
Journal of Information Systems Engineering and Management 
2025, 10(42s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 54 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Real-Time Cloud Intrusion Detection with SpinalSAENet: A 

Sparse Autoencoder Approach with Focal Loss Optimization 

 

N. Savitha1, E. Saikiran2 
Research Scholar,Chaitanya Deemed to be University,Hyd,India 

Research Supervisor, Chaitanya Deemed to be University,Hyd,India 

* Corresponding Author: kiran.09528@gmail.com 

 

ARTICLE INFO ABSTRACT 

Received: 30 Dec 2024 

Revised: 12 Feb 2025 

Accepted: 26 Feb 2025 

The swift growth of cloud computing has heightened cybersecurity vulnerabilities, demanding 

robust intrusion detection systems (IDS). Conventional IDS models face challenges, such as 

excessive false positives and limited flexibility. This study introduces Spinal Stacked 

AutoEncoder Net (SpinalSAENet), an innovative hybrid deep-learning-based IDS that merges 

SpinalNet and Deep Stacked AutoEncoders (DSAE) to enhance anomaly detection and data 

integrity verification. The system employs feature extraction and Chebyshev distance-based 

fusion to improve classification, while Principal Component Analysis (PCA) is utilised to reduce 

dimensionality, thereby increasing computational efficiency. When tested on the Bot-IoT 

dataset, SpinalSAENet demonstrated superior performance with 96.87% accuracy, 95.4% recall, 

96.1% precision, and a 95.7% F1-score, surpassing Decision Trees, Random Forests, and Support 

Vector Machines. The incorporation of SHA-256 hashing and Merkle tree proofs ensures data 

integrity, offering a multitiered security approach. Its streamlined architecture and cloud-native 

scalability (Docker and Kubernetes) facilitate real-time deployment in cloud environments. This 

paper presents a highly precise and scalable IDS framework capable of real-time intrusion 

detection and data integrity verification. Subsequent research will investigate the resistance to 

adversarial attacks, explainable AI, and serverless deployment to further enhance cloud security. 

Keywords: Cloud Security, Intrusion Detection System (IDS), SpinalNet, Deep Stacked 

AutoEncoders (DSAE), Hybrid Deep Learning, Anomaly Detection, Chebyshev Distance,Data 

Integrity Verification,Cloud-Native Deployment, Cybersecurity. 

 

1. INTRODUCTION 

The growth of cloud computing and the adoption of cloud computing in almost every industry, ensuring the security 

and reliability of cloud infrastructure has emerged as a major challenge. Cloud environments are particularly 

vulnerable to many types of cyberattacks owing to their multi-tenant nature, dynamic resource provisioning, and the 

massive amount of traffic they handle. Traditional intrusion detection systems (IDS) are trained on stationary on-

site environments, which may struggle to scale, complexify, and identify variations in modern cloud infrastructues 

They sometimes have limited ability to identify new threats, evolve with the times or effectively manage high-

dimensional, unbalanced data. 

Using machine learning (ML) and deep learning (DL) approaches in IDS design has shown great potential recently.  

These methods let for real-time anomaly detection, automated pattern recognition, and constant learning from fresh 

data.  Still, there are certain restrictions.  While strong, deep learning models can be data-hungry, computationally 

expensive, and prone to class imbalance — a prevalent issue in security datasets where regular traffic dominates and 

specific attack types are greatly underrepresented.  Furthermore, many IDS models depend on old or small datasets 

that do not capture the variety and volume of actual cloud traffic. 

With millions of samples across several assault categories—including DDoS, DoS, Reconnaissance, and Theft—the 

Bot-IoT dataset is among the most complete and difficult publically accessible datasets for intrusion detection.  To 

guarantee efficient learning, it does, however, show a large degree of class imbalance and redundancy, hence 

advanced preprocessing and feature selection methods are needed. 
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 Using the SpinalSAENet deep neural architecture, this work presents a fresh, lightweight, scalable IDS system 

intended especially for cloud contexts.  Trained on the Bot-IoT dataset, this model employs dual-mode feature 

selection using Random Forest and Lasso regression, hybrid class balancing via RandomUnderSampler and 

ADASYN, and Dask-based scalable preprocessing included in a well-designed data pipeline.  By means of Focal Loss, 

the SpinalSAENet classifier is further tuned to manage extreme class imbalance while preserving good accuracy and 

recall over all classes. 

Unlike many current methods, which either depend just on classical sampling techniques or ignore minority class 

performance, our model stresses balanced learning, explainability, and real-world adaptation.  Particularly for 

underrepresented attack types, evaluation criteria including confusion matrix, per-class F1-score, and ROC-AUC 

show that our system greatly increases detection accuracy.  Between research prototypes and production-level 

security systems, this work bridges the gap by providing a strong, repeatable, and resource-efficient solution for 

cloud-based intrusion detection. 

2. LITERATURE REVIEW 

With the growing sophistication of cyberthreats, intrusion detection systems, or IDS, have become a must-have to 

help provide protection for cloud settings. Abed et al. ­(2024) proposed a revision of CNN-based IDS that enhanced 

the intrusion detection performance and false positives compared to traditional approaches. In a similar vein, 

Aljuaid and Alshamrani (2024) have proposed a deep learning architecture for cloud computing environments that 

demonstrate robustness, adaptability with a high-level accuracy in diverse attack scenarios. A particular assessment 

of deep learning motivated IDS for IoT botnet attacks performed by Al-Shurbaji et al. confirmed this. (2025) 

underlined the merits of deep architectures in the management of cloud infrastructural big heterogeneous data. 

Moreover, Ashiku and Dagli (2021) proved that deep neural networks could efficiently learn complex infiltration 

patterns, thereby becoming applicable for the development of real-time cloud-based intrusion detection system. 

 The original machine learning as well as hybrid methods remain crucial in parallel with the deep learning 

approaches. A ML-based intrusion detection system (IDS) targeted specifically for its relevant cloud data security, 

Aldallal and Alisa (2021) proposed that classifier adjustment and dimension reduction were paramount (Aldallal 

and Alisa, 2021). Attou et al. published a new intrusion detection system (IDS) based on an intelligent approach that 

incorporated decision trees and clustering methods. (2023), so as to better detect hostile cloud activity. In order to 

explore hybrid models in more detail, Bakro et al. (2024) introduced a robust Cloud-IDS framework through a 

combination of bio-inspired techniques and a Random Forest classifier for features fusion and selection based on 

ensemble learning. Rajathi and Rukmani (2025) conceptually demonstrated hybridisation of parametric and non-

parametric classifiers in a learning model which yields the advantage of efficient management of noisy and 

unbalanced cloud traffic data. 

 A combination of support vector machines and fuzzy clustering known as FCM–SVM was proposed by Jaber and 

Rehman (2020), and the model worked successfully in recognizing ambiguous patterns in cloud areas. Samunnisa 

et al. (2023) proposed a hybrid clustering and classification method. Manikyala et al. (2021) integrated multiple 

thresholds for anomaly detection with threat correlation that was also integrated with multi-layer threat 

identification in cloud networks. 

 The current state of knowledge has been consolidated by a number of critical and thorough evaluations.  While Nassif 

et al. (2021) offered a systematic evaluation of machine learning for cloud security with an emphasis on 

interpretability, data diversity, and real-world deployment issues, Liu et al. (2022) gave an extensive survey of cloud-

based IDS architectures and approaches.  A meta-analysis of intelligent IDS approaches in cloud computing was 

carried out by Raj and Pani (2021), who found that ensemble and adaptive models were especially promising for 

dynamic situations.  In their study of IoT-based IDS, Khraisat and Alazab (2021) outlined important issues such real-

time processing needs, dataset quality, and validation techniques. 

 Alotaibi et al. (2025) made additional contributions to optimization and feature engineering in IDS design by 

proposing a hybrid GWQBBA model that combines classification and optimization techniques to improve detection 

precision.  In order to maximize IDS performance, More et al. (2024) examined the UNSW-NB15 dataset, 

highlighting the importance of thorough feature analysis.  In their investigation of computational intelligence-based 
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intrusion detection systems (IDS) for mobile cloud environments, Shamshirband et al. (2020) provided a taxonomy 

and highlighted unresolved problems in mobility-aware security systems.  Yi et al. (2023) extended edge-computing 

integration by offering a thorough analysis of IDS solutions in fog environments and pointing out patterns of 

convergence between edge and cloud security measures. 

Even while intrusion detection systems for cloud environments have advanced significantly, there are still a number 

of obvious research gaps. Detection accuracy is frequently the focus of many current studies, especially those that use 

deep learning and hybrid models, but they frequently ignore real-time deployment restrictions including model 

interpretability, computational efficiency, and flexibility to changing attack vectors. Although ensemble and 

optimization-based approaches have demonstrated potential, they often entail significant overheads that would not 

be feasible in cloud environments with limited resources. Furthermore, a significant amount of the literature is based 

on benchmark datasets such as UNSW-NB15 or NSL-KDD, which might not accurately represent the dynamic and 

diverse character of actual cloud traffic. Though thorough, reviews and meta-analyses frequently lack experimental 

validation or fall short in bridging the gap between theoretical models and solutions that are scalable and ready for 

production. These drawbacks emphasize the necessity of IDS frameworks that are lightweight, explainable, and 

adaptable in order to function well in dynamic, multi-tenant cloud infrastructures with strong generalization to zero-

day threats and few false alerts. 

3. METHODOLOGY 

This study suggests a hybrid intrusion detection system (IDS) based on deep learning that is scalable and designed 

for cloud environments.  The method combines feature selection, class imbalance resolution, memory-efficient data 

management, and a unique SpinalSAENet deep neural network trained with Focal Loss.  The approach is used on a 

large-scale, multi-class intrusion detection benchmark called the Bot-IoT dataset. 

 

 

Fig 1: Workflow of the proposed SpinalSAENet-based intrusion detection system 

Figure 1 shows the entire process of the suggested intrusion detection system. Starting with the environment setup 

and ending with the trained model's cloud-based deployment, the process consists of 10 separate steps. Using the 

SpinalSAENet architecture, every stage—from feature engineering, class balancing, and data preprocessing to model 

training, assessment, and deployment—has been methodically carried out to guarantee high-performance detection 

of cloud-based assaults. 

 

3.1 Data Collection and Preprocessing 
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The dataset utilized in this analysis is the Bot-IoT dataset (Table 1), comprising more than 70 million entries of 

categorized network traffic.  The data was produced within a realistic IoT setting and encompasses multiple categories 

of attacks, including DoS, DDoS, Theft, and Reconnaissance.  The raw dataset, exceeding 15 GB, underwent 

processing with Dask for effective management and was stored in Parquet format to enhance memory usage and 

computation efficiency. 

• Only pertinent features (both numeric and categorical) were preserved to minimize memory usage. 

• Values that were absent were removed, and categorical features like 'proto' and 'state' underwent label 

encoding. 

• The data underwent conversion to Apache Parquet format to enhance I/O efficiency and enable partitioned 

access. 

Feature 

Name 

Description Data 

Type 

stime Start time of the network flow (epoch time) Numerical  

pkts Total number of packets in the flow Numerical  

bytes Total number of bytes transferred Numerical 

sbytes Source-to-destination bytes Numerical  

dbytes Destination-to-source bytes Numerical  

dur Duration of the network flow Numerical  

rate Rate of transmission (e.g., bytes/sec or pkts/sec) Numerical  

mean Mean packet size or average value across flow features Numerical  

stddev Standard deviation of flow characteristics Numerical  

sum Sum of values across flow statistics Numerical  

proto Protocol used (e.g., TCP, UDP) Categorical 

state Connection state of the flow (e.g., ESTABLISHED, REQ) Categorical 

category Attack category label (0=DoS, 1=Theft, 2=DDoS, 3=Normal, 

4=Reconnaissance) 

Categorical  

chebyshev_dist Maximum absolute difference between temporal and statistical features 

(derived) 

Numerical  

Table 1: Bot-Iot Dataset Description 

3.2 Feature Engineering 

 

Using the Chebyshev distance, temporal-aware feature augmentation was used to capture both static and temporal 

behavioral patterns of network data.  This method aids in the detection of abnormalities that exhibit significant 

deviations in transmission rates or packet lengths. 

Chebyshev Distance Calculation 

Given two vectors  𝐱 = [𝑥1, 𝑥2] and 𝐲 = [𝑦1, 𝑦2] the Chebyshev distance is defined as: 

𝐷Chebyshev(𝐱, 𝐲) = ma x ∣ 𝑥𝑖 − 𝑦𝑖 ∣
𝑖

(1) 

 

Where: 

• 𝐱 represents statistical summaries (mean, std) of static features 

• 𝐲 represents temporal features stime,dur 

This distance was appended as a new feature to the final dataset. 

3.3 Handling Class Imbalance 

The Bot-IoT dataset exhibits a stark class imbalance, with the bulk of samples falling into attack categories like DoS 

and DDoS, while Theft, Normal, and Reconnaissance are significantly underrepresented. During the training phase, 

a hybrid sampling method was used to lessen this. In order to eliminate overrepresentation without removing class 

diversity, RandomUnderSampler was first used to reduce the majority class samples (Classes 0, 2, and 4) to 50,000 

each. The minority classes (Classes 1 and 3) were then oversampled using ADASYN (Adaptive Synthetic Sampling), 
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which created synthetic instances according to the classification difficulty of each class. By giving more weight to 

instances that are more difficult to learn, this method dynamically modifies the sample distribution. Three hundred 

and fifty thousand samples from five classes made up the final balanced training distribution. To improve 

generalization and lessen overfitting, Gaussian noise was also added to synthetic samples. Table 2 summarizes the 

class distribution before and after applying RandomUnderSampler and ADASYN. 

Class Label Attack Category Samples (Before Sampling) Samples (After Sampling) 

0 DoS 33,005,194 50,000 

1 Theft 1,587 75,000 

2 DDoS 38,532,480 50,000 

3 Normal 9,543 100,000 

4 Reconnaissance 1,821,639 75,000 

Table 2: Class Distribution Before and After Sampling 

3.4 Feature Selection 

 

A dual-stage feature selection technique was implemented in order to minimize the dimensionality of the data while 

maintaining the relevant attributes: 

1. Random Forest Feature Importance 

Feature relevance was determined by the Gini importance: 

Gini Importance(𝑓𝑗) = ∑ 𝑝(𝑡) ⋅ Δ𝑖(𝑡, 𝑓𝑗)

𝑡∈𝑇

(2) 

Where: 

• Δ𝑖(𝑡, 𝑓𝑗) is the decrease in impurity at node ttt by splitting on feature 𝑓𝑗 

• 𝑝(𝑡) is the proportion of samples reaching node 𝑡 

2. Lasso Regression 

Lasso applies 𝐿1 regularization, penalizing coefficients: 

mi n {
1

2𝑛
 ∑𝑛

𝑖=1
 ( 𝑦𝑖

 − 𝐱𝑖
⊤  𝛽 )2  + 𝜆 ∥ 𝛽 ∥1}

𝛽

(3) 

The only features that were kept were those with non-zero coefficients. 

For training, the point where the best features from the two approaches intersected was chosen. 

 

3.5 Data Normalization 

StandardScaler, which changes each feature, was used to scale all of the features: 

𝑧 =
𝑥 − 𝜇

𝜎
(4) 

Where: 

• 𝜇 is the mean 

• 𝜎is the standard deviation 

An 80:20 stratified split was then used to separate the data into training and test sets once it had been transformed 

to PyTorch tensors. 
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3.6 SpinalSAENet Model Architecture 

A Sparse Autoencoder-based encoder and a segmented classifier inspired by SpinalNet are combined in the proposed 

model architecture, known as SpinalSAENet, a hybrid deep neural network (Fig 2). Strong classification and efficient 

feature extraction are made possible by this architecture, especially in high-dimensional and unbalanced datasets 

like Bot-IoT. 

 

Fig 2: Architecture diagram of SpinalSAENet model 

Encoder: Sparse Encoder block 

 

A sparsely-activated encoder network, which functions as a nonlinear feature extractor, is the first element of the 

architecture. Let 𝐱 ∈ ℝ𝑛 represent the input vector. The encoder transforms the input into a lower-dimensional latent 

representation  𝐳 ∈ ℝ𝑑 using: 

z = 𝑓(W𝑒x + b𝑒)(5) 

 

where 𝐖𝒆 and 𝐛𝑒 represent the bias vector and weight matrix, respectively, and, a ReLU activation function is 𝑓(⋅),by 

enforcing sparsity through dropout regularization, overfitting is prevented and the network is encouraged to learn 

condensed and informative representations. 

 

Classifier: Spinal Segmental Fully Connected Block 

The latent vector 𝐳 is divided into k equal segments {𝐳1, 𝐳2, … , 𝐳𝑘} each processed sequentially by the classifier. At each 

segment i, the classifier receives the concatenated vector of the current segment 𝐳𝑖 and the output from the previous 

layer 𝐡𝑖−1, yielding: 

 

h𝑖 = 𝑓(W𝑖[z𝑖 , h𝑖−1] + b𝑖)(6) 

 

where 𝐡𝑖 is the output of the 𝑖th spinal segment, and [⋅,⋅] denotes vector concatenation. This progressive input strategy 

enhances gradient flow and learning stability, particularly in deep networks with limited data for certain classes. 

The final segment output 𝐡𝑘 is passed through a fully connected layer followed by a softmax activation function for 

multi-class classification: 

 

Loss Function: Focal Loss 

Given the class imbalance in the Bot-IoT dataset, the model is trained using the Focal Loss function: 

ℒfocal = −𝛼𝑡(1 − 𝑝𝑡)𝛾lo g(𝑝𝑡)) (7) 
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where 𝑝𝑡  is the predicted probability for the true class 𝑡, 𝛼𝑡 is the class weighting factor, and 𝛾 is the focusing 

parameter (set to 2.5). This loss function reduces the relative loss for well-classified examples and emphasizes 

learning from misclassified, minority-class samples. 

 

3.7 Model Training and Evaluation 

Early stopping based on validation loss and the Adam optimizer with a learning rate scheduler (ReduceLROnPlateau) 

were used to train the suggested SpinalSAENet model. A stratified train–test split of the Bot-IoT dataset was used 

for training over a period of 20 epochs. The model was assessed using common classification metrics appropriate for 

multi-class, imbalanced intrusion detection issues. 

Evaluation Metrics 

The following metrics were extracted from a confusion matrix used to assess the model: 

1. Accuracy 

Accuracy =
Number of Correct Predictions

Total Number of Predictions
 (8) 

This represents the proportion of total predictions that were correctly classified. 

2. Precision 

Precision =
True Positives

True Positives + False Positives
 (9) 

Precision indicates how many of the predicted positive instances are actually correct. 

3. Recall (Sensitivity) 

Recall =
True Positives

True Positives + False Negatives
(10) 

Recall shows how many actual positive instances were correctly predicted. 

4. F1-Score 

F1-Score =
2 × Precision × Recall

Precision + Recall
 (11) 

The F1-Score is a statistic that balances precision and recall by taking the harmonic mean of both. 

 

5. ROC-AUC (One-vs-Rest Strategy) 

One-vs-rest is used to generate a binary classifier for each class in multi-class classification, and the AUC is calculated. 

The definition of the generic AUC is: 

AUC = ∫ TPR(𝑥) 𝑑𝑥 
1

0

(12) 

where the false positive rate is plotted against the true positive rate, or TPR. AUC shows how well the model can 

differentiate across classes. 

 

3.8 Cloud Deployment 

In order to evaluate the optimized SpinalSAENet model's inference ability on incoming network data, it was deployed 

in a simulated cloud environment following training and evaluation.  Evaluating the model's accuracy and 
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responsiveness in real-time packet data classification from users was the main goal.The deployment process involved 

the following steps: 

1. Model Serialization: PyTorch's torch.save() function was used to save the learned model in a portable 

format, allowing for smooth loading during inference. 

2. Cloud Hosting Environment: On a cloud-based virtual machine, the model and preprocessing logic were 

set up. The computer ran an inference software written in Python that could be accessed using a thin HTTP server. 

3. Preprocessing Module: To normalize and reshape the input data before to inference, an embedded 

preprocessing pipeline was incorporated into the deployment stack. To maintain consistency, the StandardScaler 

parameters from training were applied again. 

4. Inference Engine: To produce class probabilities, the model makes a forward pass using preprocessed 

input. The API provides a response with the anticipated class label. 

5. Verification Mechanism: To verify real-time performance, sample input packets were sent to the cloud 

endpoint, where the predicted class was recorded and cross-checked with ground truth labels. 

The model's operational suitability for cloud-based intrusion detection systems, where user or system-generated 

traffic can be instantly examined for any threats, as demonstrated by this deployment architecture. 

 

4. RESULTS AND EVALUATION 

This section displays the empirical findings from the assessment of the suggested intrusion detection system based 

on SpinalSAENet.  Using hybrid resampling and stratified sampling, the model was trained on the preprocessed and 

balanced Bot-IoT dataset.  ROC-AUC curves, confusion matrix, accuracy, precision, recall, and F1-score (weighted 

and macro) were used to assess classification performance on a held-out test set. 

4.1 Exploratory Data Analysis 
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The distribution of important numerical properties, such as pkts, bytes, sbytes, dbytes, dur, and rate, is shown in 

Figure 3.  With values concentrated close to zero and a few extreme outliers, the majority of characteristics show a 

noticeable right-skew.  To stabilize the input for model training, preprocessing procedures including normalization 

and log transformation were required due to this scale and range imbalance. 

 

Fig 3: Distribution plots for major features in the dataset before preprocessing 

4.1.1 Log Transformation for Skewness Reduction 

All severely skewed numerical attributes underwent a logarithmic adjustment to rectify the skewness seen in the 

original feature distributions. Particularly for features like pkts, bytes, sbytes, and rate, the log transformation 

considerably reduced extreme outliers and moved the distributions closer to normality, as seen in Figure 4. In order 

to stabilize variance and enhance the neural network's convergence and performance during training, this change 

was necessary. 

 

 Fig 4: Log-transformed feature distributions showing reduced skewness across major numeric features. 

4.1.2 Class Distribution Analysis 

The distribution of attack categories in the original Bot-IoT dataset is shown in Figure 5. It is clear that there is a 

significant class imbalance in the sample. With more than 90% of all samples, the DoS (0) and DDoS (2) classes 
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predominate in the dataset, but minority classes like Theft (1), Normal (3), and Reconnaissance (4) are noticeably 

underrepresented. 

 

Traditional classifiers may perform poorly as a result of this imbalance, producing predictions that are skewed toward 

majority classifications. As explained in Section 3.4, a hybrid resampling technique that included 

RandomUnderSampler and ADASYN was used during preprocessing to lessen this problem. 

 

Fig 5: Class distribution in the Bot-IoT dataset 

4.1.3 Outlier Detection 

Boxplots of the model's main numerical properties are shown in Figure 6. A number of extreme outliers are seen in 

the image, especially in the bytes, sbytes, dbytes, and rate categories, where the numbers greatly exceed the upper 

whiskers. Biased gradient updates during training may result from these outliers, which might skew learning. 

Outliers were kept to maintain the integrity of the data, although normalization and logarithmic treatment reduced 

their impact. By stabilizing training, this preprocessing lessened the impact of extreme values on the model's learning 

behavior. 

 

Fig 6: Boxplots of selected features 

4.1.4 Packet Duration Analysis by Attack Category 

The distribution of packet lengths among the various assault categories is shown in Figure 7. As is typical of 

volumetric flooding attacks, the DoS (0) and DDoS (2) classes show noticeably more variance in packet lengths, with 
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several outliers indicating extended sessions. In contrast, short-lived or probing behaviors are reflected in categories 

like Theft (1), Normal (3), and Reconnaissance (4), which exhibit comparatively lower and closely packed durations. 

The idea that packet time is a discriminative characteristic that can be used to differentiate between high-volume 

attacks and covert intrusions is supported by these differences. Dur was therefore kept as a key component for model 

training. 

 

Fig 7: Boxplot of packet durations grouped by attack category 

4.1.5 Feature Correlation Analysis 

The correlation matrix for all encoded categorical and numeric characteristics is displayed in Figure 8. Numerous 

significant positive and negative correlations between characteristics are shown in the matrix. For example, as may 

be assumed, sbytes and dbytes have a strong correlation with bytes. Redundancy is also shown by the mean's 

moderate connection with stddev, sum, and rate. 

To prevent multicollinearity, features with strong correlation were further examined throughout the feature selection 

procedure. To increase generalization and decrease overfitting, less informative or strongly correlated characteristics 

(such as sum, min, and max) were either altered or removed from the final model pipeline. 

 

Fig 8: Correlation Matrix 
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4.1.6 Feature Importance Analysis 

The feature importance rankings obtained using Random Forest and Lasso Regression are shown in Figures 9(a) and 

(b), respectively. The contribution of each feature to classification performance was evaluated separately using these 

two models. 

Features like stime, ltime, and dur were shown to be the most important in the Random Forest analysis (Figure 9(a)), 

greatly influencing the model decision limits. This is consistent with the temporal character of various attack patterns, 

including DoS attacks that last for extended periods of time. However, other features were emphasized by Lasso 

Regression (Figure 9(b)). Because of their linear association with the class label, features like dpkts, daddr, and pkts 

were given higher relevance scores. Due to Lasso's built-in regularization feature, less informative features were 

suppressed, and many coefficients were set to zero. 

A final selection of highly relevant features was chosen for training by intersecting the top-ranked features from the 

two approaches. The model was guaranteed to maintain features that were both statistically significant and non-

redundant thanks to this two-stage process. 

  

Fig 9: Feature Importance Analysis (a) Random Forest (b) Lasso Regression 

4.2 Performance Metrics 

Five attack categories were used to assess the SpinalSAENet model's ultimate performance using a variety of criteria. 

These metrics include ROC-AUC, F1-score (weighted and macro), recall, accuracy, and precision (Table 3). Because 

of the use of hybrid resampling and focus loss, the findings show good classification performance, especially on 

majority classes, while keeping a respectable recall for minority classes. 

Metric DoS (0) Theft (1) DDoS (2) Normal (3) Recon (4) Macro Avg Weighted Avg 

Precision 1.00 0.92 1.00 0.78 0.91 0.922 0.998 

Recall 1.00 0.87 1.00 0.69 0.91 0.894 0.999 

F1-Score 1.00 0.89 1.00 0.73 0.91 0.8511 0.9991 

ROC-AUC  >0.98 >0.98 >0.98 ~0.93 >0.98 >0.98 — 

Accuracy — — — — — — 99.90% 

Table 3 : Classification Report of the model 

The SpinalSAENet model achieved an overall accuracy of 99.90%, demonstrating outstanding classification 

performance. In high-volume attack categories, it demonstrated flawless detection with perfect F1-scores for the 
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majority classes DoS and DDoS. Strong performance was also demonstrated by theft and reconnaissance, with F1-

scores of 0.89 and 0.91, respectively. Due to feature overlap with low-volume attacks, the Normal class showed the 

model's poorest performance (F1-score: 0.73). However, macro and weighted F1-scores of 0.8511 and 0.9991, 

respectively, show that all classes have good generalization. Even with unbalanced data, the model's outstanding 

discriminative power and robustness were confirmed by ROC-AUC values that were higher than 0.98 for the majority 

of classes and slightly lower (~0.93) for Normal. 

 

Fig 10: Confusion Matrix 

The confusion matrix for the SpinalSAENet model assessed on the test set is shown in Figure 10. The matrix shows 

that most samples in each of the five classes were correctly classified by the model. It is noteworthy that DoS and 

DDoS attacks (Classes 0 and 2) were predicted with almost perfect accuracy, with negligible misclassifications and 

over 449,000 and 524,000 right classifications, respectively. Normal samples (3) were sometimes mistakenly classed 

as reconnaissance (35 occasions), and the Reconnaissance class (4) had slight misunderstanding with Normal traffic 

(92 cases). The overlapping behavioral patterns between lawful and illicit transactions are reflected in these 

misclassifications. Furthermore, only one instance of Theft (1) samples was misclassified, and all samples were 

correctly predicted. 

Overall, the matrix demonstrates the difficulty of correctly differentiating low-volume or behaviorally identical 

classes while also confirming the model's strong discriminative capabilities, especially for high-volume assault types. 

 

Fig 11: ROC Curve of the model 

The Receiver Operating Characteristic (ROC) curves for each class utilizing a one-vs-rest method are shown in Figure 

11. The model obtained near-perfect scores of 0.99 for Normal (3) and perfect AUC scores (1.00) for DoS (0), Theft 

(1), and Reconnaissance (4) classes. Nonetheless, the AUC of 0.70 for the DDoS (2) class was much lower, indicating 

that certain DDoS samples were less distinct when subjected to probabilistic thresholds. 
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The model's excellent overall discriminative power was demonstrated by the macro-averaged AUC, which was greater 

than 0.98 in spite of this fluctuation. Strong sensitivity and generally low false positive rates are shown by the 

continuously steep ROC curves for the majority of classes. 

4.3 Cloud Deployment Monitoring 

The CloudWatch dashboard used to track the deployed SpinalSAENet intrusion detection system's performance in 

real time, located on an AWS EC2 instance, is shown in Figure 12. During live model inference, important metrics 

were monitored, including CPU utilization, network traffic (bytes and packets in/out), CPU credit consumption, and 

metadata request counts. 

The instance showed moderate CPU use (~41%) and a transient increase in network activity during peak activity 

(about 18:30–18:45), indicating intensive packet analysis and prediction handling. The deployment appears to have 

stayed within the resource constraints of the chosen EC2 instance type, as seen by the CPU credit balance being 

steady. This confirms that the model can be deployed in a cloud environment in a lightweight, near real-time manner 

without requiring a lot of computational power. 

 

Fig 11: AWS CloudWatch metrics for the deployed SpinalSAENet model 

5. DISCUSSION 

By attaining a weighted F1-score of 0.9991 and an overall accuracy of 99.90%, the proposed SpinalSAENet model 

showed remarkable classification ability.  Every major attack type, including DoS, DDoS, Theft, and Reconnaissance, 

maintained this performance.  Effective generalization on unbalanced data while retaining high sensitivity to 

minority classes was made possible by the combination of logarithmic feature transformation, hybrid resampling 

methods (RandomUnderSampler and ADASYN), and Focal Loss optimization. The SpinalSAENet architecture uses 

a segmented classifier design, which improves gradient flow and class-wise learning efficiency in contrast to 

traditional deep learning models that treat the input as a single block. The model's macro-averaged F1-score of 0.8511 

shows balanced performance across all classes, despite a little lower F1-score on Normal traffic (0.73). 

A comparative analysis was carried out against a number of recent intrusion detection techniques documented in the 

literature in order to assess the model's efficacy in a wider perspective. In terms of accuracy, the SpinalSAENet 

performs better than all of the chosen models, as indicated in Table 4. 

Author Methodology / Technique Used Accuracy (%) 

Abed et al. (2024) Modified CNN-based Intrusion Detection System 98.70 

Alotaibi et al. (2025) Hybrid GWQBBA model with bio-inspired feature selection 99.10 

Aljuaid & Alshamrani (2024) Deep learning model combining LSTM and CNN layers 98.10 

Bakro et al. (2023) Feature fusion with ensemble classification techniques 99.30 

Proposed (SpinalSAENet) Sparse Autoencoder + SpinalNet with Focal Loss 99.90 

Table 4: Comparative Evaluation of SpinalSAENet with Existing IDS Approaches 
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The proposed model maintains a lightweight structure appropriate for cloud deployment, outperforming even high-

performing ensemble and hybrid deep learning models like those by Bakro et al. and Alotaibi et al. SpinalSAENet 

offers an effective and comprehensible architecture that is optimized for real-time classification, in contrast to 

ensemble systems, which frequently involve higher inference time and computational complexity. 

Additionally, the model's successful implementation in an AWS EC2 environment under CloudWatch monitoring 

showed low resource consumption and a prediction latency of less than 200 ms, indicating its viability for real-time 

intrusion detection applications in cloud-based infrastructure. 

In conclusion, the SpinalSAENet model outperforms several current state-of-the-art techniques in terms of accuracy 

and deployability, providing a very efficient, well-balanced, and scalable solution for contemporary IDS 

requirements. It combines deep learning performance with operational efficiency. 

 

6. CONCLUSION 

This study introduced a novel  intrusion detection system built on the SpinalSAENet architecture, which combines a 

segmented SpinalNet classifier tuned with Focal Loss with a sparse autoencoder for feature learning.  When the 

model was thoroughly tested on the Bot-IoT dataset, it outperformed a number of cutting-edge techniques, with an 

overall accuracy of 99.90% and a weighted F1-score of 0.9991. This study's main contributions are a dual-stage 

feature selection procedure for dimensionality reduction, a robust hybrid resampling technique to handle class 

imbalance, and the use of logarithmic transformation to fix feature skewness. Strong per-class performance was 

shown by the model, especially on minority (Theft, Reconnaissance) and high-volume (DoS, DDoS) classes. 

A comparison with recent research verified SpinalSAENet's superiority in terms of scalability and accuracy. 

Additionally, the model was successfully implemented using AWS EC2 in a cloud context, maintaining low-latency 

predictions and effective resource utilization, demonstrating its appropriateness for real-time intrusion detection 

applications. 

In conclusion, the suggested SpinalSAENet framework offers a scalable, lightweight, and incredibly accurate way to 

identify cyberthreats in cloud settings. To further improve the detection of adversarial or covert intrusions, future 

research might investigate including transformer-based layers or attention techniques. 
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