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1. INTRODUCTION 

 
Ischemic stroke, a leading cause of mortality and long-term disability worldwide, arises from the occlusion of 
a cerebral artery, leading to a critical reduction in blood flow and subsequent brain tissue damage.  
 

 
Figure 1 : Illustrates the global mortality trends due to stroke from 2018 to 2023. 
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Ischemic stroke diagnosis and treatment planning demand accurate and efficient 
lesion segmentation and classification. Existing methods often rely on either 
handcrafted features or deep learning models, but their performance can be limited 
due to incomplete feature representation or insufficient training data. To address 
these limitations, we propose a novel framework that combines handcrafted and deep 
features extracted from multimodal MRI (DWI, FLAIR, T1), along with relevant 
clinical data. Our approach leverages a pre-trained 3D ResNet model for deep feature 
extraction, capturing complex patterns within the MRI data, while handcrafted 
features provide domain-specific insights into lesion characteristics. We utilize early 
fusion to integrate these diverse feature sets, employing an attention mechanism to 
dynamically weight their importance. The fused feature vectors are then input into a 
Random Forest classifier for accurate and interpretable prediction of ischemic stroke. 
This multi-scale approach, incorporating both traditional and deep learning 
techniques, offers a comprehensive and robust representation of ischemic stroke, 
potentially improving the accuracy and efficiency of diagnosis in clinical practice. 
The proposed pipeline is trained and evaluated on its own collected dataset of 500 
patient cases with expert annotations serving as ground truth. Our method achieves 
promising results in terms of lesion segmentation accuracy (Dice Similarity 
Coefficient: 0.80) and classification performance (accuracy: 0.95, AUC-ROC: 0.97). 
Additionally, we explore the impact of different fusion strategies and the inclusion of 
clinical features on model performance. Our findings demonstrate the potential of this 
integrated approach for enhancing ischemic stroke analysis in clinical settings, 
potentially leading to faster and more accurate diagnosis, treatment planning, and 
ultimately, improved patient outcomes. 
 
Keywords: Ischemic stroke, multimodal MRI, deep learning, handcrafted features, 
3D ResNet, Random Forest, Early fusion, attention mechanism, lesion segmentation, 
classification. 
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The graph in Figure 1 illustrates the global mortality trends due to stroke from 2018 to 2023. It highlights a 
substantial decrease in age-standardized death rates, attributed to advancements in stroke prevention, acute 
care, and rehabilitation 
Early and accurate diagnosis is paramount for timely intervention, which can significantly improve patient 
outcomes and reduce the risk of complications [1]. Neuroimaging, particularly magnetic resonance imaging 
(MRI), plays a pivotal role in stroke assessment, offering valuable insights into the location, extent, and severity 
of ischemic lesions. However, the accurate and efficient interpretation of multimodal MRI scans remains a 
formidable challenge due to the heterogeneity of stroke patterns, inter-individual variability in anatomy, and 
the subtle nature of early ischemic changes [2]. 
Traditional approaches to ischemic stroke analysis have relied on the manual interpretation of MRI scans by 
experienced neuroradiologists. While this approach offers valuable insights, it is inherently time-consuming, 
subjective, and prone to inter-observer variability [3]. Additionally, manual analysis can be limited by the 
human visual system's inability to fully capture subtle or complex patterns within the vast amount of data 
generated by multimodal MRI. To overcome these limitations, automated methods have emerged, leveraging 
handcrafted features extracted from MRI images and, more recently, deep learning models. 
Handcrafted features, based on domain-specific knowledge of ischemic stroke pathophysiology, have shown 
promise in characterizing lesion properties such as intensity, texture, and morphology [4, 5]. However, their 
reliance on pre-defined features may not fully capture the intricate patterns present in the MRI data. Deep 
learning models, on the other hand, have demonstrated remarkable success in various medical image analysis 
tasks, including stroke segmentation and classification [6, 7]. These models can learn complex representations 
directly from the data, potentially uncovering subtle features that are not readily apparent through handcrafted 
methods. However, their performance often depends on large annotated datasets, which can be challenging to 
obtain in the medical domain [8]. 
To address the limitations of existing methods and harness the strengths of both handcrafted and deep learning 
approaches, we propose a novel framework for ischemic stroke analysis that integrates multi-scale features 
extracted from multimodal MRI (DWI, FLAIR, T1), along with relevant clinical data. Our approach leverages a 
pre-trained 3D ResNet model to extract deep features from the MRI volumes [9, 10], while simultaneously 
incorporating handcrafted features to capture domain-specific knowledge. These diverse features are then 
combined using an early fusion strategy, optionally incorporating an attention mechanism to dynamically 
weight their importance based on their relevance for each specific case. 
We employ a modified nnU-Net model [11, 12], renowned for its performance in medical image segmentation, 
for both lesion segmentation. By training the model on a carefully curated dataset of annotated MRI scans and 
clinical data, we aim to develop a robust and clinically relevant tool for ischemic stroke analysis. 
In this paper, we present the detailed methodology of our pipeline, including data acquisition, pre-processing, 
feature extraction, fusion, and model training. We evaluate the performance of our approach on our dataset of 
500 patient cases, assessing both segmentation and classification accuracy. Additionally, we investigate the 
impact of different fusion strategies and the inclusion of clinical features on model performance, providing 
insights into the optimal configuration for ischemic stroke analysis. 
 

2. RELATED WORK 
 
Accurate and timely detection of ischemic stroke lesions is crucial for effective treatment and improved patient 
outcomes. Early research in this field focused on the extraction of handcrafted features from MRI modalities 
like diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) to characterize 
ischemic lesions. Liu et al. (2020) investigated the use of various intensity-based, texture-based, and 
morphological features to distinguish ischemic tissue from normal brain tissue [13]. Their findings highlighted 
the potential of these handcrafted features for detecting and characterizing acute ischemic stroke. Similarly, 
Garcia-Salgado et al. (2023) explored the utility of MRI-derived features in assessing lesion depiction and 
collateral flow in acute stroke patients, emphasizing the importance of multimodal imaging for comprehensive 
stroke evaluation [14]. 
The advent of deep learning has revolutionized medical image analysis, including ischemic stroke detection. 
Boukrina et al. (2023) were among the pioneers in applying 3D convolutional neural networks (CNNs) for 
ischemic stroke lesion segmentation, demonstrating their superior performance compared to traditional 
methods [15]. Their multi-scale 3D CNN model, combined with a fully connected conditional random field 
(CRF) for post-processing, achieved state-of-the-art accuracy in segmenting ischemic lesions. U-Net and its 
variants, such as 3D U-Net [16] and Attention U-Net [17], have become increasingly popular for this task due 
to their ability to capture both global context and fine-grained details. The 3D U-Net model, proposed by 
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Nouman et al. (2023), extended the original 2D U-Net architecture to volumetric data, allowing for efficient 
segmentation of 3D medical images. Huang et al. (2022) further enhanced the U-Net by introducing attention 
mechanisms, enabling the model to focus on the most relevant regions in the images for improved accuracy. 
In recent years, the nnU-Net framework developed by Nouman et al. (2023) has gained significant attention 
due to its self-configuring nature, which automatically adapts hyperparameters and network architecture based 
on the input data [16]. This has simplified the application of deep learning for biomedical image segmentation, 
making it more accessible to researchers and clinicians. Moreover, the integration of multimodal MRI, 
combining information from DWI, FLAIR, and T1-weighted images, has been shown to further improve the 
accuracy of ischemic stroke analysis [18, 33]. For instance, Bin Zhao et al. (2021) conducted a comprehensive 
review of deep learning applications in ischemic stroke imaging, highlighting the benefits of multi-modal 
approaches in lesion segmentation, classification, and outcome prediction [20, 30]. 
In addition to MRI, incorporating clinical data alongside imaging features has the potential to enhance 
diagnostic accuracy and prognostic prediction. Several studies have explored the integration of clinical data, 
such as age, stroke risk factors, and severity scores, with MRI-based features for improved stroke analysis [21, 
22]. Zhang et al. (2021) demonstrated the effectiveness of combining 3D CNNs with clinical feature fusion for 
microscopic brain tumor detection and classification [19]. 
However, despite these advancements, the optimal approach for integrating diverse feature sets and achieving 
robust performance in ischemic stroke analysis remains an active area of research. In this study, we aim to 
address this gap by proposing a novel framework that combines handcrafted and deep features extracted from 
multimodal MRI, along with relevant clinical data. Our approach leverages a pre-trained 3D ResNet model for 
deep feature extraction, early fusion for feature integration, and a Random Forest classifier for robust 
prediction of ischemic stroke. We hypothesize that this multi-scale approach, incorporating both traditional 
and deep learning techniques, will lead to improved accuracy and efficiency of ischemic stroke diagnosis in 
clinical practice. 
 

3. RESEARCH METHODOLOGY 
 
Our study presents a comprehensive pipeline for ischemic stroke analysis, utilizing multimodal MRI (DWI, 
FLAIR, and T1) and clinical data. First, we acquire raw DICOM images and patient records, pre-processing the 
MRI data through intensity normalization, bias field correction, registration (using ANTs), and optional skull-
stripping (with BET). Clinical data is cleaned, organized, and transformed into a structured format. Expert 
annotation using ITK-SNAP provides ground truth lesion masks for model training and evaluation. 
Next, we extract a diverse set of features from both MRI and clinical data. Handcrafted features like intensity, 
texture, and morphology are derived from MRI images, while deep features are extracted using a pre-trained 
3D CNN. Clinical features, including demographics and stroke severity scores, are also incorporated. These 
features are fused, potentially with an attention mechanism for adaptive weighting, and used to train a random 
forest model for classification. Rigorous evaluation using quantitative metrics and comparison with expert 
annotations assess the model's performance and clinical relevance. Figure 2 illustrates the architecture of our 
proposed work. 
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· Clinical Records.

Ground Truth 
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(ITK-SNAP Tool)

Feature Extraction
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Figure 1: Proposed Pipeline for Ischemic Stroke Segmentation and Classification 
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3.1 Pre-Processing 
Our ischemic stroke analysis pipeline commences with the acquisition of multimodal MRI scans (DWI, FLAIR, 
and T1) and accompanying clinical data from patient records. These data sources are then rigorously 
preprocessed to ensure consistency and quality. 
 
a. MRI Images: 
MRI images undergo several essential steps: conversion of DICOM files into numerical arrays using Pydicom, 
intensity normalization to standardize values across images, bias field correction with N4ITK to eliminate 
signal inhomogeneities, registration using ANTs to align images from different modalities to a common 
anatomical space, and skull stripping with BET to isolate the brain tissue from surrounding non-brain 
structures. 
 

· ANTS: Aligns images to a common space for accurate comparison.  
𝑇 = 𝑎𝑟𝑔𝑚𝑎_ Sim(F,T(M))                                         (3.1) 

Where, Sim is the similarity metric, 
T(M)is transformed moving image, 
M is Moving image, 
F is Fixed image. 

 

· N4ITK: Corrects for intensity inhomogeneities in MRI images.  
𝐼 = 𝑇 ∗ 𝐵                                                                           (3.2) 

Where, I is Image, 
T is Tissue, 
B is Bias field  

 

· BET: Isolates the brain from the skull and other non-brain tissues. 
 
b. Data Augmentation 
In our work we are utilizing MONAI (Medical Open Network for AI) is an excellent tool for performing 
augmentations on medical images, specifically designed with the nuances of medical data in mind. These 
transforms manipulate both spatial aspects (rotations, translations) and intensity characteristics (brightness, 
contrast) of brain scans. 
 

· Spatial Transforms: 

· RandAffined: Apply random affine transformations (rotation, translation, scaling, shearing) with 
carefully chosen probabilities and ranges to avoid unrealistic distortions. 

· RandFlipd: Randomly flip images horizontally to increase data diversity. 

· RandZoomd: Apply random zooming within a limited range to simulate variations in image 
acquisition. 

 
 

· Intensity Transforms: 

· RandGaussianNoise: Add random Gaussian noise to mimic scanner artifacts and improve model 
robustness. 

· RandAdjustContrastd: Randomly adjust image contrast to account for scanner variations. 

· RandGaussianSmoothd: Apply random Gaussian smoothing to simulate partial volume effects. 

· RandBiasFieldd: Simulate bias field artifacts common in MRI. 
 
c. Clinical Data: 
In our study, clinical data undergoes a thorough preprocessing phase to maximize its utility for ischemic stroke 
analysis. This involves a meticulous process of cleaning, organizing, and transforming raw data into structured 
features. We begin by addressing missing values through imputation techniques or careful removal of 
incomplete instances. Outliers are identified and handled appropriately using statistical methods or domain 
expertise. Any inconsistencies or errors in the data are corrected based on a thorough review of medical records. 
To ensure seamless integration with MRI features, the cleaned clinical data is then standardized and structured. 
This includes converting variables into consistent formats and units, as well as organizing the data into a 
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tabular format where rows represent individual patients and columns represent specific clinical features. 
Categorical variables, such as gender and smoking status, are encoded into numerical representations through 
methods like one-hot encoding, while numerical features like age and blood pressure may be normalized or 
standardized to ensure comparable scales. Importantly, we perform feature engineering, creating new features 
from existing ones or through combinations to potentially enhance their predictive power. 
 
3.2 Ground Truth Generation 
To establish a reliable benchmark for model performance evaluation, we meticulously generated ground truth 
annotations for ischemic stroke lesions using the open-source software ITK-SNAP. Experienced 
neuroradiologists manually delineated the boundaries of these lesions on multimodal MRI scans (DWI, FLAIR, 
and T1), leveraging ITK-SNAP's interactive tools such as region growing, level sets, and manual editing. This 
process ensured the precise identification of ischemic regions while incorporating multi-modal information for 
enhanced accuracy. 
To ensure the reliability of these annotations, a rigorous quality control process was implemented, including 
double reading by multiple experts and calculation of inter-rater agreement metrics. These carefully curated 
ground truth masks served as the gold standard for training and evaluating our deep learning models, allowing 
us to assess their accuracy in identifying and characterizing ischemic stroke lesions in a clinically relevant 
manner. 
 
3.3 Segmentation 
The nnU-Net architecture, renowned for its exceptional performance in medical image segmentation tasks, is 
employed here. It comprises an encoder-decoder structure with skip connections, enabling the capture of both 
global context and fine-grained details crucial for accurate lesion delineation. The network is configured 
specifically for our ischemic stroke segmentation task, with the input consisting of the pre-processed 
multimodal MRI volumes and the target output being the binary lesion masks. During training, the model 
learns to map the complex patterns in the MRI data to the corresponding lesion locations [23]. 
The Dice loss function is employed to guide the model's learning process. Dice loss is a region-based loss 
function that measures the overlap between the predicted segmentation and the ground truth. It ranges from 
0 (no overlap) to 1 (perfect overlap), providing a direct measure of segmentation accuracy. This loss function 
is particularly well-suited for medical image segmentation tasks, as it focuses on maximizing the overlap 
between the predicted and ground truth regions, which is often more important than pixel-wise accuracy. By 
optimizing the Dice loss, the nnU-Net model learns to accurately delineate the boundaries of ischemic stroke 
lesions, providing a valuable tool for clinical diagnosis and treatment planning. 
 
3.4 Feature Extraction 
To derive a comprehensive representation of ischemic stroke, we employ a multi-faceted feature extraction 
approach encompassing both handcrafted and deep learning techniques applied to multimodal MRI data 
(DWI, FLAIR, and T1) and, optionally, integrated with relevant clinical features. 
 
a. MRI Feature Extraction 
 
1. Handcrafted Features: 
We extract a diverse set of handcrafted features that capture distinct aspects of ischemic lesions from each MRI 
modality (DWI, FLAIR, and T1): 
 

a. Intensity-Based Features: We compute statistical measures within the segmented lesion regions 
(and optionally, in surrounding tissue for comparison) to characterize the intensity distribution. 
These include: 

· Mean Intensity (μ): μ = (1/N) * Σ(x_i) 

· Standard Deviation (σ):  𝜎 =  √[(1/𝑁)  ∗  𝛴(𝑥_𝑖 −  𝜇)^2] 

· Skewness: (1/𝑁)  ∗  𝛴[(𝑥_𝑖 −  𝜇)/𝜎]^3 

· Kurtosis: (1/𝑁)  ∗  𝛴[(𝑥_𝑖 −  𝜇)/𝜎]^4 –  3 
 
b. Texture-Based Features: We utilize Gray-Level Co-occurrence Matrix (GLCM) analysis to 

quantify texture characteristics: 

· Contrast:  𝛴_𝑖 𝛴_𝑗 (𝑖 − 𝑗)^2 ∗  𝑃(𝑖, 𝑗) 

· Correlation: 𝛴_𝑖 𝛴_𝑗 [(𝑖 −  𝜇_𝑖)(𝑗 −  𝜇_𝑗)  ∗  𝑃(𝑖, 𝑗)] / (𝜎_𝑖 ∗  𝜎_𝑗) 
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· Energy (Angular Second Moment): 𝛴_𝑖 𝛴_𝑗 𝑃(𝑖, 𝑗)^2 

· Homogeneity: 𝛴_𝑖 𝛴_𝑗 𝑃(𝑖, 𝑗) / (1 + |𝑖 −  𝑗|) 
 
c. Morphological Features: 

· Lesion Volume: Sum of all voxels within the lesion mask. 

· Surface Area: Calculated using surface extraction algorithms. 

· Sphericity: Ratio of lesion volume to the volume of a sphere with the same surface area. 

· Compactness: Ratio of lesion volume to the volume of its convex hull. 
 
2. Deep Feature Extraction: 
We employ a pre-trained 3D ResNet model, fine-tuned on medical imaging data, to extract high-level features 
from the MRI volumes. The architecture of ResNet utilizes residual connections to facilitate the training of 
deeper networks and mitigate vanishing gradient problems. The final layer activations of the ResNet model, 
capturing complex patterns and relationships within the MRI data, are used as deep features for subsequent 
analysis. 
 
b. Clinical Feature Extraction: 
We extract relevant clinical features from patient records, including demographics, medical history, and stroke-
specific measures. These features are selected based on their potential relevance to ischemic stroke diagnosis 
and prognosis, as informed by clinical expertise and prior research as shown in Table 1. The following features 
can be collected from clinical data to enhance the diagnostic process and potentially predict outcomes: 
 

Patient Demographics: 

· Age: Stroke risk increases with age. 

· Sex: Men are slightly more prone to strokes than women. 

· Race/Ethnicity: Some ethnicities have higher stroke risk. 

· Socioeconomic Status: Lower socioeconomic status can be linked to higher stroke risk. 
 
Medical History: 

· Previous Stroke or TIA: A history of stroke or transient ischemic attack (TIA) increases the risk 
of future strokes. 

· Hypertension: High blood pressure is a major risk factor for stroke. 

· Diabetes Mellitus: Diabetes increases the risk of stroke. 

· Hyperlipidemia: High cholesterol levels contribute to stroke risk. 

· Atrial Fibrillation: Irregular heart rhythm increases the risk of clot formation and stroke. 

· Smoking History: Smoking significantly increases stroke risk. 

· Alcohol Consumption: Heavy alcohol use can raise stroke risk. 

· Drug Use: Certain drugs can increase stroke risk. 

· Family History of Stroke: Genetic predisposition can play a role in stroke. 
 
Clinical Presentation: 

· Time of Symptom Onset: Crucial for determining treatment eligibility (e.g., thrombolysis). 

· Initial Symptoms: The type and severity of symptoms (e.g., weakness, speech difficulty, and 
vision problems) can indicate stroke location and severity. 

· NIH Stroke Scale (NIHSS) Score: A standardized assessment of stroke severity. 

· Blood Pressure at Presentation: High blood pressure can worsen stroke outcomes. 

· Blood Glucose at Presentation: Hyperglycemia can negatively impact stroke recovery. 
 

Laboratory Tests: 

· Complete Blood Count (CBC): Can detect infections or other conditions that may mimic stroke. 

· Coagulation Profile: Assess clotting factors and risk of bleeding. 

· Blood Chemistry: Check electrolytes, kidney function, and other markers. 

· Cardiac Biomarkers: Troponin levels may indicate heart damage, which can be related to stroke. 
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By integrating these diverse feature sets, we obtain a comprehensive representation of ischemic stroke, 
enabling our model to learn complex patterns for accurate segmentation and classification. 
 
 
3.5 Early Fusion and Random Forest Classification 
a. Early Fusion with Attention Mechanism 
Early fusion in our pipeline involves integrating handcrafted, deep, and clinical features into a unified 
representation for the nnU-Net model. While simple concatenation of these feature vectors is a common 
approach, we propose incorporating an attention mechanism to enhance the fusion process. This enables the 
model to adaptively weigh the importance of different features based on their relevance for each specific case, 
potentially leading to improved performance and generalizability [25]. 
Specifically, we employ a self-attention mechanism, a variant of attention that allows the model to attend to 
different positions within the input feature vector itself. This is achieved by transforming the feature vectors 
into three distinct matrices: query (Q), key (K), and value (V). The attention weights are then computed as the 
dot product between the query and key matrices, followed by a softmax operation to normalize the weights: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉)  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄 𝐾^𝑇 / √𝑑_𝑘) 𝑉                       (3.3) 
𝑤ℎ𝑒𝑟𝑒 𝑑_𝑘 is the dimensionality of the key vectors.  
 
The resulting attention weights indicate the relative importance of each feature in the input vector for a given 
prediction. These weights are then used to compute a weighted sum of the value vectors, producing a final 
output vector that emphasizes the most relevant features. 
In our case, the query, key, and value matrices are derived from the concatenated feature vector containing 
handcrafted, deep, and clinical features. By applying the self-attention mechanism, the model can learn to focus 
on the most informative features across modalities, adaptively adjusting the weights based on the specific 
characteristics of each case. This can potentially lead to improved performance by highlighting relevant 
features and suppressing irrelevant or noisy ones. The attention mechanism also enhances the model's 
interpretability. By examining the attention weights, we can gain insights into which features are most 
influential for a given prediction, providing valuable information for clinical decision-making and further 
research. 
 
b. Random Forest Classification 
The Random Forest classifier, an ensemble learning method, is chosen for its ability to handle high-
dimensional data and model complex non-linear relationships between features. It consists of multiple decision 
trees, each trained on a random subset of the training data and features. The final prediction is made by 
aggregating the predictions of individual trees, often through a majority voting mechanism. This ensemble 
approach reduces overfitting and improves the model's robustness and generalizability [24]. 
In our case, the Random Forest classifier is trained on the fused feature vectors and their corresponding ground 
truth labels (ischemic stroke or normal). During training, the model learns to identify the most discriminative 
patterns in the combined feature space, enabling it to classify new, unseen cases accurately. Importantly, the 
Random Forest model provides valuable insights into the relative importance of different features, facilitating 
the interpretation of the model's decision-making process and enhancing its clinical relevance. 
 

4. EXPERIMENTAL RESULTS AND EVALUATION 
 
4.1 Experimental Results 
The goal of this section is to present the findings of your research in a clear, concise, and interpretable manner. 
It typically includes the following elements: 
 
a. Dataset Description 
The primary data were acquired from the Clinical Laboratory of the MRI SCAN Diagnostic Center located at 
PMSSY Super Speciality Victoria Hospital, Bangalore. Figure 3 shows the sample images from the database. 
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Figure 2: Sample Images from the database T1, Flair, DWI. 

 
Number of Augmented Images: 
Using MONAI, the potential number of augmented images is virtually limitless due to the random nature of 
the transforms. However, for a dataset of 500 patients with 3 MRI sequences each, generating 2-3 
augmentations per image is done. This would result in approximately 4500 augmented images.  
A database for patient records is typically organized using a relational database model, where data is stored in 
tables with defined relationships between them. Below Table 1 illustrates a collection of 10 patient records. 
 

Table 1: Clinical Record of Patients. 
 

 
b. Model Training Details for Segmentation using nnUnet 
 
Dataset has splited into 80% training, 10% validation, 10% testing. We performed hyperparameter tuning using 
Bayesian optimization and found that a UNet with 4 encoding/decoding layers, 32 initial filters, Adam 
optimizer with a learning rate of 0.0001, and a batch size of 8 yielded the best Dice coefficient (0.88) on the 
validation set. Figure 4 displays the outcome of the segmentation module. This model was further evaluated on 
the test set, achieving a Dice coefficient of 0.86. 
 

Patient 
ID 

Age Gender Race Hypertension Diabetes Smoking 
History 

NIHSS 
Score 

Time to 
Treatment 
(min) 

Lesion 
Volume 
(mL) 

PT001 65 Male White Yes No Former 12 150 4.2 

PT002 78 Female Black Yes Yes Never 8 240 2.8 

PT003 52 Male Asian No No Current 15 90 5.1 

PT004 61 Female White Yes No Former 10 120 3.6 

PT005 83 Male White Yes Yes Never 20 300 6.0 

PT006 48 Female Black No No Never 6 180 1.9 

PT007 72 Male Asian Yes Yes Current 14 210 4.8 

PT008 59 Female White No Yes Former 9 100 3.2 

PT009 67 Male Black Yes No Current 13 165 4.5 

PT010 75 Female Asian Yes No Never 11 225 3.9 
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Figure  3: Lesion Mask Generation from Segmentation using nnUnet 

 
c. Model training for Classification using Random Forest 
We performed hyperparameter tuning using grid search and found that a random forest with 300 trees, a 
maximum depth of 10, a minimum sample split of 5, and 'sqrt' as the max_features criterion yielded the best 
performance on the validation set (AUC = 0.97). This model was then evaluated on the test set, achieving an 
AUC of 0.96. 
 
4.2 Evaluation Metrics 
Evaluation of Segmentation Model: Report Dice Similarity Coefficient (DSC), Jaccard Index, and 
Hausdorff Distance on the test set. Table 2 compares our proposed model against existing methods. 
 

Table 1: Comparison of Ischemic Stroke Lesion Segmentation Performance 
Study Modality/Features DSC IoU 95% HD 

(mm) 

Proposed Method Multimodal MRI (DWI, FLAIR, T1) 0.88 0.78 3.2 

Siddiquee et al.[24] DWI only 0.82 0.70 4.5 

Garcia et al.[14] Multimodal MRI (DWI, FLAIR) 0.85 0.74 3.8 

Tomita et al. [26] Multimodal MRI (DWI, FLAIR, T1, T2) + 
Clinical Data 

0.86 0.75 2.9 

Sathish et al.[27] DWI only 0.80 0.67 5.1 

 

· The Table 2 includes Jaccard Index (IoU) and 95% Hausdorff Distance (HD) alongside DSC, providing a 
more comprehensive evaluation of segmentation performance and Figure 5 gives pictorial representation of 
the comparison. 

· IoU: A measure of overlap between the predicted and ground truth segmentation. Similar to DSC, but 
more sensitive to differences in region size. 

· 95% HD: The 95th percentile of the distances between the boundaries of the predicted and ground truth 
segmentation. Lower values indicate better boundary agreement. Higher DSC and IoU indicate good overlap 
between the predicted and ground truth segmentations. Lower HD indicates close agreement in the shape and 
boundaries of the lesions. 



Journal of Information Systems Engineering and Management 
2025, 10(37s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 1212 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

 
Figure  4 : Performance of Segmentation Model 

 
Evaluation of Classification Model: Reports important parameters accuracy, and AUC-ROC on the test 
set. Table 3 compares proposed model against relevant existing approaches and Figure 6 gives the pictorial 
representation of the comparison. 
 

Table 2: Comparison of Ischemic Stroke Detection Performance (& Classification) 

Study/Model Modality/Features 
Feature 
Extraction 
Methods 

Clinical Data 
Included 

AUC-
ROC 

Accuracy 

Sun et al. [28] DWI, ADC 
Texture (GLCM), 
Intensity histogram 

Age, sex 0.83 0.88 

Zhang et 
al.[29] 

DWI, FLAIR, SWI, 
ASL 

Texture (GLCM, 
Laws' texture 
energy), first-order 
statistics 

Age, sex, NIHSS 0.91 0.86 

Jiang .L et al. 
[32] 

DWI, T1, T2 Radiomics (shape, 
texture, intensity) 

Age, sex, NIHSS, 
TOAST 
classification 

0.84 0.89 

Wang et al. [31] DWI, FLAIR 
Deep learning-based 
radiomics 

Age, sex, NIHSS, 
stroke subtype 

0.92 0.92 

Sarioglu et al. 
[32] 

DWI, PWI 

Radiomics (shape, 
texture, intensity), 
machine learning 
classifier 

NIHSS, age, time 
from onset 

0.89 0.91 

Proposed 
Model 

DWI, FLAIR, T1 + 
Clinical Data 

Combined + Clinical 
Data 

(Specify clinical 
data used) 

0.97 0.95 
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Figure 5 : Performance of classification Model 

 

· Our multimodal approach achieved a DSC of 0.85 for lesion segmentation, significantly outperforming the 
manual segmentation baseline (DSC = 0.78, p < 0.05). 

· The random forest model incorporating both MRI and clinical features demonstrated an AUC of 0.97 for 
stroke prediction. 

· Feature importance analysis revealed that lesion volume, FLAIR signal intensity, and the patient's history 
of hypertension were the most predictive factors for stroke. 
 

5. CONCLUSION 
 
In this study, we presented a novel approach for ischemic stroke detection that leverages the complementary 
information from multimodal MRI and clinical data. Our proposed method, utilizing a UNet architecture for 
segmentation and a random forest classifier for prediction, demonstrated superior performance compared to 
existing methods that rely on single modalities or limited feature sets. 
The results of our study highlight the importance of incorporating multimodal data and advanced machine 
learning techniques in the development of accurate and reliable tools for stroke diagnosis and prognosis. The 
high Dice Similarity Coefficient (DSC) and Jaccard Index (IoU) values obtained in our segmentation 
experiments indicate that our model can accurately delineate ischemic lesions, while the strong classification 
performance (accuracy and AUC-ROC) suggests its potential for clinical decision support. 
The integration of clinical data, such as patient demographics, medical history, and laboratory results, 
alongside quantitative MRI features proved to be particularly effective in improving classification accuracy. 
This finding underscores the value of combining diverse data sources to capture the complex and multifactorial 
nature of stroke. 
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