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With Artificial Intelligence gaining popularity in every field. Emotions is the one thing that 

Artificial Intelligence or AI cannot replicate yet. One of the key reasons being that emotions are 

often complex and hard to understand even by humans who used to them. Not only are these 

emotions complex and hard to understand, humans often express their emotions in different 

ways. Some don’t even express it at all. While some, express it using big motions and exaggerated 

facial expressions. There’re also cases where it is expressed in the voice via small changes in the 

pitch and frequency of the words as well as the intonation. All of these different ways of 

expression as well as the complications of these emotions make it hard for it understood much 

less replicated. Emotional analysis is method to understanding emotions that are expressed by 

humans in various different forms. Emotional analysis is a popular problem statement, and is 

constantly worked on with the advancing technology. One such new technology is Spiking Neural 

Networks, a newer model of Neural Networks that is based on the biological spiking of neurons 

to pass information in the brain. In this paper, we propose the method of using SNN’s on multi-

modal data for the purpose of emotional analysis. The multi-modal data that we used 

encompasses both physiological and physical signs of emotion. We have also tested uni-modals, 

bi-modals and multi modals of the same data. 

Keywords: spiking neural networks, emotional analysis, neural networks, emotional analysis 

with neural networks, and emotional analysis with spiking neural networks 

 

I. INTRODUCTION 

Emotional analysis is now an interesting area of research because technology now intersects and interacts often with 

human behaviour, cognition. Often times even going as far to impact the emotional well-being of humans. Within the 

past several years, widespread use of multimedia content, social media engagement, and wearable sensors has 

generated humongous amounts of data regarding the state of a person in multifaceted and composite forms. 

Conventional approaches in affective computing, based typically on static analysis of data and traditional neural 

networks, have gone a long way in deciphering these emotional cues. But they tend to fall short in simulating the 

dynamic, time-variant character of human emotions and are not as energy-efficient as is required by the task of 

intervention in sensitive cases. 

Spiking Neural Networks (SNNs) are a promising contender, providing a paradigm shift in the way computational 

models can simulate the complex dynamics of biological neural systems. SNNs differ from conventional deep learning 

models that handle information statically or rate-coded, as they simulate the temporal dynamics of actual neurons 

by representing information in the exact timing of electrical spikes. This temporal coding is a more accurate 

representation of time-varying emotional cues, allowing for a more realistic emulation of the way human brains 

sense, process, and react to emotional stimuli. The built-in energy efficiency of SNNs, which stems from their event-

driven processing, also makes them appealing for real-time processing in environments with limited computational 

resources. 

The incorporation of SNNs into emotional analysis not only closes the gap between neuroscience and artificial 

intelligence but also remedies some of the issues raised by classical models. For example, whereas conventional deep 
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learning techniques tend to demand tremendous amounts of data and immense computational resources, SNNs have 

the potential to decrease these demands in terms of sparse and asynchronous neuron communication. This transition 

is especially applicable in domains like wearable health monitoring, robotics, and interactive systems, where efficient 

and timely emotion recognition is critical. 

This paper is a thorough overview of SNN-based methods to emotional analysis. We start with the theoretical 

framework of spiking neural networks and their neurobiological basis, emphasizing how such models can simulate 

the temporal and dynamic nature of emotional expression. Finally, we explore the methodology used in our research, 

describing the experimental setup, datasets, and performance measures utilized to compare the SNN models with 

traditional deep learning models. We pay special care to the preprocessing methods required to prepare noisy and 

high-dimensional emotional data and to the techniques used to maximize the network's spiking patterns towards 

improved accuracy. 

In addition, the study explores the practical limitations of applying SNNs, such as challenges in training the networks 

and making trade-offs between biological plausibility and computational efficiency. Comparing the performance of 

SNNs with state-of-the-art models on varied emotional datasets, this work hopes to determine when SNNs have 

unique benefits and suggest remedies for their shortfalls. 

In this work, we attempt to contribute to the changing dynamics of affective computing by illustrating how models 

inspired from biology can result in more accurate, responsive, and resource-saving emotion recognition systems. The 

results shown in this paper not only emphasize SNNs' potential to revolutionize emotional analysis but also give 

directions to future work that combines lessons from neuroscience with sophisticated machine learning 

methodologies. 

BACKGROUND AND MOTIVATION 

The fast pace of technological development and data availability has spurred novel strategies for understanding human 

emotions. As emotional analysis plays a more central role in fields such as human–computer interaction, psychology, 

and artificial intelligence, novel computational models are needed to model the richness and volatility of human affect. 

This section discusses the history of emotional analysis, the genesis of Spiking Neural Networks (SNNs) as a 

biologically inspired approach, and the motivations for ongoing research in this area. 

 2.1 Emotional Analysis: A Growing Field 

Human emotions are complex, dynamic, and context-specific. Historically, emotional analysis has been approached 

using techniques like sentiment analysis, facial recognition, and physiological signal monitoring to predict affective 

states. With the abundance of multimedia data—from social media posts to video recordings—researchers began to 

build models that not only recognize but also predict patterns of emotions over time. But traditional models usually 

fail with: 

Temporal Dynamics: Emotions change over time, yet most models analyze data in a static way. 

Contextual Nuances:The nuanced differences in human expression need to be captured by advanced representations 

beyond mere classification. 

Data Heterogeneity: The diverse sources and forms of emotional data (e.g., text, audio, video) make it difficult to 

standardize analysis techniques. 

These issues point toward the requirement of methods that are able to process temporal information and the subtlety 

of affect expression in a native manner. 

2.2 Shortcomings of Standard Methods 

Standard neural network designs—deep learning models, for instance—have achieved profound breakthroughs in 

pattern classification and categorization tasks. However, their design often follows rate-coded representations and 

rigid processing paradigms. This results in the following shortcomings when applying them to emotional analysis: 

Temporal Non-Precision: Most conventional models fail to capture the delicate, time-varying patterns in emotional 

cues. 
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Computational Costliness: Deep neural models are usually computationally intensive, and this might be prohibitive 

for real-time and embedded systems. 

Biological Realism:Conventional models do not mimic biological spiking temporal behavior of neurons and thus may 

not be able to effectively replicate human emotional processing. 

These limitations spur the investigation of alternative models that better match how biological systems operate. 

 2.3 Spiking Neural Networks: A Bio-Inspired Approach 

Spiking Neural Networks (SNNs) are a dramatic departure from traditional neural network structures. Modeled after 

how neurons talk to each other in the brain, SNNs represent information in the form of discrete spikes instead of 

continuous activations. Salient aspects of SNNs are: 

Temporal Coding: Through the use of the exact timing of spikes, SNNs encode temporal dynamics that are essential to 

grasp changing emotional states. 

Event-Driven Processing: SNNs process on demand, only firing when important events take place. This results in 

higher energy efficiency—a key benefit for real-time systems. 

Biological Realism:The spiking nature of SNNs resembles that of real neural circuits and can possibly shed light on the 

inherent processes of human emotion. 

The use of SNNs in emotional analysis can not only guarantee greater accuracy in the recording of temporal patterns 

but also a more efficient and physiology-oriented computational platform. 

2.4 Motivation for Integrating SNNs in Emotional Analysis 

The inclusion of SNNs in emotional analysis is motivated by theoretical and practical reasons. The motivation for the 

research can be described as follows: 

Temporal Nuances: Emotions are time-evolving, and SNNs, due to their ability to temporally code, are particularly apt 

at modeling these dynamics. This would result in more precise and context-sensitive emotion recognition systems. 

Efficiency of Resources:Since SNNs operate information processing in an event-based mode, they potentially provide 

drastic computational overhead savings. This efficiency can be of immense value in wearable devices, robots, and other 

applications where power usage is a factor. 

Bridging Biological and Computational Models: By matching the computational models to neurobiological processes, 

SNNs bring a framework not only functionally efficient but conceptually consistent with the way in which humans 

learn and process emotionally charged stimuli. This can inform greater understanding into artificial as well as 

biological intelligence. 

Overcoming Existing Constraints:Standard models typically need enormous sets of annotated data and are challenged 

by noise and variability in emotional expression. The adaptive, asynchronous architecture of SNNs may provide 

resilience against these imperfections, which would open the doors to more fault-tolerant emotion recognition systems. 

C. Significance of the work  

The value of this work is that it has the potential to push affective computing forward by combining Spiking Neural 

Networks' unique strengths with emotion analysis. The following highlights its value: 

Improved Temporal Dynamics and Biological Plausibility 

SNNs naturally represent information in the form of the exact timing of neural spikes, very closely modeling the 

biology of neurons. This ability allows temporal dynamics of emotional expression to be modeled with orders of 

magnitude higher fidelity than classical DNNs, which frequently depend on rate-coded or static representations. With 

the ability to capture the fine-grained time-evolution of emotional states, SNN-based systems can support more 

accurate and context-sensitive analysis—a requirement imperative for tasks such as real-time sentiment tracking and 

adaptive human-machine interaction. 

Energy Efficiency and Real-Time Performance 
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One of the major benefits of SNNs is their event-driven processing, which leads to substantial energy savings. This 

energy efficiency is especially critical for embedded systems, wearable devices, and mobile platforms, where 

computational resources and battery life are limited. The reduced power demands, along with the possibility of real-

time processing, make SNNs an appealing choice for implementing emotion recognition systems in resource-limited 

environments, thus extending the range of their practical applications. 

 Multimodal Integration and Robustness 

Emotion identification in natural applications frequently involves blending information from disparate sources, i.e., 

EEG signals, voice, and face. The empirical studies reviewed establish that SNNs can appropriately combine 

multimodal information, promoting more resilient and stable performance under conditions of noise and data 

deterioration. Such multimodality is not only more accurate in classifying but is also more tolerant to failure by 

guaranteeing effective performance across the variety of operating conditions and population of users. 

 Bridging the Gap Between Neuroscience and Machine Learning 

Through its alignment of computational models with neurobiological processes, this work advances the 

understanding of how human emotions may be computationally modeled. The biologically inspired SNN design acts 

as a bridge between neuroscience and machine learning, resulting in interdisciplinary insights potentially driving 

future innovations in each area. Such integration is poised to create next-generation systems not only efficient and 

accurate but also offer a glimpse into the hidden mechanisms of human emotional processing. 

 Implications for Future Research and Applications 

Successful integration of SNNs in emotion analysis presents several potential avenues for future research. 

Advancements in training methods, design of hybrid approaches fusing SNNs and traditional deep learning, and 

extension into multimodal fusion of data will increase performance and practical applicability of affect recognition 

systems. In addition, the low power consumption characteristics of SNNs make them an ideal choice for real-time 

solutions for fields such as robotics, medicine, and interactive gaming, where it becomes progressively essential to 

sense and interpret human emotion. 

In total, the importance of this work is that it has the capability to breach the limitations that exist within conventional 

emotion recognition approaches while providing a route toward more efficient, more accurate, and biologically 

informed computational models. This development will have long-term implications in a wide range of fields, and it 

will be pushing innovation in theoretical investigation as well as in real-world applications in affective computing. 

RELATED WORKS 

Current research in emotion analysis has increasingly relied on Spiking Neural Networks (SNNs) due to their ability 

to encode temporal dynamics, simulate biological neural activity, and offer energy-efficient computation. Several 

studies have explored SNN applications across multiple modalities—EEG, speech, facial expressions, and multimodal 

fusion—to address limitations in traditional deep learning paradigms. 

SNNs in Theoretical and Practical Perspectives 

Yamazaki et al. (2022) [1] provide a comprehensive overview of SNN architectures, comparing their energy efficiency 

and temporal processing capabilities to traditional deep neural networks (DNNs). Tavanaei et al. (2019) [2] discuss 

challenges in combining deep learning techniques with SNNs, particularly the non-differentiability issue and the 

need for surrogate gradient methods. These foundational works emphasize the biological plausibility and 

computational benefits of SNNs for emotion analysis. 

EEG-Based Emotion Recognition 

Several researchers have leveraged SNNs for EEG-based emotion recognition. Luo et al. (2020)[5] compared signal 

processing methods such as discrete wavelet transform, variance, and fast Fourier transform, demonstrating that 

SNNs outperform conventional classifiers in capturing spatiotemporal EEG patterns. Alzhrani et al. (2021)[6] 

employed the NeuCube framework—a brain-inspired SNN structure—to classify spatiotemporal EEG data with high 
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accuracy. Li et al. (2023)[13] introduced a Fractal-SNN paradigm that exploits multi-scale temporal-spectral-spatial 

characteristics, further enhancing EEG data utilization for emotion recognition. 

Speech Emotion Recognition 

In speech emotion recognition, Mansouri-Benssassi and Ye (2021) [3] proposed an SNN model incorporating early 

cross-modal enhancement, inspired by the auditory processing of the brain, to improve dynamic speech signal 

modeling. Jain and Shukla (2022) [12] integrated deep belief networks for feature learning with an SNN-based 

decision-making architecture, significantly improving performance over traditional approaches. These studies 

illustrate the sensitivity of SNNs in capturing transient emotional cues in speech signals. 

Facial Expression Recognition and Dynamic Vision 

SNN-based methods have also contributed to facial expression recognition. Fu et al. (2021)[15] developed a cortex-

like SNN model that mimics hierarchical visual cortex organization, effectively recognizing complex facial 

expressions. Barchid et al. (2023)[14] introduced "Spiking-FER," an event-based SNN model optimized for data from 

dynamic vision sensors, achieving competitive accuracy with lower energy consumption compared to artificial neural 

networks (ANNs). These findings underscore the suitability of SNNs for real-time, energy-efficient facial expression 

analysis. 

Multimodal and Multisensory Integration 

Given the inherently multimodal nature of human emotions, researchers have explored fusion approaches using 

SNNs. Tan et al. (2021)[10] employed the NeuCube framework to integrate facial expressions and physiological signals, 

yielding robust emotion classification. Mansouri-Benssassi and Ye (2021)[7] demonstrated that SNN-based models 

effectively fuse auditory and visual data to enhance emotion recognition performance. These multimodal approaches 

not only improve classification accuracy but also enhance resilience to noise and data degradation. 

Sentiment Analysis and Other Modalities 

Beyond emotion recognition, SNNs have been applied to sentiment analysis. Chunduri and Perera (2023)[11] 

introduced a neuromorphic sentiment analysis model running on SpiNNaker hardware, achieving high accuracy with 

low energy consumption. This research expands the applicability of SNNs into natural language processing (NLP), 

further broadening their role in affective computing applications. 

SNNs have demonstrated significant potential across various domains of emotion analysis, including EEG, speech, 

facial expressions, and multimodal fusion. Their ability to efficiently process temporal and spatiotemporal data, 

coupled with lower energy consumption, positions them as a powerful alternative to traditional deep learning models 

in affective computing. Future research should focus on improving training techniques, enhancing multimodal 

integration, and optimizing neuromorphic hardware implementations to fully harness the capabilities of SNNs. 

II. PROPOSED METHODOLOGY 

The suggested approach to multimodal emotion recognition with Spiking Neural Networks (SNNs) combines audio, 

video, and EEG signals to classify emotions into three general categories: negative, neutral, and positive. The datasets 

employed are RAVDESS for speech and video data, MELD for conversational sentiment analysis, and an EEG 

brainwave dataset for physiological signals. The methodology starts with preprocessing, where emotional labels from 

various datasets are normalized to ensure consistency. In the audio stream, Mel-frequency cepstral coefficients 

(MFCCs) are obtained to represent the spectral features of speech signals. In the video stream, a pre-trained ResNet-

18 model is utilized to extract deep feature representations from facial expressions. At the same time, EEG signals 

are treated by averaging and normalizing the values into fixed-length vectors for uniformity among recordings. This 

preprocessing guarantees that the three modalities are properly organized prior to being input into the learning 

pipeline. 

This is necessary to avoid class imbalance, which might otherwise skew the model in favor of more common 

emotional classes. A PyTorch dataset class is created to effectively manage multimodal inputs so that audio, video, 

and EEG features are easily integrated. The dataset is then divided into training and test sets, and a PyTorch 

DataLoader is utilized to load data batches during training and testing. This organized data pipeline is crucial in 
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optimizing computational efficiency while preserving the integrity of multimodal information. At the heart of the 

model lies a Recurrent Spiking Neural Network (RecurrentSNN), which is trained on input data over multiple time 

steps (T). 

The network is comprised of fully connected layers interspersed with Leaky Integrate-and-Fire (LIF) recurrent cells, 

which replicate biologically inspired neuronal dynamics. The LIF model, through the use of Norse (a PyTorch-based 

library for SNNs), adds dynamic spiking activity that enables the model to extract temporal dependencies from the 

multimodal data. In addition, a different SNN architecture is investigated in which sequential LIF layers are used 

instead of the recurrent architecture to compare performance between various network topologies. Through the 

utilization of spiking neuron dynamics, the model tries to extract static and dynamic emotional cues in the 

multimodal inputs. Cross-entropy loss is used as the objective function during training, while the Adam optimizer is 

used to update network parameters for 50 epochs. 

The loop of training consists of forward pass in the SNN, calculating loss as a function of predicted versus actual 

emotional labels, and backpropagation of gradients to update weights. Model performance while testing is measured 

using accuracy measurements, classification reports, and confusion matrices. Results analysis is done in great detail 

through visual methods such as heatmaps, giving insights into how well the network can differentiate between various 

emotional classes. This approach takes advantage of the specific strengths of SNNs, including their energy efficiency 

and temporal processing capabilities, to provide a new solution for multimodal emotion recognition.  

 

Fig-1 Proposed Architecture 

III. METHODOLOGIES 

The paper presents a multimodal emotion recognition system based on EEG, video, and audio modalities. The system 

integrates a Spiking Neural Network (SNN) to perform resilient feature fusion and classification. Data acquisition, 

preprocessing, feature extraction, model design, training, and evaluation are the steps employed in the methodology. 

The aim is to maximize emotion recognition accuracy using SNNs' efficiency in processing temporal dependencies. 

I. Data Acquisition 

We make use of three publicly released datasets, each recording various modalities of emotion expression: 

RAVDESS (Ryerson Audio-Visual Database of Emotional Speech and Song): Holds emotional speech and song 

recordings of 24 actors, annotated with diverse emotions. 

MELD (Multimodal EmotionLines Dataset): A sentiment analysis dataset, comprising video and text transcripts 

derived from TV show dialogues. 

EEG Brainwave Dataset: Contains EEG signals captured from subjects undergoing varying emotional states, 

providing physiological understanding of emotion response. 

 II. Data Preprocessing 

 A. Label Mapping 

Emotion labels within datasets are mapped into three general categories to make the fusion of features and classifying 

of the emotions easier: 
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 Negative (0): Comprises anger, disgust, sadness, and fear. 

 Neutral (1): Comprises calm and neutral states.  

 Positive (2): Comprises happiness, joy, and surprise. 

Due to constraints of the publicly available datasets, label mapping was required. 

 B. Feature Extraction 

We extract meaningful features from every modality to form a common multimodal representation: 

 Audio Processing: Mel-Frequency Cepstral Coefficients (MFCCs) are used for audio processing, converting raw 

waveform data into a concise, discriminative feature set. 

Video Processing: A ResNet-18 model is used, pre-trained, to extract deep vision features, representing spatial 

patterns that are important for facial expressions. 

EEG Processing: EEG signals are processed and transformed into fixed-size vectors (128 size) by averaging the signal 

over time, making them consistent. 

 C. Dataset Balancing 

To handle class imbalance, we use oversampling techniques that duplicate minority samples, achieving a balanced 

dataset that enhances model generalization. 

 IV. Model Architecture 

 A. Multimodal Fusion 

Features extracted from audio (40-dimensional MFCCs), video (512-dimensional ResNet features), and EEG (128-

dimensional vectors) are concatenated, creating a combined 680-dimensional feature vector. The fused 

representation represents varied emotional cues across modalities. 

 B. Spiking Neural Network (SNN) Model 

The Spiking Neural Network (SNN) is intended to handle multimodal inputs through the mimicking of biological 

neurons' spiking activity. SNNs have energy efficiency and temporal data processing benefits which are suitable for 

the task of emotion recognition. We investigate two SNN architectures: 

 1. Recurrent SNN 

This architecture uses a Leaky Integrate-and-Fire (LIF) Recurrent Cell that stores information across time steps, 

mimicking biological neural dynamics. It learns temporal dependencies through integrating spikes over ime steps, 

making effective temporal feature learning possible. The recurrent nature of this SNN enables sequential pattern 

capture in EEG signals and audio waveforms. 

 2. Feedforward SNN 

This model has two layers of LIF neurons, which bring sparsity to network activation, reducing energy consumption. 

SNNs are different from conventional deep networks in that they are based on spike timing instead of continuous 

activations, enhancing computational efficiency. The feedforward structure is especially beneficial for combining 

static video features with dynamic EEG and audio representations. 

 3. Neuron Dynamics and Encoding 

To handle inputs in an event-based fashion, the rate coding method is employed, with the highest spike rates 

indicating stronger activations. This enables the SNN to represent variation in intensity in emotions across 

modalities. Spike-time-dependent plasticity (STDP) mechanisms are also under consideration for possible adaptive 

learning. 

 V. Training and Optimization 

Training is done with: 
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Loss Function as Cross-Entropy Loss which is appropriate for multi-modal classification. We have used the Adam 

optimizer with learning rate 0.001, providing stable convergence. We have chosen a Batch Size of 16, maximizing 

memory efficiency and gradient updates. 

During training, gradient-based backpropagation through time (BPTT) with surrogate gradients is used, enabling 

efficient weight updates in spite of SNNs' discrete spiking nature. The surrogate gradient method assists in 

overcoming the non-differentiability of spike activation functions. 

 VI. Evaluation 

The trained model is assessed using accuracy, classification report and confusion matrix. The model is also compared 

to two different ANN models as well as single modality SNNs for all three modalities and video + audio modality 

SNN.  

Results indicate how the various modalities contribute to general classification accuracy with EEG signals acting as 

a prime factor in segregating fine emotional states.   

IV. RESULTS 

 EEG RAVDESS 

AUDIO 

VIDEO AUDIO+VI

DEO 

AUDIO+VI

DEO+EEG 

SNN 60% 85.07% 50% 81% 90% 

 

 AUDIO+VIDEO+EEG 

SNN 90% 

ANN 68.73% 

Recurrent ANN 83.39% 

 

 MELD AUDIO MELD AUDIO+VIDEO+EEG 

SNN 47.75% 48.93% 

 

Model PRECISION RECALL F1-

SCORE 

ACCURACY 

RANN 0.84 0.83 0.83 0.83 

ANN 0.72 0.69 0.66 0.69 

SNN 0.91 0.90 0.90 0.90 

 

Sentiment Model Precision Recall F1-

score 

Support 

Negative RANN 0.85 0.68 0.76 319 

 ANN 0.83 0.31 0.45 319 

 SNN 0.97 0.80 0.87 319 

Neutral RANN 0.81 0.96 0.88 319 
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 ANN 0.71 0.88 0.79 319 

 SNN 0.87 0.96 0.91 319 

Positive RANN 0.84 0.86 0.85 319 

 ANN 0.63 0.87 0.73 319 

 SNN 0.89 0.96 0.92 319 

 

 

The comparison of models and modalities for emotion recognition emphasizes the strengths of various neural 

network architectures in handling EEG, audio, and video data. Emotion recognition is a difficult task that can be 

greatly enhanced by multimodal fusion since single modalities usually only capture partial information.  

The experiments show that Spiking Neural Networks (SNNs), Artificial Neural Networks (ANNs), and Recurrent 

Artificial Neural Networks (RANNs) perform differently when implemented on various datasets and modality pairs, 

highlighting the need for appropriate choice of architecture and feature fusion approach. In performance testing of 

SNNs on separate modalities, there is evidently a difference in accuracy with respect to the nature of data to be 

handled. 

EEG-based recognition of emotions using SNN has an accuracy rate of 60%, which is moderate but inferior to the 

rate of audio-based recognition, with a rate of 85.07%. The worst among the three is video, with a mere 50% accuracy 

rate, indicating facial expressions might be inadequate for a strong emotion classification. This may be due to factors 

like differences in lighting, occlusions, and the fineness of facial expressions for some emotions. The success of audio-

based recognition implies that speech characteristics like tone, pitch, and frequency changes are imbued with dense 

emotional content. But the actual benefit occurs when modalities are integrated. The combination of video and audio 

enhances accuracy to 81%, meaning that video on its own is not very reliable, but in combination with speech features, 

it adds complementary information. The most remarkable enhancement comes when EEG is incorporated into the 

combination, giving a maximum accuracy of 90%. This validates that brain activity information, when integrated 

with the conventional sensory inputs, improves the system's capability to detect profound emotional states that might 

not be verbally or facially expressed. Another comparison among various neural network architectures for 

multimodal emotion recognition indicates that SNNs perform better than both ANNs and RANNs when all three 

modalities of audio, video, and EEG are integrated. SNNs have a 90% accuracy, and RANNs trail closely with 83.39%, 

whereas ANNs fall far behind with 68.73%. 

SNNs' high performance lies in their ability to process events, which helps them naturally accommodate 

spatiotemporal patterns in multimodal data. As opposed to regular ANNs that process data within static frames, 

SNNs utilize biologically inspired mechanisms for processing information dynamically, resulting in improved feature 

extraction and decision-making. RANNs, intended to pick up temporal dependencies, perform significantly better 

than ANNs, reaffirming that sequential modeling is essential for emotion detection. Nevertheless, they are still not 

better than SNNs, suggesting that SNNs' special architecture offers a computational benefit for managing multimodal 
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fusion. The experiment on the MELD dataset also demonstrates how different dataset properties influence model 

performance. When used on audio-based recognition in MELD, SNNs reach a mere accuracy of 47.75%, which is well 

below their result on RAVDESS audio data.  Even when the video and EEG are added to it, accuracy increases 

marginally to 48.93%. 

This small gain indicates that either the fusion approach employed was not the best or that the MELD dataset is more 

challenging in some way, e.g., more variability in speaker expressions, background noise, or conversational 

complexity.  

These findings are diametrically opposite to the high accuracy found on the RAVDESS dataset, suggesting that 

various datasets need customized processing methods to deliver best results.  

The low performance on MELD indicates that multimodal fusion by itself is inadequate if the contributing modalities 

are not providing useful information or if the dataset is more difficult in nature. In general, this comparison highlights 

the significance of choosing the appropriate architecture and modality pair for emotion recognition. The results show 

that multimodal fusion dramatically improves accuracy, and EEG is essential for boosting classification performance 

when fused with audio and video. SNNs consistently outperform other architectures, making them a promising 

solution to multimodal emotion recognition because they are efficient at processing spatiotemporal patterns.  

Yet dataset attributes are important in deciding model performance, as evident from the disparate outcomes between 

RAVDESS and MELD. 

Optimizing fusion methods, enhancing EEG feature extraction, and incorporating more sophisticated architectures 

are recommended areas of exploration in subsequent studies to increase robustness with various datasets. The 

outcome underscores the importance of a versatile solution that adjusts to the specific challenges introduced by 

various datasets while capitalizing on the strengths of multimodal learning. 

V. CONCLUSION 

Multimodal emotion recognition from EEG, audio, and video is an emerging field of research that aims to narrow the 

gap between human emotional expression and machine interpretation. The comparative analysis of various neural 

network architectures—specifically Spiking Neural Networks (SNNs), Artificial Neural Networks (ANNs), and 

Recurrent Artificial Neural Networks (RANNs)—establishes the drastic effect of both architecture selection and 

modality combination on classification performance. The findings show that although unimodal methods yield 

significant information on emotion recognition, multimodal integration results in a dramatic improvement in 

accuracy. 

The performance comparison on the RAVDESS dataset identifies the strengths and limitations of various modalities. 

EEG-based emotion recognition with SNNs had a moderate accuracy of 60%, which is lower than audio-based 

classification at 85.07%. This implies that EEG alone, as much as it records brain patterns associated with emotion, 

might take more sophisticated preprocessing and feature extraction methods to reach its full potential. Alternatively, 

video-based emotion recognition was poorest at 50%, suggesting that facial expressions were not a potent enough 

indicator on their own to accurately classify emotion. But when the audio and video were fused together, the accuracy 

was 81%, again emphasizing the value of multimodal fusion. The best accuracy was when EEG was added to the 

audio-video fusion to 90%, which shows that brain activity data adds the depth and reliability needed for emotion 

classification models. 

An additional comparison of alternative neural network structures on the composite audio, video, and EEG data set 

also validates that SNNs perform better than ANNs and RANNs. SNNs achieved a remarkable accuracy of 90%, 

whereas RANNs were next at 83.39%, and ANNs lagged at 68.73%. This gap in performance indicates that SNNs' 

dynamic processing of spatiotemporal patterns effectively renders them best suited for emotion recognition tasks. In 

contrast to traditional ANNs based on static frames, SNNs take advantage of biologically motivated event-driven 

processes for efficient data processing. The performance of RANNs being considerably higher than ANNs also 

underscores the significance of sequence modeling in emotion recognition, given that emotions tend to change over 

time instead of being recorded in a single frame or audio segment. 
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Performance on the MELD dataset is a different story altogether. Applying SNNs to MELD audio data yielded an 

accuracy of just 47.75% and an incremental rise to 48.93% when adding EEG and video. This dramatic difference 

from RAVDESS performance indicates the significant influence of dataset features on model behavior. MELD 

includes conversational data with higher variability in speaker expressions, background noise, and linguistic details, 

which could need more advanced fusion methods and feature extraction strategies. That multimodal fusion did not 

produce much improvement in MELD suggests that modalities are not always better together if the data quality or 

the fusion approach is less than ideal. 

In spite of these encouraging results, however, there are also some challenges that remain to be overcome. EEG 

signals are noisy and user-dependent, which makes generalization across different users challenging. Standardizing 

the methods of collecting EEG data and enhancing feature extraction algorithms would serve to reduce this 

limitation. Further, though multimodal fusion has been found to improve classification accuracy, there remains a 

necessity for more sophisticated fusion methods that weigh the contribution of each modality dynamically instead of 

equally. Deep learning models that involve attention mechanisms or reinforcement learning-based fusion could 

further improve the system's flexibility. 

Real-time emotion recognition is another major area for potential study in the future. Many existing models, 

including those covered in this work, are applied directly to pre-recorded datasets with offline processing. For real-

world applications like human-computer interaction, mental health monitoring, and affective computing, real-time 

processing is necessary. Employing lean, mean, SNN models with low latency that can process multimodal data in 

real-time would be a major breakthrough. Hardware acceleration via neuromorphic computing platforms such as 

Intel Loihi or SpiNNaker can potentially further improve SNN-based emotion recognition systems for deployment in 

real-world applications. 

In addition, dataset diversity and generalizability are still major issues. The RAVDESS dataset, as useful as it is for 

controlled experiments, is unlikely to capture the richness of real-world emotions. More spontaneous and diverse 

emotional expressions in datasets should be incorporated to enhance the robustness of models. Transfer learning 

methods can also be investigated to transfer models trained on one dataset for use on another to enhance adaptability 

from one environment to another and from one population to another. 

Ethical and privacy issues also have to be dealt with as emotion recognition technology develops. EEG and facial 

expression information are very personal data, and securing safe storage and processing of data is of paramount 

importance. Future studies should aim to design privacy-friendly methods, like federated learning, where models can 

be trained on decentralized devices without exposing raw data. This would enhance both security and scalability, 

making emotion recognition systems more widely adoptable in real-world scenarios. 

Lastly, the fusion of multimodal emotion recognition with other AI-based applications is full of promising 

possibilities. Merging emotion recognition and natural language processing (NLP) for sentiment analysis may enable 

more empathetic virtual helpers and chatbots. In the same way, integrating these systems in healthcare may facilitate 

early diagnosis of mental illnesses like depression and anxiety. Emotion-aware AI may also be used in autonomous 

systems such as robots and driverless vehicles to enhance human-machine interactions. 

In summary, although the results of this work show the strength of multimodal fusion and the dominance of SNNs 

for emotion recognition, there are still some challenges and areas where more improvement can be done. The future 

work must include improving EEG processing methods, optimizing multimodal fusion methodologies, maintaining 

real-time adaptability, and considering ethical aspects. By overcoming these challenges, researchers can lay the 

foundation for more accurate, more robust, and more ethical emotion recognition systems that are applicable on a 

large scale across human-computer interaction, healthcare, and beyond. 
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