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1. INTRODUCTION 

 

Today’s digital world has increased the demand for securing image transmission and protection against noise 

attacks. Image encryption plays a vital role in protecting data during transmission. Techniques like Double 

Random Phase Encoding (DRPE) [Refregier & Javidi, 1995] and Fractional Fourier Transform (FrFT) 

[Unnikrishnan et al., 2000] offer high security but remain vulnerable to noise attacks, which degrade image 

quality during transmission and decryption. 

 

Although existing denoising techniques such as Convolutional Neural Networks (CNNs) [Zhang et al., 2017] 

and Multilayer Perceptrons (MLPs) [Burger et al., 2012] have made remarkable progress, they still face 

challenges in handling noise effectively. Recent advances in image denoising through deep learning-based 

models such as FFDNet and DnCNN [Zhang et al., 2018] have shown significant promise in noise reduction. 

However, these methods often fall short in effectively handling encrypted images due to limitations in 

preserving fine image details under diverse noise scenarios [Dong et al., 2019; Li et al., 2023]. 

 

The core focus of this paper is on addressing the unique complexities of denoising encrypted images. Unlike 

conventional methods that struggle with preserving image details, our model leverages deeper network 

architectures and advanced deep learning techniques, particularly the Deep Convolutional Residual Network 

(Deep ConvResNet), to achieve superior denoising performance. ResNet-based methods [Ren et al., 2019; 

Zhang et al., 2021] not only efficiently denoise images but also defend against noise, occlusion, and blur attacks. 
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This makes ResNet architecture particularly suitable for denoising encrypted images in secure multimedia 

applications, including healthcare and critical infrastructure domains [Chen et al., 2019]. Furthermore, 

experimental results are presented comparing our model with other leading noise filtering techniques, 

highlighting its superior performance in terms of image quality and noise removal efficiency. 

 

This paper's structure is as follows: after defining key concepts in image encryption and denoising, we discuss 

the proposed Deep ConvResNet model and its architecture. The experimental setup, including datasets, 

hardware, and evaluation metrics, is then presented. Finally, we conclude with a discussion of the results and 

potential future work. 

 

Different deep learning based image denoising techniques are compared in Table 1. The improvements made 

by the proposed approach over existing methods include dealing with the limitations like computational 

complexity, image quality compromise as well as adaptability to various noise patterns. Unlike earlier studies, 

this ensures the robustness of denoising while keeping the efficiency and real time ability. 

 

Table 1: Comparison of various image denoising models based on deep learning 

Study Method Used Description Drawbacks Comparison with this Paper 

Jing et al., 
2022 

LDCT Denoising low dose 
Computed 
Tomography 

Compromise in 
image quality thus 
images are 
challenging 

This study has better 
performance in noise, blur 
and occlusion attacks. 

Tian et al., 
2020 

TDL-CDL combines CDL and 
CNNs and uses a 
compound loss 
function to strike a 
compromise between 
detail retention and 
noise reduction. 
 

May struggle with 
high noise levels, 
complex parameter 
tuning 

This study uses ResNets 
based residual learning, 
showing better performance 
in noise, blur and occlusion 
attacks. 

Xu et al., 
2023 

DUMRN Learns deep prior 
information from 
multi-resolution 
features by 
eliminating noise in 
the deep feature space 
using its feature-
based denoising 
module with a multi-
scale regularise block. 
 

This is 
computational 
intensive thus 
might not be 
suitable for real 
time applications 

This study just not produce 
comparable result but also 
denoise with a focus on 
efficiency and has real-time 
application potential 

Singh et al., 
2023 

DL-based 
autoencoder 

Targets speckle noise 
in ultrasonic images, 
outperforms BM3D 

Limited to specific 
noise type and thus 
is less versatile 

This new model can handle 
more types of 
noise(including blur and 
occlusion) effectively. 

Huang et 
al., 2023 

MD3 to 
denoise 
remote 
sensing 
images 
(RSIs) 

Uses a learnt 
dictionary and a 
rearranged self-
similar data matrix 
 

It does not only 
have computational 
overhead but also 
have scalability 
issue 

This study uses efficient 
computation and make it 
more scalable 

X. Wei et al., 
2023 

DIBD It can handle complex 
real-world noise 
scenarios using dual 
learning algorithm 

Complex 
framework thus 
requires extensive 
data for learning 
joint distribution 

This study is more adaptable 
and simpler also providing 
robust denoising across 
various image types without 
extensive data requirenment 
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K.Zhang et 
al., 2017 

Image 
Restoration 
CNN 

CNN-based denoising 
for image restoration 

Less effective in 
handling complex 
noise patterns, 
requires 
improvements for 
efficient 
reconstruction 

This study addresses these 
issues. Showing superior 
noise patterns and 
enhancing image quality 

 

RELATED TERMS 

1.1. Convolutional Neural Network 

CNNs establish themselves as basic deep learning procedures that perform extensively in tasks related to 

computer vision, such as segmenting and detecting objects and classifying images. A CNN architecture contains 

Three primary layers comprise convolutional, pooling, and fully linked layers. The different layers function as 

a unified system to process input data while creating output results. Q. Zhang et al. (2023) developed the 

convolutional layer which applies filters to images to detect edge patterns and textures with the subsequent 

output of feature maps that show these detected patterns. The pooling layers decrease feature map dimensions 

through maximum or average value selection from localized areas which reduces model complexity and 

improves its ability to handle input variations. Yuan et al. (2019) describes fully connected layers which 

transform the flattened feature map into output classes through SoftMax function-based probability 

distribution generation. 

 

1.2. Residual Network 

ResNet serves as one of the most popular architectures within computer vision applications specifically 

designed for image denoising. The residual blocks of ResNet contain multiple convolutional layers which are 

connected through skip connections. The direct transmission of information through skip connections in the 

network helps resolve the issue of the diminishing gradient according to Ren et al. (2019). A residual block of 

ResNet appears in Figure 1 with the addition operator receiving the layer input x through a solid line that 

represents the shortcut connection. The training of deep networks for image denoising tasks becomes possible 

through this method while simultaneously resolving the gradient disappearance issue (J. Zhang et al., 2021). 

The layers inside ResNet contain two separate pathways which include a standard feedforward path that applies 

convolutional and activation layers and a shortcut path that jumps over selected convolutional layers 

(Maharjan et al., 2019). The residual network structure is illustrated in Equation 1 which shows the input x as 

well as the output f(x). 

𝒇(𝒙) = 𝒈(𝒙) + 𝒙                                                       (1) 

 

Residual blocks enable input data to move more quickly between network layers through their connection 

mechanism. The network uses bottleneck layers to decrease computational complexity and parameter count. 

Figure 2 shows two different types of convolutional residual blocks. The basic block as shown in Figure 2(a) 

involves two 3 × 3  convolutions, while the bottleneck block in Figure 2(b) integrates an extra 1 × 1 convolution 

for dimension reduction and restoration which optimizes the efficiency of the subsequent 3 × 3 convolution. 

The initial step in this process involves the application of 1 × 1 convolutional layer, which minimize the channel 

count in the data. This is subsequently followed by a 3 × 3 convolutional layer to further refine the information. 

Lastly, return the number of channels to its initial level in the data, another 1 × 1 convolutional layer is applied. 

The ResNet block without a 1 × 1 convolution is employed in less deep ResNet architectures or situations where 

computational efficiency is a priority over learning intricate features. This reduction in parameters results in a 

more manageable training process.  However, it might possess slightly less representation capacity when 

compared to the bottleneck block. The additional addition is done to optimize the performance of deeper 

ResNet models. Which allows effective training of large-scale networks with enhanced efficiency. ResNet has 

achieved significant success in image classification, surpassing previous benchmarks (F. Wei et al., 2023). It 

uses of residual blocks and skip connections enabling effective training which makes it a valuable tool in deep 
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learning. 

 

 
Figure 1. Residual network: block diagram 

 

 
Figure 2. ResNet block, both with and without a 1x1 convolution, which modifies the input to 

take on the desired shape before adding operation. 

 

1.3. Fractional Fourier Transform 

Fractional Fourier Transform (FrFT) is a mathematical technique that generalizes the standard Fourier 

Transform, enabling rotation of functions in the time-frequency domain. The signal processing field uses this 

technique frequently (Khurana & Singh, 2020). The FrFT operates through a kernel structure that contains the 

complex exponential function elevated to fractional powers for forward and reverse transform operations. 
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Researchers employ FrFT because it applies to optical imaging techniques whereas it enhances resolutions and 

lowers noise levels. A specific FrFT operation on a function appears as follows: 

𝑓(𝑥)(𝑢) = ∫ 𝐾𝛼(𝑥, 𝑢) 𝑓(𝑥)𝑑𝑥
∞ 

−∞ 
         (2) 

Where 𝐾𝛼  is given as, 

𝐾𝛼(𝑥, 𝑢) =
𝑒𝑥𝑝{𝑖[

𝜋

4
𝑠𝑔𝑛(sin (𝛷))−

𝛷

2
]}

√|𝑠𝑖𝑛(𝛷)|
𝑒𝑥𝑝{𝑖𝜋((𝑢2 + 𝑥2)𝑐𝑜𝑡(𝛷) − 2𝑢𝑥𝑐𝑠𝑐(𝛷))}                   (3) 

The signum function sgn appears in equation (3) together with the angle Φ=πα/2 that represents the transform 

order α. 

 

1.4. Pixel Scrambling 

Image encryption is done through a method called Pixel Scrambling in order to protect the privacy of images. 

It consists of splitting the image into blocks and scrambling the pixel positions inside each block by pseudo 

random permutations. Then, the final scramble image is formed by concatenating the scrambled blocks. 

 

2. PROPOSED MODEL 

 

2.1. The Deep Conv ResNet Denoising Model 

Image denoising is performed with the proposed model using deep learning algorithm based on residual 

networks (ResNet). This architecture has the output of each convolutional layer linked to every nth 

deconvolutional layer which makes it an efficient learning and feature extraction. The process is divided into 

three steps: encryption, decryption and denoising of the unencrypted image. As represented in Figure 3. 

The model is trained on several datasets such as Waterloo’s Pristine image, McMaster’s, and MCBSD68 

datasets. The data is divided in an 80:20 ratio between training and testing sets for preprocessing. To augment 

the effectiveness of the suggested deep neural network, the methods of dataset tagging, normalisation and 

standardisation are used. We compare various image restoration architectures such as autoencoders, CNN 

based image restoration (Raj et al., 2020), Multilayer Perceptrons (MLP) (Burger et al., 2012), Block Matching 

3D Filtering (BM3D) (Burger et al., 2012) and ConvLSTM (Piriyatharawet et al., 2018). These techniques are 

employed to simulate and assess the suggested model's performance. 

 

 
Figure 3. Building Deep Learning Model 
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2.2. Optical Image Encryption Based on Fractional Fourier Transform (FrFT) 

The role of image encryption is very important in data security (Arora & Khurana, 2020). A new encryption 

method is proposed in the current study, in which the encryption process starts with pixel scrambling using a 

private key for security enhancement. Then, a Fractional Fourier Transform (FrFT) is applied with fractional 

orders α and β. The following subsection gives details on the encryption and decryption steps. 

 

2.2.1. Encryption Process 

Below we discuss the process of encryption, refer to Figure 4(a) for the Schematic of the proposed encryption 

model. 

1. The original picture 𝐼(𝑥, 𝑦) that needs to be encrypted is first scrambled using the private key generated from 

the pixel scrambling (PK)  to obtain 𝐼1(𝑢, 𝑣) as shown in equation (4). 

𝑰𝟏(𝒖, 𝒗)  = [𝑰(𝒙, 𝒚)  ×  𝑷𝑲]          (4) 

2. The scrambled image 𝐼2(𝑥, 𝑦) is then convoluted by first random phase mask 𝑅𝑃𝑀1 in fractional Fourier 

domain with rotational angle   as shown in equation (5) where 𝑅𝑃𝑀 =  𝑒𝑥𝑝 (2𝜋𝑖 ∗  𝑣( 𝑥, 𝑦)) and 𝑣(𝑥, 𝑦) is any 

random matrix with the same dimensions as the input image 

 

𝑯(𝒖′𝒗′)= 𝑭𝒓𝑭𝑻 , [𝑰𝟏(𝒖, 𝒗)  × 𝑹𝑷𝑴𝟏]     (5) 

3. The obtain the final encrypted image 𝐸(𝑥, 𝑦) , the intermediate result 𝐻(𝑢′𝑣′)  is convoluted with another 

RPM, 𝑅𝑃𝑀2 and propagated through inverse fractional Fourier transform domain with rotational angle   as 

shown in equation (6) in step 3. 

𝑬(𝒙, 𝒚) = 𝑭𝒓𝑭𝑻−,−  [𝑯(𝒖′𝒗′)  × 𝑹𝑷𝑴𝟐 ]    (6) 

4. The encrypted image is artificially targeted with noise during the encryption phase to mimic an actual noise 

attack situation on the encryption device, as presented in Figure 4(a) and shown in equation (7). 

𝑬′(𝒙, 𝒚) =  𝑬(𝒙, 𝒚) +  𝑵𝒐𝒊𝒔𝒆     (7) 

 

The quality of the encrypted image is distorted in real-world situations when noises like AWGN, salt-and-

pepper, speckle, and Poisson noise are introduced during transmission (X. Wei et al., 2023). 

 

 
Figure 4(a). Schematic of the proposed encryption model 

 

2.2.2. Decryption Process 

The decryption process is the inverse of the encryption process (Anshula & Singh, 2021; Ding et al., 2021) and 

is presented in Figure 4(b). 

1. During the propagation process, the encrypted image, which is distorted by noise and referred to as 𝐸′(𝑥, 𝑦) 

is convolved employing the conjugate of the second random phase mask (𝑅𝑃𝑀2
∗) while utilizing Fractional 

Fourier Transform and resultant image is obtained is 𝐻(𝑢′𝑣′) as shown in equation (8). 

 

𝑯(𝒖′𝒗′) =  𝑭𝒓𝑭𝑻 , [𝑬′(𝒙, 𝒚)  ×  𝐑𝐏𝐌𝟐
∗ ]    (8) 

2. Then the resultant image 𝐻(𝑢′𝑣′) is convoluted with the conjugate of RPM1
∗ in inverse Fractional Fourier 

Transform domain with rotational angle    to obtain 𝐻(𝑢, 𝑣) , as shown below in equation (9). 
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𝑯(𝒖, 𝒗) =  𝑭𝒓𝑭𝑻−,− [𝑯(𝒖′𝒗′) × 𝐑𝐏𝐌𝟏
∗  ]    (9) 

3. Finally, in order attain the decrypted image 𝐼(𝑥, 𝑦), one must apply the inverse of the (𝑃𝐾), i.e Private key 

of scrambling algorithm to the resultant image 𝐻(𝑢, 𝑣), as shown in equation (10). 

 

𝑰(𝒙, 𝒚) = [𝑯(𝒖, 𝒗)  ×  𝑰𝑷𝑲]     (10) 

 

Finally, the decrypted image denoted by 𝐼(𝑥, 𝑦) is obtained. After decryption, a residual model is utilized for 

denoising to eliminate any introduced noise and boost the image quality. The steps of denoising are presented 

in next section and denoiser illustrated in Figure 4(b). 

 
Figure 4(b). Schematic of the proposed decryption model 

 

2.3. Decrypted Image Denoiser 

The proposed deep ConvResNet denoiser utilizes a deep residual network (ResNet) architecture for denoising 

decrypted images. The ResNet denoiser consists of nine layers, including convolutional and deconvolutional 

layers, as shown in Figure 5(a).  

 

3.3.1 Architecture of the Model 

There are 9 convolutional layers in the architecture which are divided into four distinct blocks.  

The initial block of the architecture consisted of two layers, particularly a Conv2D layer that operates in two 

dimensions, followed by an activation function that implements the Leaky Rectified Linear Unit (LeakyReLU) 

approach. LeakyReLU is chosen as the activation functionfor all convolutional layers to mitigate the Dying 

ReLU problem. LeakyReLU lower risk of overfitting, computational efficiency and consistent performance 

across Various scenarios make it a better option when compared with PreLU.In addition to leverage Empirical 

performance Improvements, improving convergence rates and maintaining a balance between simplicity and 

performance efficiency offered by LeakyReLU and to avoid neuron inactivity, make LeakyReLU better option 

to go  with. The second block comprises four layers: a Conv2D layer, a Dropout layer with a dropout rate of 0.2, 

a LeakyReLU activation function, and a Batch Normalization (BNorm) layer. The third block involves three 

Conv2D layers. The outputs of the initial three convolutional layers are subsequently inputted into 

corresponding fourth block having deconvolutional layers, facilitating the reconstruction of the denoised image 

refer to Table 2. 

The Summary of four blocks is as follows: [Ioffe & Szegedy, 2015] [Maas et al., 2013] 

1. Block 1: Consists of a Conv2D layer and an activation function called LeakyReLU. [Maas et al., 2013] 

2. Block 2: The composition includes the following layers: Batch Normalization (BNorm), LeakyReLU 

activation, dropout layer (dropout rate = 0.2), and Conv2D layer. [Ioffe & Szegedy, 2015] [Maas et al., 2013] 

3. Block 3: Composed of three Conv2D layers. 

4. Block 4: The output from the previous blocks is processed by deconvolutional layers to reconstruct the 

denoised image. 
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For more clarity refer to Table 2 

Block Layer Type Number of Filters Kernel Size Stride Padding 

Block 1 Conv2D 64 3x3 1 Default/Same 

 LeakyReLU - - - - 

Block 2 Conv2D 64 3x3 2 Default/Same 

 Droupout - - - - 

 LeakyReLU - - - - 

 BNorm - - - - 

Block 3 Conv2D 128 5x5 2 Default/Same 

 Conv2D 128 3x3 1 Default/Same 

 Conv2D 256 5x5 2 Default/Same 

Block 4 Deconv2D 512 3x3 1 Default/Same 

 Deconv2D 512 5x5 2 Default/Same 

 Deconv2D 256 7x7 1 Default/Same 

 Deconv2D 128 9x9 2 Default/Same 

 Deconv2D 128 7x7 1 Default/Same 

 Deconv2D 64 5x5 2 Default/Same 

 Deconv2D 64 3x3 1 Default/Same 

Table 2:Layer wise configuration of proposed Model 

 

The ResNet denoiser as shown in Figure5(b) benefits from residual connections, which help optimize network 

learning by permitting residual mappings between each layer's input and output to be learned by the model, 

improving denoising performance. The image size increases progressively through five consecutive convolution 

operations and subsequent deconvolution steps, from 16 pixels to 500 pixels. 

Each convolutional block contains layers with varying filter sizes and kernel dimensions, with dilated 

convolution kernels: 3×3, 5×5, 7×7, 9×9, 7×7, 5×5, and 3×3. Padding is set to default, and the stride alternates 

between 1 and 2. Orthogonal initialization is used for kernel weights, and zero padding ensures feature map 

consistency before deconvolution. 

Dropout layers in each block help combat overfitting by randomly masking feature activations, encouraging 

the model to learn more robust representations. Batch normalization is incorporated into the final product of 

each deconvolutional block to stabilize training and improve performance. ConvTranspose layers in the 

deconvolutional blocks have increasing filter sizes and kernel dimensions. The final output is compared to the 

input image to assess the denoising performance.The ConvResNet model effectively eliminates common noise 

varitites, including Gaussian noise, and Salt and Pepper and Speckle noise. 

 [Ioffe & Szegedy, 2015] 
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Figure 5. (a) Overview of model architecture (b) Residual Block 

 

2.4. Batch Normalization [Ioffe & Szegedy, 2015] 

In deep learning models, it is very popular technique called Batch normalization. Deep learning model captures 

mapping function to convert the input feature of any input sample. It is essential in accelerating the training 

phase and boosting the generalization of learning neural networks. By removing the mean and dividing by the 

mini batch's standard deviation, the batch normalization procedure normalizes a layer's output. This aids in 

keeping the inputs to the following layers at zero mean and unit variance. Equations (11) and (12) yield the 

batch's mean x ̅ and standard deviation (σ). [Ioffe & Szegedy, 2015] 

 

𝒙 =
𝟏

𝒎
∑ 𝒙𝒊𝒎

𝒊=𝟎       (11) 

𝝈 =  ∑ (𝒙𝒊 − 𝒙)𝟐𝒎
𝒊=𝟎      (12) 

m is the batch size,  xi is the i^th input to the layer, and x ̅  and (σ) are the mean and variance of the batch. To 

normalize the input batch, equation (13) is applied: 

𝒙𝒊 =
( 𝒙𝒊− 𝒙)

𝝈 + ∈
      (13) 

In this equation, ∈ is a small constant (typically 10−5) added for numerical stability. After normalization, the 

batch is scaled and shifted using equation (14): 

𝒚𝒊 =  𝜸 ∗  𝒙𝒊 +  𝜷     (14) 

The parameters γ and β can be adjusted by the network during the training process this fine-tuning helps the 

network achieve the best performance for each layer, leading to better overall results. The integration of batch 

normalization accelerates convergence, and this also enhances stability and improves generalization. This 

ensures efficient gradient propagation and reduces issues with vanishing or exploding gradients. [Ioffe & 

Szegedy, 2015] 

 

2.5. Training 

This model uses the binary cross-entropy loss function, amongst the popular choice for binary classification 

problems. The Adam optimizer was utilised during the training process with a learning rate of 0.00001 to 

minimize the loss function and adjust the model's parameters, thereby enhancing the model's performance. 

The optimizer modified the model's parameters over 50 training epochs. The training loss was monitored and 

displayed on a graph for these 50 epochs to evaluate the model's performance over time. Graph illustrating the 

training loss versus epochs is attached in section 5, providing insight into how the loss decreased over time and 

the model's learning effectiveness from the training data. [Kingma & Ba, 2017] 
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A loss function calculates the difference between the actual target values and the model's predicted output. It 

helps the model learn by providing a measure of its performance. 

Loss = 
𝟏

𝟐𝐍
 ∑ ‖𝐟[(𝐲𝐢,) − (𝐲𝐢 − 𝐱𝐢)]𝟐‖𝐍

𝐢=𝟏     (15) 

Here, 𝑦𝑖  represents the true target values, 𝑥𝑖 represents the forecasted output of the model, and N is sample 

number in the dataset.  (The loss function) is established using the Adam solver (Kingma & Ba, 2017), and 

the remaining hyperparameters of Adam adopt their default values as shown in equation (15) and Table 3 

(Summary of Hyperparameters used in the Training Process) 

 

Hyperparameter Value 

Batch Size 32 

Initial Learning Rate 0.00001 

Learning Rate Decay Step Decay 

Decay Factor 0.1 

Decay Step Every 10 epochs 

Optimization Algorithm Adam 

Loss Function Binary Cross-Entropy 

Number of Epochs 50 

Table 3: Summary of Hyperparameters used in the Training Process 

 

3. EXPERIMENT RESULTS AND DISCUSSION 

 

Images were divided into 2x2 pixel blocks and scrambled. Two arbitrary phase masks were generated using a 

fractional Fourier transform (α = 0.5, β = 0.5). Figure 6 shows: 

• (a) Original image 

• (b) Scrambled image 

• (c) Encrypted image 

• (d) Decrypted noisy image 

(e) Denoised The proposed Deep Conv ResNet model was implemented on a Windows 10 system with a 3.3 

GHz Intel i5-CPU and 8 GB RAM. The model was trained and tested using Python 3. Three datasets were used: 

Waterloo Exploration Database (Ma et al., 2017) with 4744 images, McMaster's dataset (Q. Zhang et al., 2023) 

with 18 cropped images, and BSMCD68 dataset (Yaman et al., 2020) with 68 images. Each image was 500x500 

pixels. The datasets links are available in the data availability section.Datasets were divided 80:20 between 

testing and training. To ensure uniformity, pixel values were standardized between 0 and 1. Multiple 

experiments were conducted to validate the approach. The model was tested on grayscale images "Camera 

Man" and "Bell Pepper," each 512x512 pixels image using Deep Conv ResNet 

Noise (salt-and-pepper, speckle, AWGN) was added to encrypted images. Decryption was performed without 

noise elimination. Figure 7 illustrates the attacks: 

(a, b) Salt and pepper noise 

(c, d) Speckle noise 

(e, f) Gaussian noise (variance 0.5) 

(g, h) Gaussian noise (variance 0.10) 

(i, j) Gaussian noise (variance 0.15) 
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Figure 6. (a) Original image (b) Scrambled image (c) Encrypted image (d) Decrypted noisy 

image (e) denoised image using deep ConvResnet denoiser. 

 

 
Figure 7: Decrypted images with different noise attacks: (a)-(b) salt and pepper noise attack, 

(c)-(d) speckle noise attack, (e)-(f) AWGN attack with variance 0.05 (g)-(h) AWGN with 

variance 0.10, (i)-(j) AWGN with variance 0.15 

 

3.1. Simulation Parameters (including noise analysis) 

3.1.1.1. SSIM 

By contrasting the luminance, contrast, and structural details of two images, the Structural Similarity Index 

(SSIM) calculates how similar they are. It evaluates the performance of image processing algorithms or 

compares the quality of compressed images with their original counterparts (Singh et al., 2015). The formula 

for SSIM is given by equation (16): 

(a) (b) (e) (c) (d) 

     (a) 

 
     (c) 

 

     (e) 

 

     (g) 

 
     (f) 

 
     (h) 

 

     (d) 

 

     (b) 

 

     (i) 

 
     (j) 
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𝑺𝑺𝑰𝑴(𝒙,𝒚) =
(𝟐𝝁𝒙 𝝁𝒚+𝒄𝟏)(𝟐𝝈𝒙𝒚+𝒄𝟐)

(𝝁𝒙
𝟐+𝝁𝒚

𝟐+𝒄𝟏)(𝝈𝒙
𝟐+𝝈𝒚

𝟐+𝒄𝟐)
    (16) 

Where: 

x is the original image and y is the encrypted image. 

μx and µy are the pixel sample means of the x and y images, respectively. 

σxy is the covariance of x and y. 

σ2x and σ2y are the variances of the x and y images, respectively. 

C1 = (k1 L)2 and c₂ = (k2 L)2, where L is the dynamic range of the image (2bit -1). 

The SSIM index ranges from -1 to 1, with 1 indicating identical images. 

 

3.1.1.2.PSNR 

PSNR (Peak Signal to Noise Ratio) is a widely used metric to assess the quality of both the original and 

reconstructed images. The calculation determines the ratio of a signal's maximal strength to the power of the 

noise that degrades the representation's fidelity (Khurana & Singh, 2018a). The formula for PSNR is: 

𝑷𝑺𝑵𝑹 = 𝟏𝟎 ×  𝒍𝒐𝒈𝟏𝟎(
𝟐𝟓𝟓𝟐

𝑴𝑺𝑬
)    (17) 

The maximum pixel value of the image is 255, while the mean squared error (MSE) between the original and 

reconstructed images is 255. Both PSNR and SSIM (Structural Similarity Index Measure) values are used to 

evaluate the quality of reconstructed pictures. 

Results for different types of noise like; AWGN (Additive White Gaussian Noise), SNP (Salt and Pepper), 

Speckle noise are presented in Table 4, Table 5, and Table 6). The suggested method achieved high-quality 

reconstruction despite various noise attacks on different datasets, such as Waterloo, McMaster, and MCBSD68. 

Noise PSNR VALUES (dB) SSIM VALUES 

Variance Camera 

Man 

Bell Pepper Variance Camera 

Man 

Bell Pepper 

Gaussian 0.05 48.61985 41.66349 0.05 0.7765 0.9232 

0.1 36.81562 39.87612 0.1 0.749 0.8937 

0.15 35.27775 38.06106 0.15 0.7029 0.8683 

      Table 4(a). Average PSNR and mean SSIM for Gaussian Noise for Waterloo dataset. 

 

Noise type PSNR VALUES (dB) SSIM VALUES 

Camera Man Bell Pepper Camera Man Bell Pepper 

Salt and Pepper 42.40102 44.03456 0.8692 0.9632 

Speckle 31.89734 42.40102 0.7138 0.8692 

  Table 4(b). Average PSNR and mean SSIM for SNP & Speckle Noise for Waterloo dataset. 

 

Noise PSNR VALUES (dB) SSIM VALUES 

Variance Camera Man Bell Pepper Variance Camera Man Bell Pepper 

Gaussian 0.05 21.990559 28.4518295 0.05 0.60803606

8 

0.72257817 

0.1 20.9786405

4 

27.6931722 0.1 0.563752792 0.69619915 

0.15 20.15876493 26.9333239 0.15 0.518801557 0.67715711 

      Table 5(a). Average PSNR and mean SSIM for Gaussian Noise of McMaster dataset. 

 

Noise type PSNR VALUES (dB) SSIM VALUES 

Camera Man Bell Pepper Camera Man Bell Pepper 

Salt and Pepper 23.14534359 29.2553896 0.721203065 0.75838368 

Speckle 15.34813799 23.1827596 0.323107252 0.51875745 

Table 5(b). Average PSNR and mean SSIM for SNP & Speckle Noise for McMaster dataset. 
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Noise PSNR VALUES (dB) SSIM VALUES 

Variance Camera 

Man 

Bell Pepper Variance Camera 

Man 

Bell Pepper 

Gaussian 0.05 21.99056 28.45183 0.05 0.608036 0.722578 

0.1 20.97864 27.69317 0.1 0.563753 0.696199 

0.15 20.15876 26.93332 0.15 0.518802 0.677157 

      Table 6(a). Average PSNR and mean SSIM for Gaussian Noise for MCBSD68 dataset 

 

Noise type PSNR VALUES (dB) SSIM VALUES 

Camera Man Bell Pepper Camera Man Bell Pepper 

Salt and Pepper 23.14534 29.25539 0.721203 0.758384 

Speckle 15.34814 23.18276 0.323107 0.518757 

Table 6(b). Average PSNR and mean SSIM for SNP & Speckle Noise for MCBSD68 dataset. 

 

3.2. Robustness Against Attacks 

Various kinds of attacks u=were used to check the robustness of the model such as noise, blur, and occlusion 

were used. Noise attacks involved adding random noise to an image, distorting it and making it challenging for 

the recognition system to identify objects correctly (Zhu et al., 2022). Figure 7 shows the noisy images 

processed through the proposed algorithm, which includes a denoiser. Also Figures 8(a) & 8(c) show inputs to 

the decryption algorithm, were as Figures 8(b) & 8(d) display the outputs after applying the deep ConvResNet 

denoiser against salt and pepper noise. Similarly, Figures 8(e) & 8(g) and 8(f) & 8(h) demonstrate the denoising 

performance against speckle noise. Whereas Figures 8(i) & 8(k) and 8(j) & 8(l) show results for AWGN noise 

with variance 0.5, and Figures 8(m) & 8(o) and 8(n) & 8(p) shows results for AWGN noise with variance 0.10. 

The proposed algorithm effectively denoises and recovers clean images, as seen in Figure 8. 
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Figure 8. Figures (a), (c), (e), (g), (i), (k), (m), and (o) represent the images without utilizing 

the deep ConvResNet denoiser, whereas subfigures (b), (d), (f), (h), (j), (l), (n), and (p) display 

the reconstructed images employing the deep ConvResNet denoiser. 

 

3.3. Occlusion Attack 

An occlusion attack tests a recognition system’s ability to identify objects that are partially visible, either due 

to obstruction by other objects or occlusion from shadows. This type of attack plays a vital role for assessing 

the robustness and accuracy of image recognition systems. Figure 9 shows the results of occlusion attacks on 

     (a) 

 
     (b) 

 
     (c) 

 
     (d) 

 

     (e) 

 
     (f) 

 
     (g) 

 

     (h) 

 

     (i) 

 
     (j) 

 
     (k) 

 

     (l) 

 

     (m) 

 
     (n) 

 
     (o) 

 
     (p) 
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images with 40% and 60% occlusion. Additionally, Figure 10 presents the outcomes of the blur attack. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Decrypted images with occlusion attack: (a) 60 % occluded, (b) recovered image, (c) 

40 % occluded, (d) recovered image. 

 

 
Figure 10. Decrypted images with blur attack: (a) input image, (b) blur attack, (c) recovered 

image. 

 

3.4. Comparative Analysis 

Figure 10 shows the results obtained with a blur attack. The suggested approach is contrasted with a number 

of well-known denoising models: BM3D (Burger et al., 2012), MLP (Huang et al., 2023), CNN (Chen et al., 

2019), and ConvLSTM (Piriyatharawet et al., 2018). Figure 11 provides a visual representation of the 

comparative results from different models verified for AWGN noise with variance 0.10 for Camera Man and 

Bell Pepper images. The images with AWGN of variances 0.05, 0.10, and 0.15 were passed through various 

denoising models, and results were compared for PSNR & SSIM values. 

Output results are shown in Table 4 and Table 5 for PSNR and SSIM, respectively. The proposed deep 

ConvResNet Denoiser achieved an average increase of 66.94% and 86.65% in PSNR, as shown in Table 7. In 

comparison, the BM3D method resulted in an increment of 11.06%, MLP achieved 21.06%, CNN saw a 21.64% 

     (a) 

 

     (b) 

 
     (c) 

 

     (a) 

 

     (b) 

 

     (c) 

 

     (d) 
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increase, and CLSTM achieved 15.15%. While PSNR values of the noisy decrypted pictures derived from the 

suggested model are the highest in the first column of Table 4, PSNR alone does not align with human visual 

perception. Therefore, image quality should also be assessed by considering SSIM values. 

Figure 8 shows images without the deep ConvResNet denoiser in subfigures (a), (c), (e), (g), (i), (k), (m), and 

(o), while subfigures (b), (d), (f), (h), (j), (l), (n), and (p) display the reconstructed images using the proposed 

denoiser. 

Figure 9 illustrates decrypted images with occlusion attacks: (a) 60% occluded, (b) recovered image, (c) 40% 

occluded, (d) recovered image. Figure 10 presents decrypted images with blur attacks: (a) input image, (b) blur 

attack, (c) recovered image. 

Table 8 shows that the mean SSIM values improved by 14.89% with the proposed deep ConvResNet Denoiser. 

In comparison, the BM3D method increased by 11.89%, MLP by 7.33%, CNN by 13.87%, and CLSTM by 13.99%. 

These findings show that the suggested approach provides better picture reconstruction and performs better 

than alternatives in terms of both PSNR and SSIM. 

 

PSNR Values 

Variance 

Gaussian (AWGN) 

0.05 0.10 0.15 

Camera 

Man 

Bell 

Pepper 

Camera 

Man 

Bell 

Pepper 

Camera 

Man 

Bell 

Pepper 

Noisy Image 27.5267 28.7489 24.6537 19.2429 20.1558 16.1216 

BM3D(Burger et al., 

2012) 

28.0342 26.7814 25.4293 20.1413 26.87 43 17.9534 

MLP(Huang et al., 

2023) 

26.4564 25.3193 27.4173 22.3447 23.6844 18.2464 

CNN(Chen et al., 2019) 29.6752 32.5496 28.76221 31.1532 27.56074 29.7352 

CLSTM(Piriyatharawet 

et al., 2018) 

31.2512 28.9111 29.5134 24.5156 22.5363 17.5214 

Deep ConvResNet 48.6198 41.6634 36.8156 39.8761 35.2777 38.0610 

Table 7. PSNR values of the decrypted image by different denoising models 

 

SSIM Values 

Variance 0.05 0.10 0.15 

C.man noisy image 0.2314 0.4217 0.4258 

BM3D(Burger et al., 2012) 0.8391 0.7862 0.7380 

MLP(Huang et al., 2023) 0.7011 0.6579 0.5114 

CNN(Chen et al., 2019) 0.8885 0.8729 0.8135 

CLSTM(Piriyatharawet et al., 2018) 0.8971 0.7923 0.8895 

DeepConvResNet 0.9232 0.8937 0.8683 

Table 8. SSIM values of the decrypted image by different denoising models 

 

3.5. Epoch 

A full cycle through the training data constitutes an epoch. The number of epochs functions as a 

hyperparameter to determine how often the entire dataset will be traversed. Model training depends on Epoch 

because it determines how well the model detects essential patterns. 

The graph in Figure 11 shows the relationship between average PSNR (Peak Signal-to-Noise Ratio) and epochs. 

The vertical axis contains average PSNR data which indicates image denoising quality through the training 

process shown through the horizontal axis that tracks epochs. 

The model begins with low average PSNR values at the start of image denoising before adjusting to the process. 

Each successive epoch leads to an increasingly better performance of the proposed model through an upward 
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trend in average PSNR measure. The model demonstrates enhanced capability to decrease noise and maintain 

vital image elements as it progresses through its training process. The model reached a loss value of 0.5439 

during the 50th epoch completion. The model learning process evaluation and the comparison between 

predicted and actual values became possible through this method during training. 

The training process of McMaster data appears in Graph 12(a) while Graph 12(b) displays MCBSD68 data loss. 

The accuracy assessment of the model for training and validation data appears in graph 12(c) to evaluate the 

model's ability to generalize. The Model’s loss during training (on the Waterloo dataset) appears in graph 12(d) 

to show how the model converged and performed. 

The presented graphs display significant metrics and performance indicators throughout the training process 

for various datasets. The default acceptance of the results helps examine model performance and determine 

better adjustments to optimize end results. 

 
Figure 11. Graph of average PSNR versus Epoch 

 

 
Figure 12. Graphs: (a) loss in training data versus Epoch on McMaster, (b) loss in training 

data versus Epoch on MCBSD68 dataset, (c) accuracy of training and validation data (d) 

Model loss of waterloo dataset of accuracy vs epoch. 

 

                               (c)                                                                                            (d) 

 

                            (a)                                                                                          (b) 
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4. CONCLUSION 

 

This work introduced an enhanced deep convolutional residual network (ConvResNet) designed to improve 

the quality of decrypted images that have been subjected to various noise attacks. Through extensive testing on 

benchmark datasets and diverse noise models, the proposed architecture demonstrated superior performance 

compared to traditional and modern denoising techniques, including BM3D, MLP, CNN, and ConvLSTM. The 

model consistently achieved higher PSNR and SSIM scores, validating its effectiveness in preserving structural 

details and minimizing distortion. Training curves further confirmed the model’s stability and convergence, 

indicating its robustness across multiple experimental settings. 

 

5. FUTURE WORKS 

 

In future investigations, the framework will be extended to address colored encrypted images and encrypted 

video streams, thus broadening its applicability. Furthermore, optimizing the model for real-time performance 

on low-power devices such as IoT nodes and embedded platforms will be explored. Incorporating adaptive 

noise estimation and dynamic residual learning techniques could further enhance noise resilience, offering 

stronger performance across a broader range of transmission and encryption scenarios. 
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