
Journal of Information Systems Engineering and Management
2025, 10(42s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 519 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Enhancing Security and Performance of gRPC-Based

Microservices using HTTP/3 and AES-256 Encryption

Isarar Khan1, Muhammad Kalamuddin Ahamad2
1 kgnali@student.iul.ac.in, Department of Computer Application, Integral University,

Lucknow, India
2mohdkalam@iul.ac.in, Department of Computer Application, Integral University,

Lucknow, India

ARTICLE INFO ABSTRACT

Received: 30 Dec 2024

Revised: 19 Feb 2025

Accepted: 27 Feb 2025

Unlike previous studies focusing solely on transport-layer or encryption improvements, this

research presents an integrated framework evaluated in real-world distributed settings. Secure

and effective inter-process communication is crucial for a resilient microservices architecture in

contemporary distributed systems. Although gRPC, which is based on HTTP/2, has become a

high-performance framework, it still has issues with latency and security flaws, especially in

mission-critical applications. By utilizing the strengths of HTTP/3, the QUIC transport protocol,

and AES-256 encryption in conjunction with HMAC-based checksum verification, this study

suggests an integrated framework that improves gRPC communication. Head-of-line blocking

and excessive handshake latency are two known issues with HTTP/2 that are mitigated by

HTTP/3, whereas AES-256 protects data integrity and confidentiality at the application layer.

High-concurrency workloads are used to implement and assess the framework in a microservices

system based on Kubernetes. Experimental results show a 15% improvement in throughput and

a 20% reduction in latency compared to TLS 1.2 and standard HTTP/2, respectively — all without

compromising security. For contemporary microservices, the suggested method offers a scalable,

low-latency, and secure communication model that closes significant gaps between

cryptographic assurance and performance.

Keywords: gRPC, HTTP/3, AES-256, encryption, framework, secure communication.

INTRODUCTION

Microservices architecture usage has surged due to the growing need for scalability, agility, and maintainability in

cloud-native application development. Monolithic applications are broken down by this paradigm into loosely

connected, independently deployable services that communicate with one another using network-based protocols.

Microservices are perfect for dynamic and large-scale software systems because of their many advantages, which

include fault isolation, modularity, parallel development, and smooth horizontal scaling [1, 2].

Effective communication is crucial for the success of microservices-based systems, ensuring both security and

efficiency. In this regard, Google's open-source Remote Procedure Call (RPC) framework, gRPC, has emerged as the

go-to option. High-performance communication across heterogeneous platforms is made possible by gRPC, which is

based on HTTP/2 and uses Protocol Buffers (Protobuf) to serialize binary data. It also supports sophisticated features

like flow control, bidirectional streaming, and multiplexed connections [3]. Notwithstanding these benefits, gRPC's

dependence on HTTP/2 has a number of drawbacks, chief among them being multi-step TLS handshakes, head-of-

line (HoL) blocking, and vulnerability to man-in-the-middle (MitM) and session hijacking attacks [4].

Many of the intrinsic shortcomings of HTTP/2 have been addressed by the recent development of HTTP/3, which is

based on the QUIC transport protocol. QUIC incorporates encryption at the transport layer and uses UDP instead of

TCP to speed up connection setup [5, 6]. Additionally, it permits stream-level multiplexing, which removes HoL

blocking and improves communication effectiveness in high-concurrency workloads [7, 8]. Because of these

enhancements, HTTP/3 is a desirable transport layer for microservices that need high throughput and low latency.

Journal of Information Systems Engineering and Management
2025, 10(42s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 520 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Even while HTTP/3 improves transport-layer security, application-layer payloads are not completely protected,

particularly in situations where the confidentiality and integrity of sensitive data are crucial. Because of its minimal

computing overhead and demonstrated cryptographic strength, AES-256, a symmetric key encryption standard, is

frequently used to secure data in transit [9]. It can give gRPC message payloads an extra degree of integrity and

authenticity when combined with HMAC-SHA256 for checksum checking [10].

Few studies have examined the combined use of HTTP/3 and AES-256 in the context of protecting gRPC-based

microservices, despite their individual advantages [11]. Furthermore, issues like backward compatibility with

HTTP/2 systems, integration difficulty, and key management are still not well understood [5, 12]. This paper offers

a new and workable approach to safe, low-latency microservices communication by combining strong cryptography

approaches with protocol-level optimization.

The subsequent sections of this paper are organized to provide a comprehensive understanding of the proposed

framework and its significance. Section 2 presents a thorough literature review, offering a comparative analysis of

previous research efforts relevant to the field. This review helps to position the proposed work within the broader

context of existing methodologies. In Section 3, the study delves into the research gaps and challenges commonly

encountered in the domain of web applications, identifying key issues that have yet to be adequately addressed.

Section 4 introduces the proposed framework in detail, with an in-depth explanation of each of its components and

how they interact to address the identified challenges. Section 5 focuses on the experimental validation of the

proposed approach, outlining the methodology, dataset, evaluation metrics, and results obtained. Section 6 presents

a comparative evaluation, where the performance of the proposed framework is analyzed against existing methods

to demonstrate its effectiveness. Section 7 provides a detailed discussion of the results, interpreting their implications

and relevance to the research objectives. Finally, Section 8 concludes the paper by summarizing the key findings,

contributions, and potential directions for future research.

LITERATURE REVIEW

Microservices architectures enable the independent development and scaling of services, promoting agility and

resilience in software development. Unlike monolithic systems, microservices allow organizations to achieve fault

isolation and reduce downtime. gRPC has become a widely adopted RPC framework for microservices due to its

efficiency, low-latency communication, and cross-platform compatibility. Smith and Brown (2022) demonstrated

gRPC’s performance advantages in real-time applications but noted security limitations inherent in its reliance on

HTTP/2 [13]. These gaps necessitate more secure communication frameworks to address data protection

requirements in distributed systems.

gRPC operates on HTTP/2 by default, leveraging its advanced features to enhance API performance. However, recent

developments enable gRPC over HTTP/3, providing additional benefits like, reduced latency, improved resilience

and stream multiplexing.

To effectively discover and describe APIs using gRPC, a comprehensive API management platform is essential for

publishing, storing, and providing a gateway to manage API traffic and enforces policies such as authentication and

rate limiting. Traditionally, an API is considered an interface for communication between systems, while a service

represents the implementation of that API. However, in modern architecture, API exposes business functionalities

to the outside world and is often external facing and services are used for typically internal-facing and implements

the business logic behind an API.

Traditional security mechanisms for microservices include TLS, OAuth2, and API gateways. While effective in basic

scenarios, these solutions often fall short in addressing modern security challenges such as Distributed Denial-of-

Service (DDoS) attacks, session fixation vulnerabilities, and insider threats. Johnson et al. (2021) highlighted the

need for enhanced encryption and authentication mechanisms to safeguard microservices against evolving threats

[14]. As system complexity grows, integrating scalable and robust encryption becomes paramount [15-18].

While prior research has explored the use of advanced protocols and encryption techniques individually, their

combined application to gRPC-based microservices has received limited attention. Kumar et al. (2023) identified the

need for comprehensive frameworks that balance security, latency, and scalability [19]. By bridging this gap, our

study provides actionable insights for secure and efficient microservices communication.

Journal of Information Systems Engineering and Management
2025, 10(42s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 521 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Table 1: Comparison of Prior Research Approaches

Reference Title Year Motive Key Findings Limitations

Smith, J., &

Brown, T.

[13]

gRPC and Its

Applications in

Microservices

2022 Comparative

analysis of

RPC

frameworks

gRPC enables high-

performance, real-time

communication but has

security shortcomings

(e.g., those inherent to

HTTP/2)

Limited by the

security features

available in

HTTP/2

Johnson,

R., et al.

[14]

Securing

Microservices:

Challenges and

Best Practices

2021 Literature

review and

case studies

Identifies key challenges

and best practices for

securing microservices in

modern architectures

Lacks extensive

quantitative

validation

Gupta, P., &

Verma, S.

[20]

AES-256

Encryption in

Distributed

Systems

2022 Cryptographic

evaluation and

performance

testing

AES-256 is highly

resilient against brute-

force attacks and works

efficiently in distributed

settings

Resource-

constrained

devices may face

integration

challenges

Harris, J., et

al. [21]

Security

Protocols for

gRPC-Based

Communication

2021 Security

protocol

design and

analysis

Proposes enhancements

to secure gRPC (e.g.,

mitigating MitM and

session hijacking)

Findings are

often scenario-

specific

Mathews,

A., et al.

[22]

Comparative

Study of

HTTP/2 and

HTTP/3 in

Secure

Microservices

2022 Comparative

protocol

analysis

HTTP/3 offers improved

latency and security over

HTTP/2 in microservices

environments

Adoption

hindered by

increased

complexity

Thompson,

G., et al.

[23]

Securing Data in

Transit with

AES-256

2023 Empirical

study with

encryption

performance

evaluation

AES-256 secures data

effectively in transit with

acceptable performance

overhead

Under extreme

loads, overhead

may become

noticeable

Park, H., et

al. [24]

Evaluating

HTTP/3 for

High-

Performance

Applications

2022 Real-world

testing and

performance

benchmarking

HTTP3 significantly

improves throughput

and reduces latency

Variability exists

across different

network

conditions

Patel, D., et

al. [25]

HTTP/3

Adoption Trends

in Industry

2023 Industry

survey and

trend analysis

Identifies a growing

adoption of HTTP/3

despite remaining

challenges

Survey results

can be affected

by sample bias

Journal of Information Systems Engineering and Management
2025, 10(42s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 522 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fischer, T.,

et al. [26]

Scalability of

Encrypted

Communication

s in Distributed

Systems

2022 Scalability

testing and

performance

analysis

Optimized encryption

can scale in distributed

systems when properly

configured

Scalability

results are highly

dependent on

system

architecture

Martinez,

R., et al.

[27]

gRPC Security

Enhancements

Using AES-256

2024 To integrate

advanced

privacy

technique into

the gRPC

framework

Utilization of gRPC

interceptor to implement

privacy techniques in a

configurable and

extensible manner

The paper

suggests that

further extensive

testing and real-

world

deployment

scenarios are

needed to fully

assess the

approach's

effectiveness and

scalability

The table presents a comparative overview of recent research focused on security and performance in microservices

communication, particularly involving gRPC, HTTP protocols, and AES-256 encryption. Key contributions include

improvements in communication efficiency, enhanced encryption methods, and protocol-level security upgrades.

While many studies propose innovative solutions, common limitations include scalability concerns, lack of real-world

testing, and integration challenges in constrained environments. Overall, the table highlights ongoing efforts and

existing gaps in securing distributed systems and microservice architectures.

RESEARCH GAP AND CHALLENGES

Most existing research in the domain of microservices communication focuses on either enhancing the transport

layer, such as through the adoption of newer protocols like HTTP/3, or on improving encryption techniques, notably

the use of AES-256 for securing data. However, very few studies take a comprehensive approach that evaluates how

these two advancements—transport protocols and encryption mechanisms—interact when used together, especially

within gRPC-based microservices that demand high performance and operate in latency-sensitive environments.

Furthermore, several critical challenges remain insufficiently addressed in the literature. For instance, transitioning

to HTTP/3 poses backward compatibility issues with existing systems still dependent on HTTP/2, making integration

complex. Similarly, key management in strong encryption systems like AES-256 can be intricate, requiring secure

distribution and storage of keys across distributed services. Moreover, despite the performance and security benefits,

the adoption of modern protocols like HTTP/3 has been slow due to its recent standardization, which means limited

support and documentation, and a perceived complexity that can discourage developers and organizations from

integrating it into existing systems.

This study aims to fill these research gaps by introducing an integrated framework that combines advanced transport

and encryption strategies in a cohesive manner. The framework is designed to maintain a balance between

performance, scalability, and strong security, making it more suitable for real-world applications [28-32]. One of the

main obstacles addressed in this work is that although AES-256 provides high-level data protection, it can introduce

performance bottlenecks, especially in resource-constrained environments like edge devices or lightweight

containers. Prior research has also highlighted the difficulty of maintaining seamless operation with existing systems,

particularly those built on HTTP/2, without causing interruptions to legacy workflows. Additionally, the study

acknowledges the implementation challenges of adopting HTTP/3, which, despite its advantages, can be hindered by

organizational resistance and technical complexity.

Journal of Information Systems Engineering and Management
2025, 10(42s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 523 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

PROPOSED FRAMEWORK

This section presents the architecture and technical implementation of the proposed framework, which combines

HTTP/3 transport with AES-256 encryption and HMAC-SHA256 checksum verification to enhance the security and

performance of gRPC-based microservices.

Framework Architecture Overview

Figure 1: Proposed framework architecture for securing gRPC-based microservices using HTTP/3 (QUIC), AES-
256 encryption, and HMAC verification.

The proposed system consists of the following components:

• gRPC Services over HTTP/3: Utilizes QUIC protocol features such as stream multiplexing, 0-RTT

handshakes, and connection migration.

• AES-256 Encryption Layer: Applies symmetric encryption to message payloads at the application level,

ensuring confidentiality.

• HMAC-SHA256 Checksum: Provides message integrity and authenticity verification.

• Key Management Module: Handles secure generation, distribution, and rotation of encryption and

HMAC keys.

gRPC Service Definition

The gRPC service is defined using Protocol Buffers, with encrypted payloads sent as byte arrays.

Listing 1: proto File Definition

syntax = "proto3";

service SecureDataService {

 rpc SendEncryptedData (EncryptedMessage) returns (Response);

}

message EncryptedMessage {

 bytes data = 1;

}

message Response {

 string status = 1;

Journal of Information Systems Engineering and Management
2025, 10(42s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 524 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 bytes data = 2;

}

AES-256 Encryption with HMAC (C# Snippet)

This module ensures both confidentiality and integrity of messages using AES-256 (CBC mode) and HMAC-

SHA256.

Listing 2: Encryption and Integrity Verification Logic

public static byte[] Encrypt(string plainText)

{

 using var aes = Aes.Create();

 aes.Key = key; // 32 bytes for AES-256

 aes.IV = iv; // 16 bytes for CBC

 using var encryptor = aes.CreateEncryptor();

 using var ms = new MemoryStream();

 using var cs = new CryptoStream(ms, encryptor, CryptoStreamMode.Write);

 using var sw = new StreamWriter(cs);

 sw.Write(plainText);

 byte[] encryptedData = ms.ToArray();

 // Generate HMAC

 using var hmac = new HMACSHA256(hmacKey);

 byte[] hash = hmac.ComputeHash(encryptedData);

 // Combine encrypted data and HMAC

 return encryptedData.Concat(hash).ToArray();

}

gRPC Server Implementation

The server receives encrypted payloads, verifies their integrity, decrypts them, processes the request, and returns

an encrypted response.

Listing 3: Server-Side gRPC Method

public override Task<Response> SendEncryptedData(EncryptedMessage request, ServerCallContext context)

{

 var combinedData = request.Data.ToByteArray();

 byte[] encryptedData = combinedData[..^32]; // Extract encrypted payload

 byte[] receivedHmac = combinedData[^32..]; // Extract HMAC

 using var hmac = new HMACSHA256(hmacKey);

 var computedHmac = hmac.ComputeHash(encryptedData);

 if (!computedHmac.SequenceEqual(receivedHmac))

 {

 return Task.FromResult(new Response {

 Status = "Integrity check failed",

 Data = ByteString.Empty

 });

 }

 var decryptedMessage = Decrypt(encryptedData);

 Console.WriteLine("Received: " + decryptedMessage);

 var responseText = "Acknowledged securely.";

 var encryptedResponse = Encrypt(responseText);

 return Task.FromResult(new Response {

 Status = "Success",

 Data = ByteString.CopyFrom(encryptedResponse)

Journal of Information Systems Engineering and Management
2025, 10(42s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 525 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 });

}

gRPC Client Implementation

The client encrypts and signs messages before sending them over HTTP/3, then decrypts and verifies responses.

Listing 4: Client Sending Encrypted Data

var message = "Confidential data from client";

var encryptedData = Encrypt(message);

var request = new EncryptedMessage {

 Data = ByteString.CopyFrom(encryptedData)

};

var response = client.SendEncryptedData(request);

if (response.Status == "Success")

{

 var responseData = response.Data.ToByteArray();

 var decryptedResponse = Decrypt(responseData);

 Console.WriteLine("Server replied: " + decryptedResponse);

}

EXPERIMENTAL VALIDATION

To evaluate the performance and security improvements offered by the proposed framework, we conducted extensive

experiments simulating real-world microservices deployments using Kubernetes. The experimental setup involved

comparing traditional gRPC over HTTP/2 with TLS 1.2 against the proposed gRPC over HTTP/3 with AES-256

encryption and HMAC.

Environment Configuration

Table 2 provides the environment configuration used for the experimental setup, listing key parameters such as

infrastructure, protocols, frameworks, tools, and testing conditions. This setup ensures a controlled and consistent

basis for evaluating the performance and security of the proposed framework.

Table 2: Environment Configuration

Parameter Configuration

Infrastructure 3-node Kubernetes Cluster (8-core, 32GB RAM each)

Protocols Compared HTTP/2 + TLS 1.2 vs. HTTP/3 + AES-256 + HMAC

gRPC Framework .NET 7 with custom Protobuf services

Load Testing Tools JMeter, Locust

Monitoring Tools Prometheus, Grafana

Message Size (avg) 512 bytes

Concurrent Users 100, 500, 1000

Performance Metrix

Journal of Information Systems Engineering and Management
2025, 10(42s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 526 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Four important metrics were used to assess the systems:

● Latency (ms): Request-response round-trip time.

● The number of completed transactions per second is known as throughput (requests/sec).

● Processing overhead from encryption and decryption is represented by CPU Utilization (%).

● Memory Usage (MB): The amount of memory used at different load levels.

Results and Analysis

(A) Latency Comparison

Figure 2: Average Latency under increasing Concurrent User Loads.

X-axis: Concurrent Users (100, 500, 1000)

Y-axis: Latency in ms

Series 1: HTTP/2 + TLS 1.2

Series 2: HTTP/3 + AES-256 + HMAC

Key Observation: HTTP/3 with AES-256 consistently reduced latency by ~20%, attributed to QUIC’s zero-RTT

handshake and elimination of head-of-line blocking.

(B) Throughput Analysis

Figure 2: Throughput Metrics across the same Workloads.

Journal of Information Systems Engineering and Management
2025, 10(42s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 527 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

X-axis: Concurrent Users

Y-axis: Requests/sec

Key Observation: The proposed framework achieved a 15–18% increase in throughput due to improved stream

multiplexing and low connection setup overhead.

(C) CPU Utilization

Figure 3: CPU usage Trends.

Slight increase in CPU usage (~5–7%) with AES-256 encryption, offset by hardware acceleration (AES-NI).

(D) Memory Consumption

Figure 4: Memory Usage vs. Load

Marginal memory increase (~8MB) under full load, well managed by Kubernetes auto-scaling.

Security Validation

To assess resilience against common attack vectors, penetration tests were simulated:

Journal of Information Systems Engineering and Management
2025, 10(42s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 528 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Table 3: Security Validation

Threat Type HTTP/2 + TLS 1.2 Proposed Framework

MitM Attack Medium Risk Not Detected

Packet Injection Possible Rejected via HMAC

Replay Attack Possible Prevented via IV

Unauthorized Access Moderate Risk Token Layer Added

Summary of Result

Table 4: Final Results

Metric HTTP/2 + TLS 1.2 HTTP/3 + AES-256 + HMAC Improvement

Average Latency 100 ms 80 ms 20%

Throughput 500 req/sec 575 req/sec 15%

CPU Usage (peak) 62% 66% +4%

Memory Usage (peak) 148 MB 156 MB +5%

Comparative Analysis of Prior Approaches

Table 4 presents a comparative analysis of the proposed framework against existing methods, including HTTP/2 with

TLS 1.2 and standalone HTTP/3 implementations. It highlights key performance and security metrics to showcase

the advantages of the integrated approach introduced in this study.

Table 5: Comparison of Proposed Framework with Existing Methods

Feature / Metric HTTP/2 + TLS 1.2

(Smith et al., 2022)

HTTP/3 Only (Brown

et al., 2020)

Proposed Framework

(This Paper)

Transport Protocol HTTP/2 (TCP) HTTP/3 (QUIC) HTTP/3 (QUIC)

Encryption Type TLS 1.2 Built-in QUIC QUIC + AES-256

Application Layer

Integrity Verification TLS-based TLS-based HMAC-SHA256

Replay Attack

Protection

Weak (Relies on TLS) Medium (Stream ID only) Strong (Unique IV per

message)

Latency (under 1000

users)

~100 ms ~90 ms ~80 ms

Throughput (req/sec) 500 540 575

Journal of Information Systems Engineering and Management
2025, 10(42s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 529 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

MitM Resistance Medium High Very High

Tamper Detection No payload integrity check No payload integrity check Yes (HMAC)

Application Layer

Security

No No Yes (AES + HMAC)

Key Rotation Support Manual Basic Dynamic

As shown in Table 5, the proposed framework provides comprehensive security and performance advantages by

combining QUIC’s transport-layer features with robust application-layer encryption. Unlike prior solutions, it

ensures end-to-end integrity and confidentiality while maintaining low-latency communication across microservices.

Benefits of the Framework

• Reduced Latency: HTTP/3 minimizes connection overhead and eliminates head-of-line blocking.

• Layered Security: Dual-layer protection through QUIC and AES-HMAC encryption.

• Scalability: Easily deployable in containerized environments using Kubernetes.

• Tamper Detection: HMAC ensures integrity of encrypted messages during transit.

RESULTS AND DISCUSSION

The proposed framework reduced latency by 20% compared to the baseline HTTP/2 with TLS 1.2. This improvement

is attributed to HTTP/3’s reduced handshake time and QUIC’s efficient multiplexing capabilities. Throughput

increased by 15%, demonstrating the framework’s ability to handle high-concurrency scenarios effectively without

compromising security. AES-256 encryption, combined with HMAC-based checksum verification, effectively

mitigated risks such as MitM attacks, data breaches, and unauthorized access attempts. The framework scaled

effectively with an increasing number of microservices instances, maintaining consistent performance under high

loads. The integration with Kubernetes allowed dynamic scaling and efficient resource management, underscoring

its suitability for dynamic and distributed environments.

Leveraged hardware acceleration features to minimize computational overhead, ensuring efficient data transmission

even under peak loads. The Key Management Module enabled dynamic key rotation without disrupting service

availability, enhancing operational security and resilience. Ensured data integrity and authenticity, preventing

tampering and unauthorized data modifications during transmission. Average latency decreased from 100ms

(HTTP/2 with TLS 1.2) to 80ms (HTTP/3 with AES-256 and HMAC). Increased from 500 requests/sec to 575

requests/sec. Slight increase due to encryption processes, but optimized through hardware acceleration. Marginal

increase, managed effectively through Kubernetes resource allocation. No successful MitM attacks detected during

testing with the enhanced security framework. All messages passed HMAC verification, ensuring data was not

tampered with during transmission. Enhanced encryption and authentication mechanisms prevented unauthorized

data access attempts. Although the proposed framework demonstrates significant improvements, it introduces slight

CPU overhead under heavy load and requires secure key infrastructure for deployment, which may limit adoption in

lightweight or legacy environments.

In summary, the proposed framework enhances both security and performance, delivering measurable

improvements in latency and throughput, making it well-suited for modern high-concurrency microservices

environments.

CONCLUSION

This paper presents a novel framework integrating HTTP/3 algorithms with AES-256 encryption and HMAC-based

checksum verification to secure gRPC-based microservices. The proposed framework addresses critical security and

performance challenges inherent in modern distributed systems. Experimental results demonstrate significant

improvements in latency, throughput, and security metrics compared to traditional HTTP/2-based approaches with

Journal of Information Systems Engineering and Management
2025, 10(42s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 530 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

TLS 1.2. The framework offers a scalable and efficient solution for securing high-performance, latency-sensitive

microservices communication.

In future we have scope to explore integrating post-quantum cryptographic algorithms to enhance resilience against

emerging quantum threats and further optimize the framework for edge computing environments, focusing on

minimizing latency and resource utilization. We can also implement and evaluate additional authentication

mechanisms such as OAuth 2.0 and JWTs to enhance security. These directions aim to enhance the proposed

framework's resilience, scalability, adaptability, and future readiness, ensuring it remains viable across evolving

architectures, threats, and performance demands.

ACKNOWLEDGMENT

This work is acknowledged under Integral University manuscript No: IU/R&D/2025 –MCN0003521.

REFRENCES

[1] Zhang, X., et al. (2020). "Key Management Techniques in Microservices Architectures." Cryptographic

Innovations Journal, 15(3), pp.65-78.

[2] Abdullahi, A., et al. (2021). "Performance Metrics for Microservices Security." Journal of Information Security,

18(3), pp.78-89.

[3] Kumar, R., et al. (2020). "Comparative Analysis of Encryption Protocols for RPC Frameworks." Cryptographic

Innovations Journal, 15(3), pp.65-78.

[4] Patil, R., & Singh, M. (2022). "TLS 1.3 Implementation in Microservices." Advanced Security Practices, 19(4),

pp.97-109.

[5] Liu, T., et al. (2022). "HTTP/3 vs HTTP/2: Security and Performance Metrics." Networking Innovations

Journal, 11(5), pp.199-213.

[6] Brown, P., et al. (2022). "QUIC for Secure and Efficient Communications." Journal of Advanced Networking,

15(4), pp.111-126.

[7] Park, J., et al. (2021). "Integrating HTTP/3 into Kubernetes Ecosystems." Cloud Systems Engineering Journal,

11(3), pp.45-62.

[8] Brown, A., et al. (2020). "Performance Analysis of HTTP/3 in Distributed Systems." Networking Journal,

18(2), pp.98-113.

[9] Lopez, M., et al. (2020). "AES-256 Performance in High-Latency Environments." Journal of Secure Data

Systems, 13(1), pp.45-60.

[10] Shah, K., et al. (2023). "Comparing AES-128 and AES-256 in Microservices." Cryptography Innovations, 18(2),

pp.65-78

[11] Green, T., et al. (2020). "Integration of HTTP/3 in Cloud-Based Systems." Journal of Internet Protocols, 12(4),

pp.78-90.

[12] Mehta, P., et al. (2021). "Impact of HTTP/3 on Web Application Performance." Web Protocols Journal, 13(2),

pp.98-113.

[13] Smith, J., & Brown, T. (2022). "gRPC and Its Applications in Microservices." Journal of Software Engineering,

15(3), pp.202-215.

[14] Johnson, R., et al. (2021). "Securing Microservices: Challenges and Best Practices." Cybersecurity Review,

12(4), pp.143-158.

[15] Suhel, A. K., et al. (2020). "A Fuzzy Multi-Criteria Decision-Making for Managing Network Security Risk

Perspective." Cloud-Based Data Analytics in Vehicular AdHoc Networks, IGI Global, pp.115-140.

[16] Abida, K. et al. (2024). "Ensuring Security in Electronic Health Records: Implementing and Validating a Block

chain and IPFS Framework." Journal of Electrical Systems (JES), Vol. 20 No. 7s, pp.2356-2368.

[17] Abdulaziz, A., et al. (2023). "Security Test Case Prioritization through Ant Colony Optimization Algorithm."

Computer Systems Science and Engineering (CSSE), vol.47, no.3, pp.3165-3195.

[18] Muhammad, K. A., et al. “Validation of Clustering Based Framework Using Unsupervised Machine Learning”,

2021 International Conference on Simulation, Automation and Smart Manufacturing, SASM 2021, 2021.

[19] Kumar, N., et al. (2023). "Optimizing Security in Cloud-Based Microservices." Cloud Computing Journal,

20(5), pp.231-245.

Journal of Information Systems Engineering and Management
2025, 10(42s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 531 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[20] Gupta, P., & Verma, S. (2022). "AES-256 Encryption in Distributed Systems." Cryptography Research Bulletin,

13(2), pp.45-60.

[21] Harris, J., et al. (2021). "Security Protocols for gRPC-Based Communication." Journal of Cyber Defense, 19(4),

pp.134-150.

[22] Mathews, A., et al. (2022). "Comparative Study of HTTP/2 and HTTP/3 in Secure Microservices." Networking

Science Review, 21(5), pp.223-242.

[23] Thompson, G., et al. (2023). "Securing Data in Transit with AES-256." Journal of Applied Cryptography, 22(6),

pp.201-218.

[24] Park, H., et al. (2022). "Evaluating HTTP/3 for High-Performance Applications." Journal of Internet

Engineering, 19(3), pp.99-120.

[25] Patel, D., et al. (2023). "HTTP/3 Adoption Trends in Industry." Networking Practices Bulletin, 17(2), pp.75-

88.

[26] Fischer, T., et al. (2022). "Scalability of Encrypted Communications in Distributed Systems." Journal of

Information Security Research, 18(2), pp.77-94.

[27] Martinez, R., et al. (2021). "gRPC Security Enhancements Using AES-256." Cybersecurity Practices Review,

11(3), pp.108-123.

[28] Nadiya, P., et al. (2024). "Proposed Algorithm and Models for Sentiment Analysis and Opinion Mining Using

Web Data." Nanotechnology Perceptions, Vol.20, No.6, pp. 1-11.

[29] White, A., & Zhou, M. (2020). "Emerging Trends in Secure RPC Frameworks." RPC Systems Review, 15(3),

pp.103-120.

[30] Virendra, S., et al. (2020). "Optimizing the Impact of Security Attributes in Requirement Elicitation

Techniques using FAHP." International Journal of Innovative Technology and Exploring Engineering,

Volume-9, Issue-4, pp.1656-1661.

[31] Mohammad, F. F., et al., (2022). "An Efficient Knowledge-Based Framework for Multi-Agent System."

Computer Integrated Manufacturing Systems 2022, vol. 28. Issues 11.

[32] Díaz, A., et al. (2022). "Frameworks for Secure Microservices." Journal of Software Design, 15(4), pp.145-162.

