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The research paper introduces an optimization approach that combines Grass Hopper 

Optimization (GOA) and PSO techniques. Determining the optimal PID controller parameters to 

regulate a BLDC motor's speed is the aim. The Simulink environment in MATLAB software is 

employed to simulate the BLDC motor. Optimally tuned PID controllers are then employed to 

select an optimal PI controller for BLDC motor. Lastly, the efficacy of this proposed optimization 

method is validated through various simulations along with experimental results obtained from 

the BLDC motor control. 
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I. INTRODUCTION 

In this study, PSO (Particle Swarm Optimization) and GOA (Grasshopper Optimization Algorithm) are employed to 

tune a PID controller for BLDC motor speed regulation. Simulation results based on a BLDC motor model confirm 

that the proposed control strategy effectively identifies the optimal PID gain parameters. Moreover, a comparative 

analysis between the two optimization techniques indicates that GOA provides enhanced dynamic performance of 

the overall system. 

A variety of control methods—including optimum, variable structure, adaptive, and nonlinear strategies—have been 

widely reported for BLDC motor speed regulation [1]. Nonetheless, many of these approaches are either challenging 

to implement in practice or involve intricate theoretical frameworks [2]. In contrast, the PID controller, with its 3 

part structure addressing both transient along with steady-state responses, remains one of the most straightforward 

and effective solutions for many real-world control challenges [3]. 

It is well recognized that PID controllers significantly improve the dynamic performance of controlled systems; 

however, the selection of optimal gains is inherently an optimization problem [9]. In recent years, techniques for 

example, the FA (Firefly Algorithm) and other competitive optimization algorithms are successfully applied to tune 

PID parameters across various applications in electrical engineering and beyond [10]. A particularly notable 

application is in the control of BLDC motors. Evolved from brushed DC motors, BLDC motors are synchronous 

machines powered by DC voltage and utilize solid-state switching for current commutation, with rotor positions 

typically monitored via Hall sensors [11]. 

BLDC motors possess several advantages, including high efficiency, extended operational life, compactness, low 

noise, and superior speed–torque characteristics. These benefits have driven significant advancements in aerospace, 

automotive, and numerous other engineering fields. However, the performance of these motors can be compromised 

by varying load conditions, a challenge that traditional control methods may struggle to address. This limitation has 

spurred the development of advanced control strategies, particularly those on the basis of artificial intelligence (AI). 

Techniques for example fuzzy control [12, 13], the Improved or Modified Firefly Algorithm (IFA/MFA) [4–8], neural 

control [14, 15], PSO-based control [38], Genetic Algorithm (GA) control [16, 17], as well as more recent approaches 
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like FA and BAT control [11] have been proposed. These methods largely focus on optimizing the PID controller’s 

settings and derivatives to achieve superior performance under a range of operating conditions. 

In this article, a Brushless DC (BLDC) motor controller design technique that relies on the GOA is presented, and its 

performance is contrasted with that of PSO. Optimization of the PID controller settings for the BLDC motor control 

is conducted employing MATLAB simulations, in which parameters kpk_p, kik_i, along with kdk_d are 

systematically tuned to assess their impact on motor performance. MATLAB’s robust simulation tools facilitate 

detailed analysis and precise fine-tuning to attain optimal control efficiency. Furthermore, performance of both GOA 

and PSO algorithms is evaluated against standard indices, namely the IAE (Integral of Absolute Error), ISTE (Integral 

of the Squared Time Error), ITAE (Integral of Time-weighted Absolute Error), as well as ISE (Integral of Squared 

Error). Comparative results indicate that the GOA method outperforms PSO in optimizing the PID controller settings, 

underscoring its effectiveness for this application. 

The rest of the article has been structured as subsequent. Section 2 introduces the BLDC motor system’s 

mathematical model, laying the groundwork for subsequent controller design. Section 3 describes in detail the PSO 

along with GOA algorithms developed for optimal value determination for the kpk_p, kik_i, and kdk_d parameters. 

In Section 4, the MATLAB Simulink model, constructed based on the methods presented in Section 3, is discussed 

alongside the corresponding simulation results and findings. The final section offers a comparative analysis of the 

PSO and GOA approaches, demonstrating the superior performance of the GOA, and concludes with suggestions for 

future research. 

II. BLDC MOTOR MODELLING 

For the purpose of analysis and modeling, it is assumed that the stator winding parameters are identical and remain 

constant across all phases. This assumption simplifies the representation of the motor and facilitates a clearer 

comparison of its performance characteristics, as depicted in Figure 1. 

 

Fig. 1. BLDCM Circuit Diagram 

The voltage equations for a Brushless DC Motor (BLDCM) can be formulated as follows: 

𝑢𝑎 = 𝑅𝑖𝑎 + (𝐿 − 𝑀)
𝑑𝑖𝑎

𝑑𝑡
+ 𝑒𝑎 ,      (1) 

𝑢𝑏 = 𝑅𝑖𝑏 + (𝐿 − 𝑀)
𝑑𝑖𝑏

𝑑𝑡
+ 𝑒𝑏 ,        (2) 

𝑢𝑐 = 𝑅𝑖𝑐 + (𝐿 − 𝑀)
𝑑𝑖𝑐

𝑑𝑡
+ 𝑒𝑐 ,    (3) 

Where, 𝑖𝑥, 𝑒𝑥 and  𝑢𝑥 (x = a, b, c) indicate, respectively, the current, e.m.f, and voltage. Of three-phase windings; L 

and R signify the self-inductance and resistance of each phase's windings; M denotes the mutual inductance between 

any two windings; and n denotes the electric potential reference point. Because LM evenly represents the terms of 

LM in the preceding equations, the voltage equations of BLDCM may be rewritten as 

𝑢𝑎 = 𝑅𝑖𝑎 + 𝐿𝑀
𝑑𝑖𝑎

𝑑𝑡
+ 𝑒𝑎 ,      (4) 

𝑢𝑏 = 𝑅𝑖𝑏 + 𝐿𝑀
𝑑𝑖𝑏

𝑑𝑡
+ 𝑒𝑏 ,        (5) 
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𝑢𝑐 = 𝑅𝑖𝑐 + 𝐿𝑀
𝑑𝑖𝑐

𝑑𝑡
+ 𝑒𝑐 ,             (6) 

III. OPTIMIZATION Algorithm 

Optimization is crucial for finding the best design based on specific criteria or constraints. It can be categorized into 

single-objective or multi-objective optimization, depending on the problem. Initially, random values are generated 

for the given situation. Nature-inspired swarm algorithms are widely used in stochastic optimization. Inspired by 

natural processes, many algorithms exist for single and multiple-solution-based optimization. Examples include 

ACO, PSO, and GA. The GOA is considered one of the most effective techniques in artificial intelligence. 

A. Grass Hopper Algorithm 

Grasshoppers are widely recognized as agricultural pests due to their significant impact on crops. They may appear 

either as solitary individuals or in large groups during both their nymph and adult stages. These insects consume a 

considerable amount of the vegetation in their path, which can lead to substantial crop damage. Notably, while nymph 

swarms tend to move slowly, adult swarms are capable of rapid, abrupt movement over long distances. Drawing 

inspiration from such natural behaviors, nature-inspired algorithms are designed to balance exploration along with 

exploitation. Particularly, GOA is based on the food-seeking behavior observed in grasshoppers. The following 

mathematical model effectively simulates this swarming behavior:: 

𝑋𝑖 = 𝑆𝑖 + 𝐺𝑖 + 𝐴𝑖     (7) 

Where, 

𝐴𝑖  - Wind advection 

𝑋𝑖 – ith grasshopper’s position 

𝐺𝑖 – Gravity force on ith grasshopper 

𝑆𝑖 – Social interaction 

For the random behavior of grasshoppers, this equation can be manipulated as below: 

𝑋𝑖 = 𝑟1𝑆𝑖 + 𝑟2𝐺𝑖 + 𝑟3𝐴𝑖   (8) 

Here, 𝑟1,, 𝑟2 , 𝑟3 are random numbers in the range (0,1). The Si can be given by equation (3): 

𝑆𝑖 =  ∑𝑁
𝑗=1 𝑗≠𝑖 𝑠(𝑑𝑖𝑗)𝑑𝑖𝑗

⃗⃗⃗⃗  ⃗   (9) 

Here, distance between ith and jth grasshopper is provided by dij that given as follows: 

𝑑𝑖𝑗 = |𝑋𝑗 − 𝑋𝑖|    (10) 

S factor in the above equation provides strength of the social forces and  𝑑𝑖𝑗
⃗⃗⃗⃗  ⃗ is unit vector from the ith grasshopper to 

jth grasshopper : 

𝑑𝑖𝑗
⃗⃗⃗⃗  ⃗ =  

𝑋𝑗− 𝑋𝑖

𝑑𝑖𝑗
    (11) 

And s can be given by equation (12): 

𝑠(𝑟) = 𝑓 . 𝑒
−𝑟

𝑙 − 𝑒−𝑟   (12) 

In this context, l denotes attractive length scale, while f denotes intensity of attraction. Functions illustrate the degree 

of attraction or repulsion experienced by the grasshoppers. 

Component G in equation (13) can be given as: 

𝐺𝑖 =  −𝑔 . 𝑒𝑔⃗⃗  ⃗    (13) 



Journal of Information Systems Engineering and Management 
2025, 10(40s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 1270 
 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

In this context, 𝑒𝑔⃗⃗  ⃗ denotes the unit vector pointing towards the Earth’s center whereas g represents gravitational 

constant. Gravitational constant g quantifies the force of gravity exerted by the Earth, while the unit vector 𝑒𝑔⃗⃗  ⃗ provides 

a directional reference, indicating the direction of the gravitational pull towards the Earth's core. 

Factor A can be calculated as: 

𝐴𝑖 = 𝑢 . 𝑒𝑤⃗⃗ ⃗⃗      (14) 

𝑒𝑤⃗⃗ ⃗⃗    is a wind direction  unity vector 

u is drift constant 

Nymph grasshoppers are wingless, which significantly influences their movement patterns. As a result, the direction 

and speed of their movement are closely linked to the direction of the wind. This relationship can be mathematically 

described using equation (15). This dependency on wind direction performs a vital role in understanding and 

modeling the nymph grasshoppers’ behavior. 

𝑋𝑖 =  ∑𝑁
𝑗=1 𝑗≠𝑖 𝑠 (𝑑𝑖𝑗)𝑑𝑖𝑗

⃗⃗⃗⃗  ⃗ − 𝑔 . 𝑒𝑔⃗⃗  ⃗ + 𝑢 . 𝑒𝑤⃗⃗ ⃗⃗   (15) 

IIn this context, NN denotes the total number of grasshoppers within the swarm. The equation under consideration 

models the interactions among these individuals. However, applying a direct mathematical formulation to 

grasshopper swarms presents challenges, as the grasshoppers tend to quickly settle into a state of equilibrium, 

thereby failing to adequately reach certain target points. To mitigate this limitation, a modified version of the original 

Equation (15) is introduced, represented as Equation (16). This updated formulation refines the model's capacity to 

accurately simulate grasshopper behavior and enhances the ability of the algorithm to comprehensively explore 

search space. 

𝑋𝑑
𝑖 =  (∑𝑁

𝑗=1 𝑗≠𝑖 𝑐  
𝑈𝑏𝑑 −  𝐿𝑏𝑑

2
 .  𝑠 . (|𝑋𝑗

𝑑 − 𝑋𝑖
𝑑|)

𝑋𝑗 − 𝑋𝑖

𝑑𝑑
) + 𝑇𝑑        (16) 

Where, 𝑈𝑏𝑑  - upper bound in Dth dimension 

Td -  solution best 

𝐿𝑏𝑑 - Dth dimension Lower bound 

C - comfort, repulsion, and attraction zone decreasing coefficient. 

GOA advantages include: (i) finding promising regions in a given space, (ii) accurate solutions for unconstrained 

optimization, (iii) constrained optimization promising results, and (iv) obtaining global and local optima.  

The GOA process (Figure 4) involves initialization, random population generation, fitness evaluation, normalizing 

distances between grasshoppers, updating positions, iterating for all population members, updating the best solution, 

and repeating until termination criteria are met. 

 
Fig. 2:  Block Diagram of GRASSHOPPER ALGORITHM 
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Optimizing the PID controller's tuning parameters is the aim of this study, specifically kdk_d, kpk_p, and kik_i, by 

employing the GOA. Optimized PID controller is then used as part of a control strategy for regulating the BLDC 

motor’s speed. Typically, motor's speed deviates from its desired setpoint; hence, the PID controller has been 

implemented to mitigate these deviations as well as stabilize the motor's speed in line with the required specifications. 

 

 

 

Fig. 3:  PID optimization using GOA 

Figure 3 shows a flowchart of the optimization process for tuning parameters kd, kp, and ki of the PID controller. The 

goal is to find values yielding a stable delta p (difference between desired and actual motor speeds) with minimal 

overshoot. GOA iteratively adjusts PID gains, converging on optimal values. These ensure the BLDC motor's speed 

closely follows the setpoint with a stable response, minimal oscillations, and overshoots, enhancing overall speed 

control system performance and efficiency. 

B. Particle Swarm Optimisation Algorithm 

 A population-based optimization method is PSO that inspired by collective behaviors observed in bird flocking as 

well as fish schooling. Initially developed by Kennedy and Eberhart in 1995 [1], the PSO has become a widely adopted 

technique for addressing complex optimization challenges. With this method, the search space is traversed by a 

swarm of particles, all of which stand for a possible solution. These particles update their positions as they move 

through space, taking into account both their personal experiences and the swarm's shared knowledge. 

Each particle maintains an adjustable velocity and retains a record of its personal best position along with the best 

position discovered throughout the entire swarm. In a multidimensional problem space, every particle has a unique 

position and velocity that describe its location and movement. As the particles navigate the space, they continuously 

monitor and update their personal best positions. The overall update mechanism is governed by Equations (17) and 

(18) in the original document. These equations incorporate an inertia component that influences the particle’s 

momentum, a cognitive component that reflects particle’s own experience, and a social component that accounts for 

swarm’s collective wisdom. Additionally, random factors are introduced to maintain diversity in the search process. 

This balanced interplay between exploration and exploitation, as mathematically described by Equations (17) and 

(18), allows PSO to effectively converge toward optimal solutions, ensuring that the particles are guided both by their 

personal discoveries and by the overall progress of the swarm [1]. 

The parameters c1 and c2 play a crucial role in guiding the particles' movement. These coefficients influence how 

strongly particles are drawn towards their personal best positions and the swarm's global best position, 
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correspondingly. When these values are set low, particles tend to wander more freely through the search space, 

thoroughly exploring different areas before focusing on promising regions. Conversely, higher values of c1 and c2 

cause particles to make more abrupt shifts, potentially overshooting or quickly converging on target areas. The 

algorithm's ability to find the best solutions depends on this delicate balance between exploration and exploitation. 

It is typically recommended to set c1 and c2 to 2.0, according to sources [17, 18]. 

  (17) 

    (18) 

  (19) 

 

IV. SIMULATION AND RESULT 

This section focuses on the MATLAB/Simulink implementation of the BLDC motor model, incorporating two distinct 

controllers: PSO-PID controller and GOA-PID controller. Primary aim of these simulations is to assess and compare 

the BLDC motor's speed performance control system when subjected to different controllers. By conducting these 

simulations, researchers can gain insights into how each controller influences the system's behavior, efficiency, and 

overall effectiveness in maintaining the desired BLDC motor speed. This evaluation is crucial for determining the 

most suitable controller for optimal motor performance under various operating conditions. 

 

Fig. 4.  BLDC motor simulation model using PSO-PID controller 

Figure 4 illustrates the Simulink model developed for BLDC motor’s speed control system employing the PSO-PID 

controller. This model encapsulates BLDC motor dynamics, PSO algorithm for PID controller parameters 

optimization, and closed-loop control architecture. the PID controller's tuning parameters (Kp, Ki, Kd) are adjusted 

iteratively through PSO algorithm for minimizing the error between desired along with actual motor speeds, thereby 

optimizing speed control performance. 

However, Figure 5 illustrates BLDC motor simulink moodel speed control system employing the GOA-PID controller. 

Similar to PSO-PID model, this simulation incorporates the BLDC motor dynamics and a closed-loop control 

structure. However, instead of the PSO algorithm, the Grass Hopper Optimization (GOA) has been utilized to tune 

and optimize the parameters of PID controller. 
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Fig. 5.  Simulink Model of BLDC motor using GOA-PID controller 

The GOA algorithm emulates natural behavior of grasshoppers in nature, exploring the search space and converging 

towards the optimal Kp, Ki, and Kd values that diminish the speed error as well as enhance the system's dynamic 

response. 

 

 

 

Figure 6:  Kp, Ki and Gbest values Nature in each iteration 

 

 

 

Fig. 7. Speed, current, and voltage variation of BLDC motor 

Simulation outcomes, including the motor speed response, steady-state error, settling time, along with overshoot can 

be assessed to determine the most suitable controller architecture for the given application. 

V. CONCLUSION 

This study presents a comparative evaluation of  PSO and the GOA for tuning PID controllers in BLDC motor speed 

control systems. Simulation experiments using a BLDC motor model demonstrate that both methods effectively 

optimize proportional, integral, along with derivative gains of the PID controller. However, the GOA—drawing 

inspiration from the swarming behavior of grasshoppers—outperforms PSO by significantly enhancing the dynamic 

responsiveness of the closed-loop system. Notably, the GOA approach yields considerable improvements in transient 

performance, including reduced settling time, diminished overshoot, as well as increased steady-state accuracy in 

tracking motor speed setpoints. These outcomes highlight the potential of GOA as a more efficient strategy for PID 

controller tuning in motor control applications. 
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