
Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 331

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Adaptive Intrusion Detection in Cloud Environments

Using Change Point Analysis and Unsupervised

Feature Monitoring

Abdulaziz Aldribi
Department of Computer Science, College of Computer, Qassim University, Buraydah, Saudi Arabia

aaldribi@qu.edu.sa

ARTICLE INFO ABSTRACT

Received: 17 Dec 2024

Revised: 20 Feb 2025

Accepted: 28 Feb 2025

Securing virtualized infrastructures is a critical challenge in cloud computing due

to dynamic resource allocation and sophisticated cyberattacks. Traditional

intrusion detection systems (IDS) often fall short in addressing cloud-specific

requirements such as scalability, elasticity, and diverse attack vectors. This work

introduces CloudIDS, an intrusion detection system tailored for cloud

environments. CloudIDS employs Principal Component Analysis (PCA) to extract

key features from network traffic and applies Change Point Models (CPMs),

including Mann-Whitney and Cramer-von-Mises statistics, to detect abrupt shifts

in network behavior indicative of attacks.

Two Riemannian-based sliding window algorithms—chunking and rolling—enable

the detection of stable and transient patterns in virtual machine (VM) traffic.

Experiments using the ISOT-CID dataset, which covers various attack types (e.g.,

scanning, dictionary attacks, reconnaissance, and denial-of-service), demonstrate

that CloudIDS achieves high detection accuracy with minimal delay compared to

conventional methods. Parameter tuning, particularly Average Run Length (ARL0)

and startup length, reveals trade-offs between detection speed and false positives.

An ablation study further validates the critical roles of PCA feature extraction and

Riemann-based windowing.

CloudIDS presents a flexible, adaptive solution for intrusion detection in cloud

environments. Future work will focus on integrating real-time monitoring,

reinforcement learning-based adaptation, and contextual metadata to further

enhance detection performance accuracy.

Keywords: Cloud Computing, Intrusion Detection System, Network Security,

Security, Anomaly Detection

Introduction

Cloud computing has changed how organizations provide, scale, and pay for compute and storage,

but its multi‑tenant, elastic fabric also expands the attack surface. Traffic volumes are orders of

magnitude greater than in conventional data centers, virtual machines (VMs) can be spun up and down

in a matter of seconds, and security responsibility is shared between cloud providers and tenants [1]. In

this environment, Intrusion Detection Systems (IDS) continue to be an essential line of defense, tasked

with identifying policy breaches, malware, and zero‑day attacks in real time. Even after decades of IDS

research, the majority of signature bases and learning pipelines were built for static, single‑tenant

networks. Simply transplanting them to the cloud tends to produce unaffordable false positives,

east‑west traffic blind spots, and virtual switch performance bottlenecks [2]. As a result, the community

still does not have an integrated framework that (a) models cloud‑specific attack vectors like VM‑escape

mailto:aaldribi@qu.edu.sa

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 332

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

or hypervisor tampering, (b) can scale with burst workloads, and (c) minimizes overhead. The absence

of the integrated framework motivates this research.

 There are three detection methods, misuse, anomaly, and hybrid, are complimentary philosophies of

detecting intrusions:

• Misuse (Signature Based) Detection: Fast and precise for known malware but blind to zero

days or polymorphic variants without constant updates—problematic in dynamic cloud

workloads [3].

• Anomaly-Based Detection: Learns “normal” behavior and flags deviations, catching novel or

insider attacks, but elastic cloud scaling can appear malicious, causing false alarms unless

baselines adapt [4], [5].

• Hybrid Detection: Chain's signature filtering with anomaly analytics to boost both precision

and recall; effective but requires careful threshold tuning and resource management to avoid

excessive overhead on multi-tenant hosts [6].

The where of intrusion detection is as consequential as the how, because the vantage point

dictates what telemetry an IDS can observe and how much overhead it imposes.

• Host based IDS (HIDS) reside within every VM's OS, providing rich, syscall level insight into

file access, privilege raises, or kernel hooks; such fine-grained granularity is optimal for

detecting insider attacks or rootkits, but the sensor fights with the tenant's CPU cycles and

can be disabled itself if the VM has been compromised [7].

• Network-based IDS (NIDS) relocate the sensor to virtual or physical firewalls, switches, or

cloud gateways, monitoring packet flows across several tenants. This wide span renders NIDS

highly appropriate for volumetric attack detection, worm spreading, and east-west

movement but threatens to suffocate deep packet inspection engines with encrypted traffic

and raw throughput unless offloaded to smart NICs or based on flow-level metadata [8].

• Hypervisor-based IDS is deeply integrated into the virtual machine monitor (such as Xen's

Dom0 or KVM's host kernel modules), providing privileged views of inter-VM traffic and low-

level activity without traversing guest OSes. From this "golden" vantage point, they maintain

tenant isolation without being easily tampered with, but they have to be surgically light in

order not to balloon VM scheduling latency and have to be hardened against hypervisor

escape exploits themselves [9].

• VM based IDS create a single sensor VM that consumes mirrored traffic or logs from adjacent

instances; this approach makes lifecycle management easier—operators can patch or scale

the sensor without handling production VMs—but relies on proper traffic mirroring and adds

additional bandwidth overhead, possibly dropping intra host packets if virtual taps are not

properly configured. Practically, cloud vendors tend to interweave a multi-layer fabric,

hypervisor monitors for low overhead baselining, selective host agents for high value

workloads, and edge NIDS for coarse traffic shaping—to strike a balance between coverage,

performance, and operational complexity [10], [11].

When these models of IDS deployments are being replanted in active cloud environments, four real-

world challenges continue to resurface. First, the sheer volume and speed of virtualized networks,

hypervisors processing millions of packets per second, render the possibility of capturing all traffic

retrospectively impossible, and sensors have to examine streams in real-time. Second, elastic topology

fluctuations like auto scaling groups, serverless functions, and transient containers make legitimate

traffic baselines fluctuate erratically, bewildering anomaly detectors that assume steady "normal"

profiles. Third, resource competition is a real risk: an IDS that commandeers CPU, RAM, or I/O

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 333

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

bandwidth eliminates the very performance flexibility and cost savings cloud tenants are seeking. Lastly,

data privacy and multi-tenancy limit deep packet inspection; sensors have to respect isolation borders

and regulatory requirements, which might hinder payload visibility and make it more difficult for cross-

tenant threat hunting.

This paper presents Cloud-based Intrusion Detection System (CloudIDS), an unsupervised, online

intrusion detection system that operates within the hypervisor and identifies abrupt behavior changes in

high-speed packet streams through sequential change point analysis. The system isolates cloud-unique

traffic features, removes redundancy with principal component analysis, and subsequently employs

light-weight, monitors without labelled data or deep payload inspection. Proven on the public ISOT CID

dataset, CloudIDS detects scanning, dictionary, and insider attacks in minutes and does so with minimal

overhead on hypervisor resources.

The contributions of this research are focused on the design and development of CloudIDS, an online,

unsupervised cloud-based hypervisor-level intrusion detection system. CloudIDS utilizes sequential

change point detection methods to detect abrupt changes in cloud network behavior without requiring

labeled data or deep packet inspection. It proposes cloud-specific feature extraction with Principal

Component Analysis (PCA) to reduce feature redundancy and facilitate real-time detection with low

resource overhead. In contrast to conventional batch analysis methods, CloudIDS employs non-

parametric sequential change point models, including the CPM framework, to facilitate real-time

anomaly detection in high-speed network streams. The system integrates effective windowing

techniques, such as Riemann chunking and rolling windows, to optimize detection accuracy, latency, and

computational performance, thereby being appropriate for dynamic, large-scale cloud environments.

Deployed at the hypervisor level without touching guest VMs, CloudIDS provides end-to-end visibility

into internal and external traffic and preserves tenant isolation and privacy. Its light-weight design

imposes zero CPU and memory overhead, making it possible to deploy even in high-performance cloud

environments (e.g., 40 Gbps environments). The system was empirically evaluated on the ISOT-CID

public cloud intrusion dataset with fast and accurate detection of various attacks within sub-minute

latency. Lastly, a prototype deployment in a production OpenStack cluster at Compute Canada West

validated the real-world practicality and efficacy of CloudIDS in multi-tenant cloud environments.

The remainder of the paper is structured as follows: Section 2 is a discussion of the state-of-the-

artwork in the area of intrusion detection systems for cloud environments. Section 3 is a description of

the different change point detection algorithms used in the CloudIDS framework. Section 4 gives an

overview of the overall framework of cloud-based intrusion detection. Section 5 discusses the feature

extraction process from cloud network traffic, while Section 6 presents the computation of such features.

Section 7 gives information regarding the implementation of the presented framework. Section 8 reports

the experimental results and analyzes the performance of the system for different attack scenarios.

Section 9 is reserved for the ablation study, analyzing the effect of various components and parameters

on the performance of the system. Section 10 concludes the paper and provides directions for future

research in the area.

Related Work

Cloud-based Intrusion Detection Systems (IDS) are now critical to protecting cloud computing

environments, where dynamic resource allotment and multi-tenant architecture impose new threats.

Signature-based and anomaly-based methods of IDS that have been used in traditional settings are too

often inadequate to identify continually changing and sophisticated threats in cloud environments. This

has resulted in increasing interest in combining Machine Learning (ML) and Deep Learning (DL)

methods to improve the adaptability and precision of IDS in cloud computing. Recent research has

investigated the use of ML and DL for intrusion detection with datasets such as KDDCup99, suggesting

classification, clustering, and hybrid models to overcome issues such as high false positive rates and poor

detection of zero-day attacks. This survey emphasizes major breakthroughs in cloud-based IDS, their

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 334

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

shortcomings, and provides the ground for creating stronger, scalable, and smarter intrusion detection

systems for cloud infrastructure.

Intrusion Detection Systems (IDS) are crucial to detect unauthorized behavior from outside. IDS is

crucial to detect numerous types of attacks, defining intrusion detection as a classification problem.

Typical categories include Denial of Service (DoS), probe, User to Root (U2R), Remote to Local (R2L),

and normal traffic. IDS mechanisms typically fall into two broad categories: signature-based and

anomaly-based [12]. Signature-based methods are efficient in discovering known attacks and generally

have a low false positive rate. But they become ineffective in identifying new or zero-day attacks because

they are based on pre-known patterns. They need frequent updates, so they are time-consuming to

maintain. Anomaly-based IDS, on the other hand, can detect known and unknown threats, such as zero-

day exploits [13]. Even with this benefit, they tend to have extremely high false positive rates and are

sensitive to tuning. Intelligent and adaptive solutions are needed in the face of mounting numbers and

sophistication of cyberattacks. To avoid these issues, we suggest the application of machine learning-

based classification as well as clustering techniques. Classification models are trained on completely

labeled sets of data, whereas clustering algorithms can identify patterns in unlabeled data without

needing the data to be labeled first.

Over the last few years, a lot of research has gone into the application of machine learning methods

to Intrusion Detection Systems (IDS). In [14], Support Vector Machines (SVMs) have been used to

identify anomalies in the KDD dataset. Also, in [15], deep learning-based artificial neural networks have

been proposed to build IDS models for anomaly detection on the same dataset. Their findings reported

good detection accuracy and low false alarm rate, which surpassed many other existing techniques. The

work in [16] proposed cascading classifiers to detect and classify outliers in the KDD dataset, even when

the data was not uniformly distributed. In [17], the utilization of decision tree and random forest (RF)

for anomaly detection was utilized, whereas [18] aimed to design a decision tree classifier for accurate

intrusion detection and proved its efficacy through experimental evaluation on two datasets. This

method exhibited better results in terms of Accuracy (ACC), Detection Rate (DR), and False Alarm Rate

(FAR) compared to other approaches. Also, [19] suggested blending several machine learning algorithms

into a hybrid framework, for which experimental results indicated that hybrid models perform better

than single algorithms. Exhaustive surveys of machine learning-based IDS approaches are available in

[20].

Some recent research studies have tried to improve upon the shortcomings of classic models. For

example, [21] proposed a four-layer classification method to differentiate between four attack types in

the KDD dataset with low overall and misclassification errors. In addition, they proposed reducing the

feature size of the original dataset to improve accuracy and reduce computational complexity. Yet,

mislabeled attack types were still not resolved. Conversely, [22] used multiple supervised, unsupervised,

and outlier detection algorithms on the same data set with lower overall accuracy because attacks were

misclassified. Anomaly detection and classification approaches based on machine learning have found

widespread use with the KDD data set, with four differentiated types of attacks with considerably

dissimilar traffic patterns. In [23], misclassification errors for classification techniques based on the KDD

data set were low. However, such models might encounter problems when operating in dynamic multi-

cloud settings, whose attack behaviors are more intricate and interwoven. In addition, the outdated

KDDCup99 dataset would probably not capture existing network traffic and threats anymore [24]. As

explained in [14], SVM has been utilized in data mining for predictive analytics with the use of the

KDDCup99 IDS database for classification purposes based on neural networks. The model obtained 90%

accuracy on the training set and 80% accuracy through 10-fold cross-validation on the test set. The

literature discusses a wide range of classification and clustering methods, as well as unsupervised

learning methods. The overall detection accuracy, however, falls short due to the misclassification of

some attack types. We thus suggest the use of hybrid machine learning models to overcome these

limitations and improve IDS performance.

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 335

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

While every cloud service model possesses inherent benefits, each also faces specific challenges.

Virtualization becomes a requirement for IaaS resource provisioning, but it has limitations that can

diminish the long-run value of IaaS solutions [25]. Platform as a Service (PaaS) is encumbered with

interoperability, host dependency, confidentiality, authorization, reliability, and scalability problems. By

a similar token, Software as a Service (SaaS) will have to face security threats to authorization,

authentication, data confidentiality, service dependability, and network surveillance [26]. Satisfying all

these security considerations is important to cloud service providers [27][48][49].

The dynamic nature of the threat horizon means that malicious actors constantly improve their tools

and methods to utilize vulnerabilities in the cloud environment [28]. The conventional Intrusion

Detection Systems (IDS) tend to struggle when it comes to detecting changing trends in network packets.

Therefore, researchers recommend using Machine Learning (ML) and Deep Learning (DL) techniques

together to enhance IDS performance [29]. ML and DL play significant roles in various fields, such as

finance, government, scientific studies, and cybersecurity [30]. Specifically, the ability of ML to cluster

and classify data is crucial for improving cybersecurity applications [31].

Change Point Detection Algorithms In Cloudids

Change point detection simply wonders: Is the stream I am currently seeing still coming from the

same statistical distribution as before? If not, the point in time when it changed is indicated as a change

point. The area of study goes all the way back to 1950s quality control charts and is now found in

genomics, finance, and, most importantly, network security monitoring [32]. Two general modes are

present. Batch (offline) detection stores the entire sequence of NN observations and scans using

likelihood ratio or Bayesian tests; this works well when the expected number of change points is small

but is not feasible in clouds where traffic never subsides. Conversely, sequential (online) detection

processes packets in sequence, maintaining a running statistic like CUSUM or EWMA and sending an

alert as soon as a threshold is exceeded [33]. This formulation allows an algorithm to "reset" following

an alert and keep on looking for additional shifts, and it's best suited for streams that may have numerous

changes over time.

Why are Sequential Methods Mandatory for Clouds? A hypervisor might observe thousands

of packets in an eye blink; storing full traces for offline analysis would fill disk and memory. Further,

attackers can evolve mid-campaign, so the detector has to continue running after an initial alarm. These

limitations make a case for algorithms that (i) consume unbounded streams, (ii) have constant-time

updates, and (iii) tolerate repeated detections without human resets. The CloudIDS design, thus, takes

sequential, non-parametric change point models.

CPM framework (R package) CloudIDS uses the Change Point Model (CPM) framework, which

is a class of sequential hypothesis tests packaged in an R package. CPM considers a two-sample statistic

at each conceivable split within the current window; the best statistic Dn is compared against a pre-

calculated threshold. When Dn exceeds the threshold value, a change is reported at time t, and monitoring

resumes from the next packet. CPM provides a selection of statistics, Mann-Whitney (location changes),

Mood (scale), Lepage, Kolmogorov-Smirnov, Cramer von Mises, to name a few, both parametric and

non-parametric. Since CloudIDS can't rely on normal traffic distributions, it uses the Mann-Whitney test

by default, which operates with unknown, continuous distributions and still efficiently identifies several

change points [34].

• Single point mode: With detectChangePoint(), CloudIDS can identify the initial meaningful

deviation, appropriate for high assurance VMs that are quarantined immediately upon any

anomaly. Experiments indicated that a startup window of 20 observations and an Average

Run Length (ARL₀) of 370 provided a balance between sensitivity and false alarms,

identifying a dictionary attack within ~6 minutes of occurrence.

• Multi-point mode: With processStream(), the monitor resets itself after every alert, catching

consecutive events like port scans followed by insider reconnaissance. Comparative testing

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 336

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

of five CPM statistics showed that Mann-Whitney and Cramer von Mises provided the lowest

latency (≈1 minute) at reasonable ARL₀ settings, particularly when used with a Riemann

rolling window of 0.05 seconds.

Window management Schemes: Since traffic is ongoing, CloudIDS reduces packets to windows

before passing them to CPM. Two schemes are employed:

• Riemann Chunking: Fixed-size windows (e.g., 2 s) provide homogeneous sample sizes but

can smear short spikes.

• Riemann Rolling: Sliding window moves by an offset (0.05–1.5 s in experiments). Lower

offsets make the system more responsive at the cost of correlated samples and increased rates of

false alarms. Experimentally, an offset of 0.05 seconds with startup = 2000 and ARL₀ = 500 best

traded speed against accuracy for high volume hypervisor data.

Practical Outcomes: Operating on a single day of ISOT CID hypervisor traces, the sequential CPM

pipeline, supplied with PCA reduced traffic features, identified scanning, dictionary, ping, and

unsuccessful DoS attacks with sub-minute latency and minimal overhead. Change point estimates

frequently preceded complete attack manifestation by several seconds, providing operators with an

important reaction window.

Framework Of The Cloud Intrusion Detection

CloudIDS is designed as a hypervisor-resident, all-stream pipeline to translate live packet flows to

security verdicts with second-level latency. The sensor resides on every virtual switch tap, thereby

observing both north–south (tenant ↔ Internet) and east–west (VM ↔ VM) traffic without software

installation in guests. Every packet is time-stamped with nanoseconds, parsed in RAM by a headless

TShark process, and payloads discarded immediately to respect privacy and reduce I/O overhead. The

produced header record rows go into an in-memory column store where vectorised operations compute

dozens of statistics every few milliseconds. A stage involving incremental PCA retains only the four

orthogonal components that explain > 90 % of variance, so memory is constant irrespective of traffic rate.

They are the input to sequential, non-parametric change point monitors, which operate in O(i) per packet

time. If a monitor's metric crosses its threshold, CloudIDS labels the shift with the offending VM, its

severity, and the relevant features, then it can auto throttle or quarantine the instance through the cloud

control plane. Because the pipeline is streaming end-to-end and keeps only sliding window state in

memory, end-to-end alert latency stays in the low seconds even on 40 Gbps links, and RAM usage grows

with window size, not traffic volume. Table I shows the key feature of the design choices in CloudIDS

Table I. Key Features and Design Choices In Cloudids

Features & References Descriptions

Unstructured Nature of

TCP Dumps [35]

Hypervisors capture traffic in PCAP format, which stores binary

frames with no schema. CloudIDS relies on headless TShark filters to

extract header fields, 5-tuple, flags, lengths, and timestamps, directly

in memory. This avoids disk writes, minimizes parsing latency, and

ensures the sensor operates at wire speed while respecting tenant

confidentiality by dropping payloads.

Feature Space [36]

From each frame, CloudIDS derives 19 raw attributes and then

applies automated relational transformations to yield higher-order

metrics: flow frequencies, entropy of source/destination

distributions, load ratios, and degree statistics for the VM-level traffic

multigraph. Incremental PCA prunes redundancy, producing four

principal features (f0–f3) that dominate variance and are cheap to

update.

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 337

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Characterization of Cloud

Network Activities

(Empirical) [37]

A day-long study on the ISOT-CID dataset showed that normal

workloads yield stable feature distributions, whereas attacks trigger

sharp shifts. Port-scan bursts increased identical DST-IP/DST-port

frequency; dictionary attacks spiked entropy; insider file-transfer

sessions altered load ratios. These observations justified choosing

non-parametric change-point tests that react to full-distribution

changes rather than mean shifts alone.

Cloud Network Feature Extraction

Feature engineering in CloudIDS happens in two concentric loops. On the outer loop, traffic from all

the tap interfaces on a hypervisor is combined, creating a host‑level multigraph whose edges tally packet

counts and byte volumes between VM endpoints. From this graph, we calculate node degree, fan‑out

ratios, and hypervisor‑wide entropy values—metrics that highlight macro events like DoS bursts or

VM‑escape chatter. The inner loop separates per-instance flows: each packet is assigned to its tenant VM

and binned into rolling or chunked windows (Riemann/Lebesgue schemes). Within each window,

CloudIDS tallies flow frequencies, computes inter-arrival jitter, and harvests directional statistics

(inbound vs outbound) that are vital for detecting data exfiltration or internal scans.

Empirical examination of the ISOT‑CID traces revealed that the entropy of destination ports drops in

dictionary attacks, and load ratios (packet‑rate ÷ peer count) peak prior to insider file transfers. To

convert these disparate metrics into a sparse real‑time vector, CloudIDS applies incremental PCA: every

few milliseconds, the covariance matrix is recomputed, and only the four leading components, which

account for over 90 % of variance, are passed to the sequential change‑point detectors. Table II shows

the feature groups employed by CloudIDS.

Table II. Feature Groups Used By Cloudids

Features & References Description

Hypervisor-Oriented [38]

Builds a host-level multigraph of all VM-to-VM and VM-to-Internet

flows, then extracts total byte/packet rates, node degrees, and cross-

VM fan-out statistics to expose hypervisor-scale anomalies such as

flooding or escape attempts.

Instance-Oriented [39]

It treats each VM as an independent sensor: it counts per-tuple

frequencies, measures inbound/outbound asymmetry, and records

inter-arrival jitter within rolling windows to reveal brute-force logins,

lateral scans, or data-exfil bursts.

Entropy Features [40]

Computes Shannon entropy of source ports, destination IPs, and

protocol mixes for both hypervisor and instance scopes; sharp drops

indicate focused scans, while sudden rises suggest beaconing or

botnet C2 rotation.

Load Features [41]

Derives load ratios—packet frequency divided by peer degree—and

degree-based connection loads; abnormal surges flag impending DoS

or heavy file-transfer sessions even before bandwidth peaks.

PCA [42], [43]

Runs incremental principal-component analysis to condense

dozens of raw metrics into four orthogonal features (f0–f3) that

preserve > 90 % variance, enabling constant-time updates for the

change-point monitors.

Computing Features

After raw packet attributes are reduced to hypervisor‑ and instance‑level measures, CloudIDS needs

to choose when to pass those observations over to its change‑point detectors. Two windowing techniques

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 338

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

are employed, one optimized for two different traffic behavior patterns seen within the ISOT‑CID

experience. Table III shows the two window techniques applied to average packet observations preceding

feature computation and their detection latency implications.

Table III. Feature Groups Used By Cloudids

Features and

References
Descriptions

Chunking Importance

[44]

Riemann chunking partitions the timeline into consecutive,

non-overlapping windows of fixed length δt (e.g., 2 s). All packets

falling inside a chunk are summarized once the window closes.

Chunking offers statistical independence between windows—valuable

for tests like Mann-Whitney—and yields deterministic memory

usage, but may blur very short-lived spikes if the chunk is too large.

The Lebesgue Scheme

for Computing Features

[45]

Lebesgue rolling shifts a window of N packets forward by an

offset smaller than its length (e.g., 2000-packet window, 500-packet

stride). This packet-count–based scheme aligns feature computation

with actual traffic volume rather than wall-clock time, capturing

micro-bursts that would be diluted in equal-time chunks. Rolling

windows improve detection latency but introduce correlation

between successive samples, demanding more conservative

change-point thresholds.

Empirical tuning revealed a 2s Riemann chunk registered multi minute dictionary attacks with

minimal false positives, and a 2000/500 Lebesgue rolling window revealed sub second port scan bursts

in one minute. With support for both schemes, CloudIDS allows operators to choose a balance between

independence (chunking) and responsiveness (rolling) that most suits their workload.

Framework Implementation

 CloudIDS was prototyped within an in-production OpenStack cluster within Compute Canada West

to ensure that design decisions hold up to actual packet rates and multi-tenant noise. The

implementation takes a staged → streaming architecture:

1. Packet Capture (Tap Layer): A libpcap-based C-language sniffer is bound to each qbr tap

interface that OpenStack's Neutron establishes for tenant vNICs. Packets are picked up in

PROMISC mode, time-stamped by a NIC hardware clock, and duplicated into a lock-free ring

buffer that ensures zero loss at a 40 Gbps line rate. Capture threads are pinned to dedicated

CPU cores to prevent scheduler jitter and NUMA penalties.

2. Header Extraction & Transport (ZeroMQ Layer): Every capture thread removes

payloads in situ, leaving behind only Ethernet, IP, TCP/UDP headers, and a 32-byte metadata

trailer. The header records are encapsulated as 128-byte messages and pushed along a ZeroMQ

pipeline socket to an analytics micro service colocated on the same hypervisor. This architecture

avoids disk I/O and imposes tenant privacy by construction.

3. In-Memory Columnar Store (Apache Arrow Layer): The analytics service buffers 10k

incoming messages and writes them out to an Arrow table with dictionary-encoded strings for

IP addresses and ports, resulting in SIMD-friendly, cache-efficient storage. Windowing

(Riemann chunking or Lebesgue rolling) is achieved by the Arrow record batch boundaries.

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 339

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

4. Feature Engineering: Vectorized C++ kernels calculate hypervisor-level graph metrics and

VM-level frequency/entropy/load features within Arrow buffers directly. Outputs are added as

new columns, without row materialization.

5. Dimensionality Reduction: An RcppEigen-based incremental PCA module pulls the feature

matrix, refreshes the covariance estimate in O(k2) per batch (with k = 30), and outputs four

principal components (f0–f3) explaining > 90 % of variance.

6. Sequential Change-Point Detection: The four elements flow into an embedded R

interpreter in which CPM's processStream() keeps Mann-Whitney and Cramer–von Mises

statistics. Thresholds are pre-tabulated for ARL₀ = 500 to trade false alarms against latency.

Upon a statistical firing, the service tags the responsible VM(s) and writes an alert to a Redis

pub/sub channel.

7. Mitigation Hooks: A light Python listener takes in Redis notifications and, based on policy,

calls OpenStack's Neutron API to rate limit the misbehaving port or Nova to suspend the VM.

Notifications are also saved in Graylog for operator-level forensic analysis.

 The whole stack resides in the host OS namespace (KVM) or Dom0 (Xen), i.e., no code executes within

tenant VMs. On a CentOS 7 super node with 33 × 2.4 GHz cores and 248 GB RAM, maximum utilization

under 40 Gbps bursts was 25 % CPU and 6 GB of memory, leaving plenty of headroom for regular cloud

workloads.

ISOT Cloud Intrusion Dataset

To stringently test the introduced CloudIDS framework, we used the ISOT Cloud Intrusion Dataset

(ISOT-CID)—a large-scale, publicly accessible dataset tailored for cloud-based intrusion detection

studies. Derived from a production environment of a real-world OpenStack cloud, ISOT-CID is

exceptional in terms of its scope, size, and variety, thus proving to be a precious resource for network

behavior analysis in both normal and attack contexts. The ISOT-CID dataset was collected over the

course of a few months and organized on several layers of the cloud stack, ranging from virtual machines

(VMs) to hypervisors and network interfaces. There were two hypervisors and ten VM instances spread

over three separate availability zones (Zones A, B, and C). The instances were subjected to several

internal and external attacks mimicking real attacks and benign activities [46], [47].

The database holds extensive and annotated instances of various categories of attacks, including but not

limited to:

• External Attacks: Denial of Service (DoS), masquerade, and remote login attacks.

• Internal Attacks: Privilege escalations, credential theft, botnet behavior, and data

exfiltration.

• Traffic Types: Internal (hypervisor-to-hypervisor), local (VM-to-VM), and external (VM-to-

outside).

All network traffic was seized with TCPdump in promiscuous mode and stored in regular packet

capture (PCAP) format. Traffic was gathered both with and without payloads to suit different

experimental requirements. Table IV presents an overview of the ISOT-CID dataset features.

Table IV. Feature Groups Used By Cloudids

Attribute Details

Cloud Platform OpenStack

Dataset Size > 8 TB

Data Format PCAP (with and without payload)

Collection Duration Several months (VMs), multiple days (Network/Hypervisor)

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 340

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

No. of Hypervisors 2

No. of VM Instances 10 (across Zones A, B, and C)

Attack Scenarios 4 (each ~1 hour, across different days)

Attack Types DoS, Masquerade, Dictionary, Trojan, Credential Theft, Botnet

Traffic Categories External, Internal, Local

Data Layers Network, Hypervisor, VM, CPU, Memory

Geographic Diversity Attacks from Europe & North America

Labeling Yes (Normal vs. Malicious)

Public Availability Yes (via ISOT website with documentation)

The data is designed to accommodate batch and real-time detection settings, facilitating the

conceptualization and testing of online detection systems like CloudIDS. It is specifically suited for

anomaly detection models, unsupervised learning methods, and sequential change point detection

because it has a high temporal resolution and size.

The diversity and density of ISOT-CID make it a suitable benchmark for cloud intrusion detection

research. It enables a broad set of experimental configurations, such as feature extraction investigations,

change detection methods, and performance scalability testing. Researchers are invited to examine the

dataset with rich metadata and guidelines to aid reproducibility and useful comparisons.

 Experimental Results And Discussion

 To ensure the validity of the efficiency of the suggested CloudIDS framework, we performed a series

of thorough experiments on a high-performance supercomputing machine (the specifications are

presented in Table V. The assessment was performed using one complete day of hypervisor-level

network traffic from the ISOT-CID dataset, namely corresponding to a single reported attack round (see

Figure 1). The experimental scope was limited to the virtual machines installed in a single cloud node,

and a detailed analysis was conducted on one target VM, which was named VM8 and participated in

several attack scenarios within the chosen time frame.

Figure 1 shows an in-depth time sequence of network attacks carried out within a day on the ISOT-

CID testbed, reflecting both internal and external threats within a real-time cloud scenario. The timeline

starts with an external network scan attack at around 09:37 aimed at the cloud subnet. Following this,

around 09:41, the attacker tried a dictionary attack against VM8 and managed to gain access. Upon

entering, the attack was converted into an insider threat as the attacker performed some internal

reconnaissance with a second network scan at 09:45. This was succeeded by malicious activities

between 10:07 and 10:31, such as multiple login attempts and data transfers. At 10:30, the attacker

launched a port scan on VM5, which resided on another cloud node, and then another dictionary attack

at 10:36. Between 10:38 and 10:45, the system recorded several login attempts. The attack continued

with a ping sweep at about 10:46 and file download at 10:47. The last stage consisted of an unsuccessful

DoS attack on VM4 at 11:01 and ping to VM4 at 11:04. This chronology presents a good context to

analyze the detection potential of CloudIDS and to demonstrate the escalation from external probing to

large-scale internal exploitation. The chart highlights the attacker's shift from the outside to the inside,

with striking multi-stage intrusion patterns in cloud systems.

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 341

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Fig.1. Attack Timeline

Table V. Supercomputing Machine Specification

OS Specification

CentOS
RAM: 248 GB CPU: 33 cores

Clock Speed: 2.40 GHz

A. OS Specification

To compare the performance of the proposed CloudIDS framework, experiments were performed on

a high-performance CentOS-based system with 248 GB RAM, 33 CPU cores, and a clock speed of 2.40

GHz (see Table V). The goal was to detect change points in network traffic behavior as soon as possible

and identify attack events correctly with minimal delay. The central analytic element of CloudIDS is the

Change Point Model (CPM), utilized for single and multiple change point identification using univariate

input, i.e., principal components obtained through PCA. As network traffic is non-Gaussian in nature,

a variety of nonparametric CPM algorithms was used under sequential detection conditions. Feature

extraction was preceded by PCA transformation to separate the most important variables contributing

to behavioral changes. These characteristics were thereafter inspected via numerous CPM algorithms

on all VM traffic, gathered at the hypervisor level. Two strategies for temporal segmentation were

employed: a chunking method with a fixed offset of 2.0, and a rolling window method with varying

offsets (1.5, 0.5, 0.1, and 0.05) to evaluate the effect of overlapping traffic windows on detection

performance. More than 300 experiments were performed to optimize these parameters, with detailed

results publicly made available in conjunction with the ISOT-CID dataset and its documentation.

B. Change Point Detection Using a Chunking Approach (CPM Package)

 Single Point Detection In order to discover best configurations for single change point detection, we

performed a number of experiments through the CPM (Change Point Model) package with emphasis

placed on real-time anomaly detection from network traffic. Since no assumptions were made about the

shape of the underlying data distribution, we utilized five nonparametric tests provided by the CPM

package: Mann-Whitney (for location shifts), Mood (for scaling changes), and Lepage, Kolmogorov-

Smirnov, and Cramer-von-Mises (for overall distributional changes). The detection function used in the

CloudIDS framework is given by:

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 342

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

detectChangePoint(pca_features_dst[:,feature], cpmType=cpmf, startup=st,

ARL0=arl)

Here, pca_features_dst[:, feature] is the series of principal components from the PCA-

transformed feature space, cpmType is the statistical test employed, startup is the number of startup

observations needed before detection starts, and ARL0 is the average run length, a false positive control

threshold, which is computed from precomputed values included in the CPM package.

To measure the effect of these parameters, we tested different values for startup and ARL0. The

best setting was found to be startup = 20 and ARL0 = 370, which gave the earliest and correct

detection results. For example, employing the Mann-Whitney test on traffic data from VM8, the

framework successfully detected a significant change point related to a dictionary attack as shown in

Figure 2 . Feature f1 detected the change with an estimated change time of 09:41:02.740, which was

very close to the attack onset, and a detection time of 09:46:53.572, representing a detection delay of

about 5 minutes and 51 seconds. This brief delay indicates the framework's capability for near real-

time detection. Complete results for all VMs, employing various statistical tests, are listed in Table VI.

Fig.2. The plots shows the network traffic for VM8 with the estimated change point location as a blue dashed

line and the detected change point as a red line. These change points found using Mann-Whitney CPM

Table VI. Single Change Point Detected Using Different Cpms For All Vms Using Riemann

Chunking Scheme With Startup Is St=20 And Arl0 Is Arl=370.

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 343

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

To assess the performance of our extracted features in enabling continuous change point monitoring,

we examined their contribution to early detection and compared the performance of different CPM

algorithms under different settings. Our main interest during this phase was network traffic related to

virtual machines participating in the initial round of attacks.

Throughout the first attack window (09:37–09:41), the attacker started by performing a subnet

scanning activity against the IP addresses 172.16.1.21–27, after which there was a dictionary attack

against VM8. This activity of attack should materialize in terms of large departures in the pattern of

network traffic. Since our system makes use of single change point detection, we sought to establish

whether these changes were quickly detected, and which features were most revealing of the intrusion.

As detailed in Table VII, change points were detected effectively by at least two of the features that

were extracted, with f1 and f3 being the most sensitive and effective in anomaly detection. Of the

statistical tests employed, Mood's test was least responsive to this attack scenario. However, Mann-

Whitney, Lepage, and Cramer-von-Mises statistics provided better performance, both in detection

and latency. The mean detection delays and the corresponding estimated change point times of features

f1 and f3 of these three CPM algorithms are presented in Table VIII and reveal the relative detection

efficiencies of each of them.

Table VII. Change Point Detected By Each Feature (In Bold}) Which Was Caused

By Attacker Activities

.

Table VIII. The Average Detection Delay And The Change Point Estimate Time Average Using F1

And F3 For A Single Change Point Detection.

Generally, single change point detection is appropriate for high-security situations where even slight

variations in network activity are deemed important. In these situations, administrators might prefer to

prompt instant action, like isolating or completely shutting down a virtual machine, when one anomaly

has been detected. This is a limiting application scenario, though. In more standard operational

environments, where ongoing monitoring is necessary and the VM stays active even as behavior changes,

there is a need to utilize detection mechanisms that can detect multiple change points across time. This

allows for ongoing monitoring of changing threats and enables dynamic response plans consistent with

real-world cloud operations.

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 344

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Multiple Change Point Detection In the case of continuous monitoring, detecting multiple

change points that could sequentially happen within network traffic data streams is important. To make

this possible, we used the processStream function of the CPM package to extend the

detectChangePoint functionality with the ability to automatically restart the detection after each

detected change point. This makes it possible to continuously analyze new incoming observations

without the need for manual intervention or batch processing.

In our experiments, the processStream procedure was used to identify multiple change points in

sequences of network traffic readings, with the same parameter values used in the single change point

identification experiments, namely a startup value of 20 and an average run length (ARL0) of 370 for

each CPM statistical test.

Fig.3. The plots shows the network traffic for VM8 with the estimated change points locations as a blue dashed

lines and the detected change points as a red lines. These change points found using Mann-Whitney CPM

Figure 3 shows the detection of multiple change points on all four main components derived from

VM network traffic, with the Mann-Whitney statistic. Red lines are used to visualize detected change

points, and blue dashed lines represent the corresponding estimated change times. After detecting a

change, the CPM model is reset and continues to monitor from the next arriving observation, allowing

real-time, adaptive detection.

A systematic comparison of all five CPM techniques, Mann-Whitney, Mood, Lepage, Kolmogorov-

Smirnov, and Cramer-von-Mises, was performed using the Riemann chunking scheme. Detection results

for VM8, under the first attack scenario, are presented in Tables IX and X.

Table IX. Multiple Change Points Detected In All Features Using Cpms For Vm8 With Riemann

Chunking Scheme, With Startup=St20 And Arl0=Arl370.

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 345

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Table X. Multiple Change Points Detected In All Features Using Cpms For Vm8 With Riemann

Chunking Scheme, With Startup=St20 And Arl0=Arl370.

The results show that the features extracted play an important role in the detection of changes in

behavior, with each of them able to indicate network anomalies in at least three different phases of attack.

On average, the estimated delay was about six minutes behind the real attack onset, which is tolerable in

online detection scenarios. Among the tested methods, Mann-Whitney and Cramer-von-Mises

performed best consistently in both detection accuracy and responsiveness. Consequently, further

analysis is centered on these two CPM algorithms, tested further under the Riemann rolling scheme. The

full set of experimental results, including results for all CPM variants, is provided to researchers together

with the ISOT-CID dataset and its accompanying documentation.

C. Multiple Change Point Detection Using the CPM Package with Rolling Window

Since we are interested in detecting multiple change points, this section will present results for

multiple change points detected by the CPM package. As mentioned before, we used different offsets

for window size in the rolling scheme for CPM. In the following, the results will be discussed.

CPM Package For the CPMs in the rolling scheme, the analysis from the previous section is repeated,

except we focus our experiments on two CPMs based on the previous results, namely, the Mann-

Whitney statistic and Cramer-von-Mises.

Moreover, we use different values for startup and ARL0 with each cpmType. Through conducting

extensive experiments, we noticed that, by choosing a small number of observations, the detection will

be more sensitive to small changes and faster to detect change points. This will come at the cost of higher

false positives. On the other hand, choosing ARL to be a large number will let the algorithm learn more

and increase the detection accuracy, but with higher chances of false negatives, and the detection of the

change points is delayed. This is clearly shown in our setting choice for offset 0.1. Therefore, the

appropriate value of the number of observations depends on the activities being considered for the

monitored VM. Based on the network traffic for VM 8, we applied these settings and performed

experiments. The obtained results are discussed and presented next.

For the first offset 0.05 in rolling scheme, the optimum setting found regarding the startup is

st=2000, and for ARL0 is arl=500. The detected multiple change points for both CPMs are presented

in Fig. 4 and summarized in Table XI.

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 346

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Table XI. Multiple Change Points Detected Using Cpm For Vm8 With Riemann Rolling Scheme

With Offset=0.05, Startup=St2000 And Arl0=Arl500.

Table XII. Detection Capability Using Cpms With Extracted Features For Vm8.

Fig.4. The plots shows the network traffic for VM8 with the estimated change points locations as a blue dashed

lines and the detected change points as a red lines. These change points found using Mann-Whitney CPM

The presented result in Table XII shows that with this setting, our extracted features contributed to

the CPMs' change point detection. Each feature can represent the changes in network traffic for at least

two attack periods, with estimated time averaging about 1 minute from the exact attack time. Moreover,

we observed that f2 performs very well and helps CPMs to detect the changes in this setting, and can

present the changes in the network behavior during these attack periods.

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 347

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

The second conducted experiment is with offset 0.1, and the optimum set- ting found regarding the

startup is similar to before, st=2000, and for ARL0 is arl=500. The detected multiple change points for

both CPMs are presented in Table XII.

Table XIV illustrates the change points detection results using this setting. Although each feature

contributed to detecting some period of the attack, they all failed to present the changes that happened

because of the scanning attack. Therefore, this setting is recommended to use to detect different types

of attacks, but not the scanning one.

Table XIII. Multiple Change Points Detected Using Change Point Methods (Cpm) For Vm8 With

Riemann Rolling Scheme (Offset=0.1 Sec, Startup Delay=2000 Ms, Arl0=500 Samples

The third experiments that we conducted is with offset 0.5, and we found the optimum setting for

the startup is st=200, and arl=50000 for the ARL0. The detection time for the change points is

presented in Table XV.

In this setting, the features performed better than the previous one, with at least two detections for

each feature. The results of this setting are summarized in Table XVI.

The last experiments we conducted using CPMs were by choosing a setting close to the setting that

we chose for Riemann chunking. We want to investigate and compare the results with small differences

in the rolling window. Therefore, we chose the offset to be 1.5, and the startup is similar to before,

st=200.

Table XIV. Detection Capability Using Cpms With Extracted Features For Vm8

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 348

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Table XV. Multiple Change Points Detected Using Change Point Methods (Cpm) For Vm8 With

Riemann Rolling Scheme (Offset=0.5 Sec, Startup Delay=2000 Ms, Arl0=50000 Samples

Table XVI. Detection Capability Using Cpms With Extracted Features For Vm8 and for ARL0 is

arl=500.

The detected multiple change points results for both CPMs are presented and summarized in Table

XVII. Furthermore, Table XVIII shows the detection results for each feature during the attack rounds.

Using this setting, each feature can represent the changes in network traffic for at least two attack

periods. However, this setting is not performing well compared to the setting used with the Riemann

chunking. For instance, comparing the change points detected using f1 and f3 in this setting with the

same feature in the Riemann chunking setting, we observed that both CPMs in the Riemann chunking

were able to detect the changes for 4 attack periods and performed the best among other features. On

the contrary, in the Riemann rolling setting, they only detected two changes, which turned out to be the

lowest.

After we conducted all these experiments, we concluded that these different setting helps the 4 PCA

extracted features to detect multiple change points in the network behavior. Observing these settings

and understanding their impacts on the detection results is very important. Selecting a small value of

the ARL0 will detect the change point faster, but with expected higher false positives. On the other hand,

choosing a startup to be large will cause a delay in the detection with a high chance of false negatives.

Since cloud computing is changeable by its nature, clients’ resources could be scaled up or down

according to their needs. Therefore, monitoring VMs that need high network bandwidth is not similar

to those that use less bandwidth. The provided

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 349

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Table XVII. Multiple Change Points Detected Using Change Point Methods (Cpm) For Vm8 With

Riemann Rolling Scheme (Offset=1.5 Sec, Startup Delay=200 Ms, Arl0=5000 Samples

Table XVIII. Detection Capability Using Cpms With Extracted Features For Vm8

Riemann rolling scheme with these different settings provides a customizable intrusion detection

system according to the VMs' operations. As expected, a lower value of the ARL0 results in faster change

detection, at the cost of higher false positives. Again, in practice, the user should typically decide what

sort of false positive rate is acceptable and choose the ARL0 appropriately.

D. Performance Analysis

To compare the effectiveness of the CloudIDS framework, we compared the performance of our

suggested feature set and the Riemann-based sliding window algorithms (chunking and rolling) over

different classes of attack patterns contained in the ISOT-CID dataset. In particular, we considered the

initial round of attacks, involving a series of different adversarial activities launched by an external

attacker and subsequently aggravated through a hijacked virtual machine (VM8).

 Attack Overview and Timeline

 The attack activity started with an external network scan at around 09:37, and then a successful

dictionary attack on VM8 at 09:41, giving unauthorized access. Using VM8 as a leverage, the attacker

performed internal reconnaissance at 09:45, performed repeated logins and file activities between

10:07–10:31, and performed additional attacks like port scans (10:30), another dictionary attack

(10:36), ping sweeps, file download (10:46–10:47), and a final attempt at DoS at 11:01.

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 350

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

 Detection Framework Summary

 We employed Change Point Models (CPMs) of the R package for both single and multiple change point

identification. The performance of the leading CPM algorithms, Mann-Whitney, Cramer-von-Mises,

and Kolmogorov-Smirnov, is presented in the following table along with our PCA-derived features on

these events.

 Observations

• Feature Contributions: In all detection configurations, features f1 and f2 derived from PCA

exhibited the greatest sensitivity in detecting behavioral anomalies, especially under dictionary

and scanning attacks. Feature f0 was particularly sensitive to DoS attempts.

• CPM Algorithm Comparison: Mann-Whitney and Cramer-von-Mises tests outperformed

other variants of CPM in early detection and reliability for both chunking and rolling modes.

Kolmogorov-Smirnov was particularly strong in early-stage scanning detection.

• Offset and Parameter Adjustment: Smaller offsets (e.g., 0.05) and lower ARL0 values in

rolling window configurations resulted in faster detections at the expense of higher false

positives. Large ARL0 values yielded better stability at the expense of detection delays. These

are trade-offs to be tuned according to the VM's working profile and security needs.

Ablation Study

 For further understanding of the individual effects of major components in our CloudIDS model, we

performed a series of ablation experiments. These experiments were conducted in order to isolate and

examine the effect of PCA-derived features, CPM types, and configurations of sliding windows

(chunking versus rolling) on the system's overall performance. Results confirm our design decisions

and shed light on how to optimize intrusion detection for cloud environments.

E. Impact of PCA-Based Feature Extraction

 We first evaluated the contribution of PCA-based dimensionality reduction to enhancing the

interpretability and detection efficiency of the system. The original dataset comprises many redundant

or irrelevant features, which render real-time detection less efficient. Eliminating PCA and employing

raw features with CPMs resulted in dramatically higher false positives and increased detection latency,

particularly in noisy network settings. Conversely, the consistent use of the top four principal

components (f0–f3) always enhanced detection accuracy and lowered the average detection delay in all

attack scenarios. Interestingly, features f1 and f2 performed best in identifying behavioral anomalies

during dictionary attacks and internal reconnaissance.

F. Contribution of Different CPM Types

We evaluated three CPM types, Mann-Whitney, Cramer-von-Mises, and Kolmogorov-Smirnov—in

single and multiple change point detection configurations. The results of ablation show that the Mann-

Whitney test produced the most accurate and early detections over a broad spectrum of attack types,

particularly for dictionary and port scanning attacks. Cramer-von-Mises proved more sensitive to slow-

evolving behavior (e.g., internal reconnaissance and ping sweeps), and Kolmogorov-Smirnov proved to

be best in detecting sudden scanning patterns in the initial stages of the attacks. Removing any of these

CPMs resulted in lower detection diversity, particularly in coping with diverse and dynamic attack

vectors.

G. Sliding Window Strategy: Chunking vs. Rolling

 To analyze the impact of the windowing strategy, we removed either the chunking or rolling scheme

and measured the detection performance. Chunking using Riemann geometry provided consistent

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 351

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

detection with reduced false positive rates and performed well to identify long-term changes in traffic

patterns. Rolling window schemes gave more rapid, more detailed detection, particularly in cases of

high frequency and subtle change. But rolling needed careful tuning of the offset and ARL0 parameters

to achieve a trade-off between sensitivity and precision. The ablation established that integrating both

schemes improves detection robustness across attack type and timing.

H. Sensitivity to ARL0 and Startup Parametersing

 One of the crucial components of our ablation study was changing the ARL0 and startup parameters

under the CPM framework. We noted that low ARL0 values accelerated detection at the expense of

generating spurious alerts, especially in VMs with high variance in usage patterns. Conversely, higher

ARL0 values improved stability but came with delays in responding to real threats. The startup

parameter also impacted the training window of the CPMs. The disabling of these tuning mechanisms

resulted in either early or missed detections, supporting the necessity of dynamic parameterization

according to VM-specific network behaviors

Conclusion And Future Work

 This paper introduced CloudIDS, an adaptive intrusion detection system for dynamic cloud

environments. CloudIDS uses Principal Component Analysis (PCA) to extract key network traffic

features and employs Change Point Models (CPMs)—specifically Mann-Whitney and Cramer-von-

Mises statistics—to detect sudden behavioral shifts indicative of cyberattacks. Two Riemannian-based

sliding window schemes, chunking and rolling, capture both stable and transient patterns in virtual

machine (VM) network activity. Experiments with the ISOT-CID dataset show that CloudIDS

effectively detects attacks such as scanning, dictionary attacks, reconnaissance, and denial-of-service

with high sensitivity and low latency. Tuning parameters like Average Run Length (ARL0) and startup

length significantly impacts detection performance, balancing speed and false positives. An ablation

study confirmed the importance of PCA-based features and Riemannian windowing, with Mann-

Whitney and Cramer-von-Mises tests outperforming other CPM variants. Rolling windows with smaller

offsets enhanced detection speed but increased false positives, offering practical deployment insights.

Future work will integrate CloudIDS with real-time monitoring platforms like the ELK Stack and

Prometheus, and explore reinforcement learning for adaptive parameter tuning. We will also expand

features with contextual metadata, investigate inter-VM correlation for distributed attack detection,

and apply model optimization techniques for lightweight edge deployments. Broader benchmarking on

datasets like CICIDS2017 and UNSW-NB15 will further validate CloudIDS’s generalizability

References

[1] A. Sunyaev and A. Sunyaev, “Cloud computing,” Internet computing: Principles of distributed

systems and emerging internet-based technologies, pp. 195–236, 2020.

[2] R. Al Nafea and M. A. Almaiah, “Cyber security threats in cloud: Literature review,” in 2021

international conference on information technology (ICIT), IEEE, 2021, pp. 779–786.

[3] M. Masdari and H. Khezri, “A survey and taxonomy of the fuzzy signature-based intrusion

detection systems,” Applied Soft Computing, vol. 92, p. 106301, 2020.

[4] A. Goswami, R. Patel, C. Mavani, and H. K. Mistry, “Intrusion Detection and Prevention for

Cloud Security,” International Journal on Recent and Innovation Trends in Computing and

Communication, vol. 12, no. 2, pp. 556–563, 2024.

[5] A. N. Jaber, S. Anwar, N. Z. Bin Khidzir, and M. Anbar, “The importance of ids and ips in cloud

computing environment: Intensive review and future directions,” in Advances in Cyber

Security: Second International Conference, ACeS 2020, Penang, Malaysia, December 8-9,

2020, Revised Selected Papers 2, Springer, 2021, pp. 479–491.

[6] M. A. Hatef, V. Shaker, M. R. Jabbarpour, J. Jung, and H. Zarrabi, “HIDCC: A hybrid intrusion

detection approach in cloud computing,” Concurrency and Computation: Practice and

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 352

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Experience, vol. 30, no. 3, p. e4171, 2018.

[7] H. Satilmiş, S. Akleylek, and Z. Y. Tok, “A Systematic Literature Review on Host-Based Intrusion

Detection Systems,” Ieee Access, vol. 12, pp. 27237–27266, 2024.

[8] A. Thakkar and R. Lohiya, “Fusion of statistical importance for feature selection in deep neural

network-based intrusion detection system,” Information Fusion, vol. 90, pp. 353–363, 2023.

[9] N. S. K. Anumukonda, R. K. Yadav, and N. S. Raghava, “Hypervisor Based Intrusion Detection

Using Enhanced Radial Basis Neural Network on Cloud Environment,” in 2024 IEEE

International Conference on Interdisciplinary Approaches in Technology and Management

for Social Innovation (IATMSI), IEEE, 2024, pp. 1–6.

[10] C. Saadi and H. Chaoui, “A new approach to mitigate security threats in cloud environment,” in

Proceedings of the Second International Conference on Internet of things, Data and Cloud

Computing, 2017, pp. 1–7.

[11] B. Alouffi, M. Hasnain, A. Alharbi, W. Alosaimi, H. Alyami, and M. Ayaz, “A systematic literature

review on cloud computing security: threats and mitigation strategies,” Ieee Access, vol. 9, pp.

57792–57807, 2021.

[12] W. Li, S. Tug, W. Meng, and Y. Wang, “Designing collaborative blockchained signature-based

intrusion detection in IoT environments,” Future Generation Computer Systems, vol. 96, pp.

481–489, 2019.

[13] T. Zoppi, A. Ceccarelli, L. Salani, and A. Bondavalli, “On the educated selection of unsupervised

algorithms via attacks and anomaly classes,” Journal of Information Security and Applications,

vol. 52, p. 102474, 2020.

[14] S. Sonawane, “Rule based learning intrusion detection system using KDD and NSL KDD

dataset,” Prestige International Journal of Management & IT-Sanchayan, vol. 4, no. 2, pp.

134–144, 2015.

[15] Z. Chiba, N. Abghour, K. Moussaid, and M. Rida, “Intelligent approach to build a Deep Neural

Network based IDS for cloud environment using combination of machine learning algorithms,”

computers & security, vol. 86, pp. 291–317, 2019.

[16] R. Thomas and D. Pavithran, “A survey of intrusion detection models based on NSL-KDD data

set,” 2018 Fifth HCT Information Technology Trends (ITT), pp. 286–291, 2018.

[17] E. Min, J. Long, Q. Liu, J. Cui, and W. Chen, “TR‑IDS: Anomaly‑based intrusion detection

through text‑convolutional neural network and random forest,” Security and Communication

Networks, vol. 2018, no. 1, p. 4943509, 2018.

[18] A. Guezzaz, S. Benkirane, M. Azrour, and S. Khurram, “A reliable network intrusion detection

approach using decision tree with enhanced data quality,” Security and Communication

Networks, vol. 2021, no. 1, p. 1230593, 2021.

[19] T. Arvind, “A survey on building an effective intrusion detection system (IDS) using machine

learning techniques, challenges and datasets,” International Journal for Research in Applied

Science and Engineering Technology, pp. 1473–1478, 2020.

[20] A. Devarakonda, N. Sharma, P. Saha, and S. Ramya, “Network intrusion detection: A

comparative study of four classifiers using the NSL-KDD and KDD’99 datasets,” in Journal of

Physics: Conference Series, IOP Publishing, 2022, p. 12043.

[21] K. M. Al-Gethami, M. T. Al-Akhras, and M. Alawairdhi, “Empirical evaluation of noise influence

on supervised machine learning algorithms using intrusion detection datasets,” Security and

Communication Networks, vol. 2021, no. 1, p. 8836057, 2021.

[22] C. Liu, Z. Gu, and J. Wang, “A hybrid intrusion detection system based on scalable k-means+

random forest and deep learning,” Ieee Access, vol. 9, pp. 75729–75740, 2021.

[23] S. Sharma, Y. Gigras, R. Chhikara, and A. Dhull, “Analysis of NSL KDD dataset using

classification algorithms for intrusion detection system,” Recent Patents on Engineering, vol.

13, no. 2, pp. 142–147, 2019.

[24] N. Garcia, T. Alcaniz, A. González-Vidal, J. B. Bernabe, D. Rivera, and A. Skarmeta, “Distributed

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 353

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

real-time SlowDoS attacks detection over encrypted traffic using Artificial Intelligence,” Journal

of Network and Computer Applications, vol. 173, p. 102871, 2021.

[25] H. Hourani and M. Abdallah, “Cloud computing: legal and security issues,” in 2018 8th

International Conference on Computer Science and Information Technology (CSIT), IEEE,

2018, pp. 13–16.

[26] F. Palumbo, G. Aceto, A. Botta, D. Ciuonzo, V. Persico, and A. Pescapé, “Characterizing Cloud-

to-user Latency as perceived by AWS and Azure Users spread over the Globe,” in 2019 IEEE

global communications conference (GLOBECOM), IEEE, 2019, pp. 1–6.

[27] N. H. Hussein and A. Khalid, “A survey of cloud computing security challenges and solutions,”

International Journal of Computer Science and Information Security, vol. 14, no. 1, p. 52, 2016.

[28] J. Martínez Torres, C. Iglesias Comesaña, and P. J. García-Nieto, “Machine learning techniques

applied to cybersecurity,” International Journal of Machine Learning and Cybernetics, vol. 10,

no. 10, pp. 2823–2836, 2019.

[29] M. Fouda, R. Ksantini, and W. Elmedany, “A novel intrusion detection system for internet of

healthcare things based on deep subclasses dispersion information,” IEEE Internet of Things

Journal, vol. 10, no. 10, pp. 8395–8407, 2022.

[30] A. Halbouni, T. S. Gunawan, M. H. Habaebi, M. Halbouni, M. Kartiwi, and R. Ahmad, “Machine

learning and deep learning approaches for cybersecurity: A review,” IEEE Access, vol. 10, pp.

19572–19585, 2022.

[31] A. A. Hady, A. Ghubaish, T. Salman, D. Unal, and R. Jain, “Intrusion detection system for

healthcare systems using medical and network data: A comparison study,” IEEE Access, vol. 8,

pp. 106576–106584, 2020.

[32] I. Prokopenko, “Nonparametric change point detection algorithms in the monitoring data,” in

Advances in Computer Science for Engineering and Education IV, Springer, 2021, pp. 347–

360.

[33] S. Deldari, D. V Smith, H. Xue, and F. D. Salim, “Time series change point detection with self-

supervised contrastive predictive coding,” in Proceedings of the web conference 2021, 2021, pp.

3124–3135.

[34] B. L. Lavy, R. C. Weaver, and R. R. Hagelman III, “Using the change point model (CPM)

framework to identify windows for water resource management action in the lower Colorado

River basin of Texas, USA,” Water, vol. 14, no. 1, p. 18, 2021.

[35] T. Budhraja, B. Goyal, A. Kilaru, and V. Sikarwar, “Fuzzy clustering-based efficient classification

model for large TCP dump dataset using hadoop framework,” in Proceedings of International

Conference on ICT for Sustainable Development: ICT4SD 2015 Volume 1, Springer, 2016, pp.

427–437.

[36] T. DeVries and G. W. Taylor, “Dataset augmentation in feature space,” arXiv preprint

arXiv:1702.05538, 2017.

[37] I. Cano, S. Aiyar, and A. Krishnamurthy, “Characterizing private clouds: A large-scale empirical

analysis of enterprise clusters,” in Proceedings of the Seventh ACM Symposium on Cloud

Computing, 2016, pp. 29–41.

[38] M. Kiperberg, R. Leon, A. Resh, A. Algawi, and N. J. Zaidenberg, “Hypervisor-based protection

of code,” IEEE Transactions on Information Forensics and Security, vol. 14, no. 8, pp. 2203–

2216, 2019.

[39] S. Yu, X. Li, Y. Feng, X. Zhang, and S. Chen, “An instance-oriented performance measure for

classification,” Information Sciences, vol. 580, pp. 598–619, 2021.

[40] W. Duch, T. Wieczorek, J. Biesiada, and M. Blachnik, “Comparison of feature ranking methods

based on information entropy,” in 2004 IEEE International Joint Conference on Neural

Networks (IEEE Cat. No. 04CH37541), IEEE, 2004, pp. 1415–1419.

[41] X. Tong, C. Kang, and Q. Xia, “Smart metering load data compression based on load feature

identification,” IEEE Transactions on Smart Grid, vol. 7, no. 5, pp. 2414–2422, 2016.

[42] D. Machiwal, S. Kumar, H. M. Meena, P. Santra, R. K. Singh, and D. V. Singh, “Clustering of

Journal of Information Systems Engineering and Management
2025, 10(41s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 354

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

rainfall stations and distinguishing influential factors using PCA and HCA techniques over the

western dry region of India,” Meteorological Applications, vol. 26, no. 2, pp. 300–311, 2019, doi:

10.1002/met.1763.

[43] F. Salo, A. B. Nassif, and A. Essex, “Dimensionality reduction with IG-PCA and ensemble

classifier for network intrusion detection,” Computer Networks, vol. 148, pp. 164–175, 2019,

doi: 10.1016/j.comnet.2018.11.010.

[44] M. Thalmann, A. S. Souza, and K. Oberauer, “How does chunking help working memory?,”

Journal of Experimental Psychology: Learning, Memory, and Cognition, vol. 45, no. 1, p. 37,

2019.

[45] S. B. Chae, Lebesgue integration. Springer Science & Business Media, 2012.

[46] A. Aldribi, I. Traore, P. G. Quinan, and O. Nwamuo, “Documentation for the isot cloud intrusion

detection benchmark dataset (isot-cid),” University of Victoria, 2020.

[47] A. Aldribi, I. Traore, and B. Moa, “Data sources and datasets for cloud intrusion detection

modeling and evaluation,” Cloud computing for optimization: foundations, applications, and

challenges, pp. 333–366, 2018.

[48] Altowaijri, S.M. and El Touati, Y. 2024. Securing Cloud Computing Services with an Intelligent

Preventive Approach. Engineering, Technology & Applied Science Research. 14, 3 (Jun. 2024),

13998–14005. DOI:https://doi.org/10.48084/etasr.7268.

[49] Al-mugern, R., Othman, S.H., Al-Dhaqm, A. and Ali, A. 2024. A Cloud Forensics Framework to

Identify, Gather, and Analyze Cloud Computing Incidents. Engineering, Technology & Applied

Science Research. 14, 3 (Jun. 2024), 14483–14491. DOI:https://doi.org/10.48084/etasr.7185

