memory, end-to-end alert latency stays in the low seconds even on 40 Gbps links, and RAM usage grows 

with window size, not traffic volume. Table I shows the key feature of the design choices in CloudIDS 

 

Table I.  Key Features and Design Choices In Cloudids 

Features & References Descriptions 

Unstructured Nature of 

TCP Dumps [35] 

Hypervisors capture traffic in PCAP format, which stores binary 

frames with no schema. CloudIDS relies on headless TShark filters to 

extract header fields, 5-tuple, flags, lengths, and timestamps, directly 

in memory. This avoids disk writes, minimizes parsing latency, and 

ensures the sensor operates at wire speed while respecting tenant 

confidentiality by dropping payloads. 

Feature Space [36] 

From each frame, CloudIDS derives 19 raw attributes and then 

applies automated relational transformations to yield higher-order 

metrics: flow frequencies, entropy of source/destination 

distributions, load ratios, and degree statistics for the VM-level traffic 

multigraph. Incremental PCA prunes redundancy, producing four 

principal features (f0–f3) that dominate variance and are cheap to 

update. 
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Characterization of Cloud 

Network Activities 

(Empirical) [37] 

A day-long study on the ISOT-CID dataset showed that normal 

workloads yield stable feature distributions, whereas attacks trigger 

sharp shifts. Port-scan bursts increased identical DST-IP/DST-port 

frequency; dictionary attacks spiked entropy; insider file-transfer 

sessions altered load ratios. These observations justified choosing 

non-parametric change-point tests that react to full-distribution 

changes rather than mean shifts alone. 

 

Cloud Network Feature Extraction   

Feature engineering in CloudIDS happens in two concentric loops. On the outer loop, traffic from all 

the tap interfaces on a hypervisor is combined, creating a host‑level multigraph whose edges tally packet 

counts and byte volumes between VM endpoints. From this graph, we calculate node degree, fan‑out 

ratios, and hypervisor‑wide entropy values—metrics that highlight macro events like DoS bursts or 

VM‑escape chatter. The inner loop separates per-instance flows: each packet is assigned to its tenant VM 

and binned into rolling or chunked windows (Riemann/Lebesgue schemes). Within each window, 

CloudIDS tallies flow frequencies, computes inter-arrival jitter, and harvests directional statistics 

(inbound vs outbound) that are vital for detecting data exfiltration or internal scans. 

Empirical examination of the ISOT‑CID traces revealed that the entropy of destination ports drops in 

dictionary attacks, and load ratios (packet‑rate ÷ peer count) peak prior to insider file transfers. To 

convert these disparate metrics into a sparse real‑time vector, CloudIDS applies incremental PCA: every 

few milliseconds, the covariance matrix is recomputed, and only the four leading components, which 

account for over 90 % of variance, are passed to the sequential change‑point detectors. Table II shows 

the feature groups employed by CloudIDS. 

Table II.  Feature Groups Used By Cloudids 

Features & References Description 

Hypervisor-Oriented [38] 

Builds a host-level multigraph of all VM-to-VM and VM-to-Internet 

flows, then extracts total byte/packet rates, node degrees, and cross-

VM fan-out statistics to expose hypervisor-scale anomalies such as 

flooding or escape attempts. 

Instance-Oriented [39] 

It treats each VM as an independent sensor: it counts per-tuple 

frequencies, measures inbound/outbound asymmetry, and records 

inter-arrival jitter within rolling windows to reveal brute-force logins, 

lateral scans, or data-exfil bursts. 

Entropy Features [40] 

Computes Shannon entropy of source ports, destination IPs, and 

protocol mixes for both hypervisor and instance scopes; sharp drops 

indicate focused scans, while sudden rises suggest beaconing or 

botnet C2 rotation. 

Load Features [41] 

Derives load ratios—packet frequency divided by peer degree—and 

degree-based connection loads; abnormal surges flag impending DoS 

or heavy file-transfer sessions even before bandwidth peaks. 

PCA [42], [43] 

Runs incremental principal-component analysis to condense 

dozens of raw metrics into four orthogonal features (f0–f3) that 

preserve > 90 % variance, enabling constant-time updates for the 

change-point monitors. 

  

Computing Features  

After raw packet attributes are reduced to hypervisor‑ and instance‑level measures, CloudIDS needs 

to choose when to pass those observations over to its change‑point detectors. Two windowing techniques 
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are employed, one optimized for two different traffic behavior patterns seen within the ISOT‑CID 

experience. Table III shows the two window techniques applied to average packet observations preceding 

feature computation and their detection latency implications. 

 

Table III.  Feature Groups Used By Cloudids 

Features and 

References 
Descriptions 

Chunking Importance 

[44] 

Riemann chunking partitions the timeline into consecutive, 

non-overlapping windows of fixed length δt (e.g., 2 s). All packets 

falling inside a chunk are summarized once the window closes. 

Chunking offers statistical independence between windows—valuable 

for tests like Mann-Whitney—and yields deterministic memory 

usage, but may blur very short-lived spikes if the chunk is too large. 

The Lebesgue Scheme 

for Computing Features 

[45] 

Lebesgue rolling shifts a window of N packets forward by an 

offset smaller than its length (e.g., 2000-packet window, 500-packet 

stride). This packet-count–based scheme aligns feature computation 

with actual traffic volume rather than wall-clock time, capturing 

micro-bursts that would be diluted in equal-time chunks. Rolling 

windows improve detection latency but introduce correlation 

between successive samples, demanding more conservative 

change-point thresholds. 

Empirical tuning revealed a 2s Riemann chunk registered multi minute dictionary attacks with 

minimal false positives, and a 2000/500 Lebesgue rolling window revealed sub second port scan bursts 

in one minute. With support for both schemes, CloudIDS allows operators to choose a balance between 

independence (chunking) and responsiveness (rolling) that most suits their workload. 

 

Framework Implementation   

        CloudIDS was prototyped within an in-production OpenStack cluster within Compute Canada West 

to ensure that design decisions hold up to actual packet rates and multi-tenant noise. The 

implementation takes a staged → streaming architecture: 

1. Packet Capture (Tap Layer): A libpcap-based C-language sniffer is bound to each qbr tap 

interface that OpenStack's Neutron establishes for tenant vNICs. Packets are picked up in 

PROMISC mode, time-stamped by a NIC hardware clock, and duplicated into a lock-free ring 

buffer that ensures zero loss at a 40 Gbps line rate. Capture threads are pinned to dedicated 

CPU cores to prevent scheduler jitter and NUMA penalties. 

2. Header Extraction & Transport (ZeroMQ Layer): Every capture thread removes 

payloads in situ, leaving behind only Ethernet, IP, TCP/UDP headers, and a 32-byte metadata 

trailer. The header records are encapsulated as 128-byte messages and pushed along a ZeroMQ 

pipeline socket to an analytics micro service colocated on the same hypervisor. This architecture 

avoids disk I/O and imposes tenant privacy by construction. 

3. In-Memory Columnar Store (Apache Arrow Layer): The analytics service buffers 10k 

incoming messages and writes them out to an Arrow table with dictionary-encoded strings for 

IP addresses and ports, resulting in SIMD-friendly, cache-efficient storage. Windowing 

(Riemann chunking or Lebesgue rolling) is achieved by the Arrow record batch boundaries. 
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4. Feature Engineering: Vectorized C++ kernels calculate hypervisor-level graph metrics and 

VM-level frequency/entropy/load features within Arrow buffers directly. Outputs are added as 

new columns, without row materialization. 

5. Dimensionality Reduction: An RcppEigen-based incremental PCA module pulls the feature 

matrix, refreshes the covariance estimate in O(k2) per batch (with k = 30), and outputs four 

principal components (f0–f3) explaining > 90 % of variance. 

6. Sequential Change-Point Detection: The four elements flow into an embedded R 

interpreter in which CPM's processStream() keeps Mann-Whitney and Cramer–von Mises 

statistics. Thresholds are pre-tabulated for ARL₀ = 500 to trade false alarms against latency. 

Upon a statistical firing, the service tags the responsible VM(s) and writes an alert to a Redis 

pub/sub channel. 

7. Mitigation Hooks: A light Python listener takes in Redis notifications and, based on policy, 

calls OpenStack's Neutron API to rate limit the misbehaving port or Nova to suspend the VM. 

Notifications are also saved in Graylog for operator-level forensic analysis. 

 The whole stack resides in the host OS namespace (KVM) or Dom0 (Xen), i.e., no code executes within 

tenant VMs. On a CentOS 7 super node with 33 × 2.4 GHz cores and 248 GB RAM, maximum utilization 

under 40 Gbps bursts was 25 % CPU and 6 GB of memory, leaving plenty of headroom for regular cloud 

workloads. 

 

ISOT Cloud Intrusion Dataset  

To stringently test the introduced CloudIDS framework, we used the ISOT Cloud Intrusion Dataset 

(ISOT-CID)—a large-scale, publicly accessible dataset tailored for cloud-based intrusion detection 

studies. Derived from a production environment of a real-world OpenStack cloud, ISOT-CID is 

exceptional in terms of its scope, size, and variety, thus proving to be a precious resource for network 

behavior analysis in both normal and attack contexts. The ISOT-CID dataset was collected over the 

course of a few months and organized on several layers of the cloud stack, ranging from virtual machines 

(VMs) to hypervisors and network interfaces. There were two hypervisors and ten VM instances spread 

over three separate availability zones (Zones A, B, and C). The instances were subjected to several 

internal and external attacks mimicking real attacks and benign activities [46], [47]. 

The database holds extensive and annotated instances of various categories of attacks, including but not 

limited to: 

• External Attacks: Denial of Service (DoS), masquerade, and remote login attacks. 

• Internal Attacks: Privilege escalations, credential theft, botnet behavior, and data 

exfiltration. 

• Traffic Types: Internal (hypervisor-to-hypervisor), local (VM-to-VM), and external (VM-to-

outside). 

All network traffic was seized with TCPdump in promiscuous mode and stored in regular packet 

capture (PCAP) format. Traffic was gathered both with and without payloads to suit different 

experimental requirements. Table IV presents an overview of the ISOT-CID dataset features.  

Table IV.  Feature Groups Used By Cloudids 

Attribute Details 

Cloud Platform OpenStack 

Dataset Size > 8 TB 

Data Format PCAP (with and without payload) 

Collection Duration Several months (VMs), multiple days (Network/Hypervisor) 
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No. of Hypervisors 2 

No. of VM Instances 10 (across Zones A, B, and C) 

Attack Scenarios 4 (each ~1 hour, across different days) 

Attack Types DoS, Masquerade, Dictionary, Trojan, Credential Theft, Botnet 

Traffic Categories External, Internal, Local 

Data Layers Network, Hypervisor, VM, CPU, Memory 

Geographic Diversity Attacks from Europe & North America 

Labeling Yes (Normal vs. Malicious) 

Public Availability Yes (via ISOT website with documentation) 

 

The data is designed to accommodate batch and real-time detection settings, facilitating the 

conceptualization and testing of online detection systems like CloudIDS. It is specifically suited for 

anomaly detection models, unsupervised learning methods, and sequential change point detection 

because it has a high temporal resolution and size. 

The diversity and density of ISOT-CID make it a suitable benchmark for cloud intrusion detection 

research. It enables a broad set of experimental configurations, such as feature extraction investigations, 

change detection methods, and performance scalability testing. Researchers are invited to examine the 

dataset with rich metadata and guidelines to aid reproducibility and useful comparisons. 

 

 Experimental Results And Discussion 

 To ensure the validity of the efficiency of the suggested CloudIDS framework, we performed a series 

of thorough experiments on a high-performance supercomputing machine (the specifications are 

presented in Table V. The assessment was performed using one complete day of hypervisor-level 

network traffic from the ISOT-CID dataset, namely corresponding to a single reported attack round (see 

Figure 1). The experimental scope was limited to the virtual machines installed in a single cloud node, 

and a detailed analysis was conducted on one target VM, which was named VM8 and participated in 

several attack scenarios within the chosen time frame. 

 

Figure 1 shows an in-depth time sequence of network attacks carried out within a day on the ISOT-

CID testbed, reflecting both internal and external threats within a real-time cloud scenario. The timeline 

starts with an external network scan attack at around 09:37 aimed at the cloud subnet. Following this, 

around 09:41, the attacker tried a dictionary attack against VM8 and managed to gain access. Upon 

entering, the attack was converted into an insider threat as the attacker performed some internal 

reconnaissance with a second network scan at 09:45. This was succeeded by malicious activities 

between 10:07 and 10:31, such as multiple login attempts and data transfers. At 10:30, the attacker 

launched a port scan on VM5, which resided on another cloud node, and then another dictionary attack 

at 10:36. Between 10:38 and 10:45, the system recorded several login attempts. The attack continued 

with a ping sweep at about 10:46 and file download at 10:47. The last stage consisted of an unsuccessful 

DoS attack on VM4 at 11:01 and ping to VM4 at 11:04. This chronology presents a good context to 

analyze the detection potential of CloudIDS and to demonstrate the escalation from external probing to 

large-scale internal exploitation. The chart highlights the attacker's shift from the outside to the inside, 

with striking multi-stage intrusion patterns in cloud systems. 
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Fig.1.      Attack Timeline 

 

 

Table V.  Supercomputing Machine Specification 

OS Specification 

CentOS 
RAM: 248 GB                 CPU: 33 cores                   

Clock Speed: 2.40 GHz 

 

 

A. OS Specification 

To compare the performance of the proposed CloudIDS framework, experiments were performed on 

a high-performance CentOS-based system with 248 GB RAM, 33 CPU cores, and a clock speed of 2.40 

GHz (see Table V). The goal was to detect change points in network traffic behavior as soon as possible 

and identify attack events correctly with minimal delay. The central analytic element of CloudIDS is the 

Change Point Model (CPM), utilized for single and multiple change point identification using univariate 

input, i.e., principal components obtained through PCA. As network traffic is non-Gaussian in nature, 

a variety of nonparametric CPM algorithms was used under sequential detection conditions. Feature 

extraction was preceded by PCA transformation to separate the most important variables contributing 

to behavioral changes. These characteristics were thereafter inspected via numerous CPM algorithms 

on all VM traffic, gathered at the hypervisor level. Two strategies for temporal segmentation were 

employed: a chunking method with a fixed offset of 2.0, and a rolling window method with varying 

offsets (1.5, 0.5, 0.1, and 0.05) to evaluate the effect of overlapping traffic windows on detection 

performance. More than 300 experiments were performed to optimize these parameters, with detailed 

results publicly made available in conjunction with the ISOT-CID dataset and its documentation. 

 

B. Change Point Detection Using a Chunking Approach (CPM Package) 

 

  Single Point Detection In order to discover best configurations for single change point detection, we 

performed a number of experiments through the CPM (Change Point Model) package with emphasis 

placed on real-time anomaly detection from network traffic. Since no assumptions were made about the 

shape of the underlying data distribution, we utilized five nonparametric tests provided by the CPM 

package: Mann-Whitney (for location shifts), Mood (for scaling changes), and Lepage, Kolmogorov-

Smirnov, and Cramer-von-Mises (for overall distributional changes). The detection function used in the 

CloudIDS framework is given by: 
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detectChangePoint(pca_features_dst[:,feature], cpmType=cpmf, startup=st, 

ARL0=arl) 

Here, pca_features_dst[:, feature] is the series of principal components from the PCA-

transformed feature space, cpmType is the statistical test employed, startup is the number of startup 

observations needed before detection starts, and ARL0 is the average run length, a false positive control 

threshold, which is computed from precomputed values included in the CPM package. 

To measure the effect of these parameters, we tested different values for startup and ARL0. The 

best setting was found to be startup = 20 and ARL0 = 370, which gave the earliest and correct 

detection results. For example, employing the Mann-Whitney test on traffic data from VM8, the 

framework successfully detected a significant change point related to a dictionary attack as shown in 

Figure 2 . Feature f1 detected the change with an estimated change time of 09:41:02.740, which was 

very close to the attack onset, and a detection time of 09:46:53.572, representing a detection delay of 

about 5 minutes and 51 seconds. This brief delay indicates the framework's capability for near real-

time detection. Complete results for all VMs, employing various statistical tests, are listed in Table VI. 

 

Fig.2.      The plots shows the network traffic for VM8 with the estimated change point location as a blue dashed 

line and the detected change point as a red line. These change points found using Mann-Whitney CPM 

Table VI.  Single Change Point Detected Using Different Cpms For All Vms Using Riemann 

Chunking Scheme With Startup Is St=20 And Arl0 Is Arl=370.
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To assess the performance of our extracted features in enabling continuous change point monitoring, 

we examined their contribution to early detection and compared the performance of different CPM 

algorithms under different settings. Our main interest during this phase was network traffic related to 

virtual machines participating in the initial round of attacks. 

Throughout the first attack window (09:37–09:41), the attacker started by performing a subnet 

scanning activity against the IP addresses 172.16.1.21–27, after which there was a dictionary attack 

against VM8. This activity of attack should materialize in terms of large departures in the pattern of 

network traffic. Since our system makes use of single change point detection, we sought to establish 

whether these changes were quickly detected, and which features were most revealing of the intrusion. 

As detailed in Table VII, change points were detected effectively by at least two of the features that 

were extracted, with f1 and f3 being the most sensitive and effective in anomaly detection. Of the 

statistical tests employed, Mood's test was least responsive to this attack scenario. However, Mann-

Whitney, Lepage, and Cramer-von-Mises statistics provided better performance, both in detection 

and latency. The mean detection delays and the corresponding estimated change point times of features 

f1 and f3 of these three CPM algorithms are presented in Table VIII and reveal the relative detection 

efficiencies of each of them.  

 

Table VII.  Change Point Detected By Each Feature (In Bold}) Which Was Caused  

By Attacker Activities 

.

Table VIII.  The Average Detection Delay And The Change Point Estimate Time Average Using F1 

And F3 For A Single Change Point Detection.

 

Generally, single change point detection is appropriate for high-security situations where even slight 

variations in network activity are deemed important. In these situations, administrators might prefer to 

prompt instant action, like isolating or completely shutting down a virtual machine, when one anomaly 

has been detected. This is a limiting application scenario, though. In more standard operational 

environments, where ongoing monitoring is necessary and the VM stays active even as behavior changes, 

there is a need to utilize detection mechanisms that can detect multiple change points across time. This 

allows for ongoing monitoring of changing threats and enables dynamic response plans consistent with 

real-world cloud operations. 
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Multiple Change Point Detection In the case of continuous monitoring, detecting multiple 

change points that could sequentially happen within network traffic data streams is important. To make 

this possible, we used the processStream function of the CPM package to extend the 

detectChangePoint functionality with the ability to automatically restart the detection after each 

detected change point. This makes it possible to continuously analyze new incoming observations 

without the need for manual intervention or batch processing. 

In our experiments, the processStream procedure was used to identify multiple change points in 

sequences of network traffic readings, with the same parameter values used in the single change point 

identification experiments, namely a startup value of 20 and an average run length (ARL0) of 370 for 

each CPM statistical test. 

 

Fig.3.      The plots shows the network traffic for VM8 with the estimated change points locations as a blue dashed 

lines and the detected change points as a red lines. These change points found using Mann-Whitney CPM 

Figure 3 shows the detection of multiple change points on all four main components derived from 

VM network traffic, with the Mann-Whitney statistic. Red lines are used to visualize detected change 

points, and blue dashed lines represent the corresponding estimated change times. After detecting a 

change, the CPM model is reset and continues to monitor from the next arriving observation, allowing 

real-time, adaptive detection. 

A systematic comparison of all five CPM techniques, Mann-Whitney, Mood, Lepage, Kolmogorov-

Smirnov, and Cramer-von-Mises, was performed using the Riemann chunking scheme. Detection results 

for VM8, under the first attack scenario, are presented in Tables IX and X. 

Table IX.  Multiple Change Points Detected In All Features Using Cpms For Vm8 With Riemann 

Chunking Scheme, With Startup=St20 And Arl0=Arl370. 
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Table X.  Multiple Change Points Detected In All Features Using Cpms For Vm8 With Riemann 

Chunking Scheme, With Startup=St20 And Arl0=Arl370. 

 

The results show that the features extracted play an important role in the detection of changes in 

behavior, with each of them able to indicate network anomalies in at least three different phases of attack. 

On average, the estimated delay was about six minutes behind the real attack onset, which is tolerable in 

online detection scenarios. Among the tested methods, Mann-Whitney and Cramer-von-Mises 

performed best consistently in both detection accuracy and responsiveness. Consequently, further 

analysis is centered on these two CPM algorithms, tested further under the Riemann rolling scheme. The 

full set of experimental results, including results for all CPM variants, is provided to researchers together 

with the ISOT-CID dataset and its accompanying documentation. 

C. Multiple Change Point Detection Using the CPM Package with Rolling Window 

Since we are interested in detecting multiple change points, this section will present results for 

multiple change points detected by the CPM package. As mentioned before, we used different offsets 

for window size in the rolling scheme for CPM. In the following, the results will be discussed.  

CPM Package For the CPMs in the rolling scheme, the analysis from the previous section is repeated, 

except we focus our experiments on two CPMs based on the previous results, namely, the Mann-

Whitney statistic and Cramer-von-Mises.  

Moreover, we use different values for startup and ARL0 with each cpmType. Through conducting 

extensive experiments, we noticed that, by choosing a small number of observations, the detection will 

be more sensitive to small changes and faster to detect change points. This will come at the cost of higher 

false positives. On the other hand, choosing ARL to be a large number will let the algorithm learn more 

and increase the detection accuracy, but with higher chances of false negatives, and the detection of the 

change points is delayed. This is clearly shown in our setting choice for offset 0.1. Therefore, the 

appropriate value of the number of observations depends on the activities being considered for the 

monitored VM. Based on the network traffic for VM 8, we applied these settings and performed 

experiments. The obtained results are discussed and presented next.  

For the first offset 0.05 in rolling scheme, the optimum setting found regarding the startup is 

st=2000, and for ARL0 is arl=500. The detected multiple change points for both CPMs are presented 

in Fig. 4  and summarized in Table XI.  
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Table XI.  Multiple Change Points Detected Using Cpm For Vm8 With Riemann Rolling Scheme 

With Offset=0.05, Startup=St2000 And Arl0=Arl500. 

 

Table XII.  Detection Capability Using Cpms With Extracted Features For Vm8. 

 

 
 

Fig.4.      The plots shows the network traffic for VM8 with the estimated change points locations as a blue dashed 

lines and the detected change points as a red lines. These change points found using Mann-Whitney CPM 

The presented result in Table XII shows that with this setting, our extracted features contributed to 

the CPMs' change point detection. Each feature can represent the changes in network traffic for at least 

two attack periods, with estimated time averaging about 1 minute from the exact attack time. Moreover, 

we observed that f2 performs very well and helps CPMs to detect the changes in this setting, and can 

present the changes in the network behavior during these attack periods.  
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The second conducted experiment is with offset 0.1, and the optimum set- ting found regarding the 

startup is similar to before, st=2000, and for ARL0 is arl=500. The detected multiple change points for 

both CPMs are presented in Table XII.  

Table XIV illustrates the change points detection results using this setting. Although each feature 

contributed to detecting some period of the attack, they all failed to present the changes that happened 

because of the scanning attack. Therefore, this setting is recommended to use to detect different types 

of attacks, but not the scanning one.  

 

Table XIII.  Multiple Change Points Detected Using Change Point Methods (Cpm) For Vm8 With 

Riemann Rolling Scheme (Offset=0.1 Sec, Startup Delay=2000 Ms, Arl0=500 Samples

 

The third experiments that we conducted is with offset 0.5, and we found the optimum setting for 

the startup is st=200, and arl=50000 for the ARL0. The detection time for the change points is 

presented in Table XV.  

In this setting, the features performed better than the previous one, with at least two detections for 

each feature. The results of this setting are summarized in Table XVI.  

The last experiments we conducted using CPMs were by choosing a setting close to the setting that 

we chose for Riemann chunking. We want to investigate and compare the results with small differences 

in the rolling window. Therefore, we chose the offset to be 1.5, and the startup is similar to before, 

st=200. 

 

Table XIV.  Detection Capability Using Cpms With Extracted Features For Vm8
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Table XV.  Multiple Change Points Detected Using Change Point Methods (Cpm) For Vm8 With 

Riemann Rolling Scheme (Offset=0.5 Sec, Startup Delay=2000 Ms, Arl0=50000 Samples 

 

Table XVI.  Detection Capability Using Cpms With Extracted Features For Vm8 and for ARL0 is 

arl=500. 

 

The detected multiple change points results for both CPMs are presented and summarized in Table 

XVII. Furthermore, Table XVIII shows the detection results for each feature during the attack rounds. 

Using this setting, each feature can represent the changes in network traffic for at least two attack 

periods. However, this setting is not performing well compared to the setting used with the Riemann 

chunking. For instance, comparing the change points detected using f1 and f3 in this setting with the 

same feature in the Riemann chunking setting, we observed that both CPMs in the Riemann chunking 

were able to detect the changes for 4 attack periods and performed the best among other features. On 

the contrary, in the Riemann rolling setting, they only detected two changes, which turned out to be the 

lowest.  

After we conducted all these experiments, we concluded that these different setting helps the 4 PCA 

extracted features to detect multiple change points in the network behavior. Observing these settings 

and understanding their impacts on the detection results is very important. Selecting a small value of 

the ARL0 will detect the change point faster, but with expected higher false positives. On the other hand, 

choosing a startup to be large will cause a delay in the detection with a high chance of false negatives.  

Since cloud computing is changeable by its nature, clients’ resources could be scaled up or down 

according to their needs. Therefore, monitoring VMs that need high network bandwidth is not similar 

to those that use less bandwidth. The provided  
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Table XVII.  Multiple Change Points Detected Using Change Point Methods (Cpm) For Vm8 With 

Riemann Rolling Scheme (Offset=1.5 Sec, Startup Delay=200 Ms, Arl0=5000 Samples 

 

Table XVIII.  Detection Capability Using Cpms With Extracted Features For Vm8

 

Riemann rolling scheme with these different settings provides a customizable intrusion detection 

system according to the VMs' operations. As expected, a lower value of the ARL0 results in faster change 

detection, at the cost of higher false positives. Again, in practice, the user should typically decide what 

sort of false positive rate is acceptable and choose the ARL0 appropriately. 

 

D. Performance Analysis 

To compare the effectiveness of the CloudIDS framework, we compared the performance of our 

suggested feature set and the Riemann-based sliding window algorithms (chunking and rolling) over 

different classes of attack patterns contained in the ISOT-CID dataset. In particular, we considered the 

initial round of attacks, involving a series of different adversarial activities launched by an external 

attacker and subsequently aggravated through a hijacked virtual machine (VM8). 

 

  Attack Overview and Timeline 

     The attack activity started with an external network scan at around 09:37, and then a successful 

dictionary attack on VM8 at 09:41, giving unauthorized access. Using VM8 as a leverage, the attacker 

performed internal reconnaissance at 09:45, performed repeated logins and file activities between 

10:07–10:31, and performed additional attacks like port scans (10:30), another dictionary attack 

(10:36), ping sweeps, file download (10:46–10:47), and a final attempt at DoS at 11:01. 
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   Detection Framework Summary 

   We employed Change Point Models (CPMs) of the R package for both single and multiple change point 

identification. The performance of the leading CPM algorithms, Mann-Whitney, Cramer-von-Mises, 

and Kolmogorov-Smirnov, is presented in the following table along with our PCA-derived features on 

these events. 

   Observations 

• Feature Contributions: In all detection configurations, features f1 and f2 derived from PCA 

exhibited the greatest sensitivity in detecting behavioral anomalies, especially under dictionary 

and scanning attacks. Feature f0 was particularly sensitive to DoS attempts. 

• CPM Algorithm Comparison: Mann-Whitney and Cramer-von-Mises tests outperformed 

other variants of CPM in early detection and reliability for both chunking and rolling modes. 

Kolmogorov-Smirnov was particularly strong in early-stage scanning detection. 

• Offset and Parameter Adjustment: Smaller offsets (e.g., 0.05) and lower ARL0 values in 

rolling window configurations resulted in faster detections at the expense of higher false 

positives. Large ARL0 values yielded better stability at the expense of detection delays. These 

are trade-offs to be tuned according to the VM's working profile and security needs. 

 

Ablation Study 

  For further understanding of the individual effects of major components in our CloudIDS model, we 

performed a series of ablation experiments. These experiments were conducted in order to isolate and 

examine the effect of PCA-derived features, CPM types, and configurations of sliding windows 

(chunking versus rolling) on the system's overall performance. Results confirm our design decisions 

and shed light on how to optimize intrusion detection for cloud environments. 

 

E. Impact of PCA-Based Feature Extraction 

  We first evaluated the contribution of PCA-based dimensionality reduction to enhancing the 

interpretability and detection efficiency of the system. The original dataset comprises many redundant 

or irrelevant features, which render real-time detection less efficient. Eliminating PCA and employing 

raw features with CPMs resulted in dramatically higher false positives and increased detection latency, 

particularly in noisy network settings. Conversely, the consistent use of the top four principal 

components (f0–f3) always enhanced detection accuracy and lowered the average detection delay in all 

attack scenarios. Interestingly, features f1 and f2 performed best in identifying behavioral anomalies 

during dictionary attacks and internal reconnaissance. 

 

F. Contribution of Different CPM Types 

We evaluated three CPM types, Mann-Whitney, Cramer-von-Mises, and Kolmogorov-Smirnov—in 

single and multiple change point detection configurations. The results of ablation show that the Mann-

Whitney test produced the most accurate and early detections over a broad spectrum of attack types, 

particularly for dictionary and port scanning attacks. Cramer-von-Mises proved more sensitive to slow-

evolving behavior (e.g., internal reconnaissance and ping sweeps), and Kolmogorov-Smirnov proved to 

be best in detecting sudden scanning patterns in the initial stages of the attacks. Removing any of these 

CPMs resulted in lower detection diversity, particularly in coping with diverse and dynamic attack 

vectors. 

 

G. Sliding Window Strategy: Chunking vs. Rolling  

 To analyze the impact of the windowing strategy, we removed either the chunking or rolling scheme 

and measured the detection performance. Chunking using Riemann geometry provided consistent 
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detection with reduced false positive rates and performed well to identify long-term changes in traffic 

patterns. Rolling window schemes gave more rapid, more detailed detection, particularly in cases of 

high frequency and subtle change. But rolling needed careful tuning of the offset and ARL0 parameters 

to achieve a trade-off between sensitivity and precision. The ablation established that integrating both 

schemes improves detection robustness across attack type and timing. 

 

H. Sensitivity to ARL0 and Startup Parametersing  

  One of the crucial components of our ablation study was changing the ARL0 and startup parameters 

under the CPM framework. We noted that low ARL0 values accelerated detection at the expense of 

generating spurious alerts, especially in VMs with high variance in usage patterns. Conversely, higher 

ARL0 values improved stability but came with delays in responding to real threats. The startup 

parameter also impacted the training window of the CPMs. The disabling of these tuning mechanisms 

resulted in either early or missed detections, supporting the necessity of dynamic parameterization 

according to VM-specific network behaviors 

 

Conclusion And Future Work 

 This paper introduced CloudIDS, an adaptive intrusion detection system for dynamic cloud 

environments. CloudIDS uses Principal Component Analysis (PCA) to extract key network traffic 

features and employs Change Point Models (CPMs)—specifically Mann-Whitney and Cramer-von-

Mises statistics—to detect sudden behavioral shifts indicative of cyberattacks. Two Riemannian-based 

sliding window schemes, chunking and rolling, capture both stable and transient patterns in virtual 

machine (VM) network activity.  Experiments with the ISOT-CID dataset show that CloudIDS 

effectively detects attacks such as scanning, dictionary attacks, reconnaissance, and denial-of-service 

with high sensitivity and low latency. Tuning parameters like Average Run Length (ARL0) and startup 

length significantly impacts detection performance, balancing speed and false positives. An ablation 

study confirmed the importance of PCA-based features and Riemannian windowing, with Mann-

Whitney and Cramer-von-Mises tests outperforming other CPM variants. Rolling windows with smaller 

offsets enhanced detection speed but increased false positives, offering practical deployment insights.  

Future work will integrate CloudIDS with real-time monitoring platforms like the ELK Stack and 

Prometheus, and explore reinforcement learning for adaptive parameter tuning. We will also expand 

features with contextual metadata, investigate inter-VM correlation for distributed attack detection, 

and apply model optimization techniques for lightweight edge deployments. Broader benchmarking on 

datasets like CICIDS2017 and UNSW-NB15 will further validate CloudIDS’s generalizability 
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