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Abstract: The worsening speed of climate change is causing agricultural issues never seen before 

to arise. Farmers' earnings and food security are under jeopardy from all these issues. It 

demonstrates how cleverly to cultivate climate-resilient crops, how best to build up farms, and 

how flexible farming utilizing artificial intelligence may be done. To provide efficient farming 

plans and forecast how crops will perform in response to changing weather conditions, the 

system combines temperature data, satellite images, and machine learning approaches. When 

reinforcement learning is coupled with real-time monitor inputs, agricultural chores including 

watering, planting, and pest control may vary on demand. These all-encompassing strategies 

enable everyone to make decisions that not only increase productivity but also assist in long-

term survival and the resource economy. For instance, the recommended approach may alter 

farming by increasing its resistance to climatic fluctuations. 
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INTRODUCTION 

The world's agriculture sector is under great strain from less predictable climate change, soil degradation, water 

issues, and the necessity to feed an increasing population.    Standard agricultural techniques must accomplish more 

than they can due to worsening pests, erratic weather, and the requirement of sustainable land usage.    Artificial 

intelligence (AI) is thereby transforming agriculture by enabling data-driven, flexible farming systems able to forecast 

and handle climate change-induced challenges. When integrated with precision agriculture and Internet of Things 

(IoT) systems, artificial intelligence technology can make sense of enormous volumes of data gathered from satellite 

images, weather sensors, soil sensors, and crop tracking tools.    These tools let one decide on how to use land, when 

to irrigate it, how to manage pests, and which crops to cultivate [3] 5 and 10 years. Maximizing output under a range 

of conditions is the aim of climate-resilient farming, not only to survive challenging ones. AI models such Long Short-

Term Memory (LSTM), Random Forest classifiers, and Convolutional Neural Networks (CNNs) have been 

demonstrated to be able to precisely detect disease outbreaks, food yields, and the optimum crop types for diverse 

microclimates [1, 4, 7]. Moreover, Geographic Information Systems (GIS) and reinforcement learning can replicate 

the ideal agricultural designs for the ground and the expected climatic change.  This reduces resource usage and 

better makes use of land [6, 13, 16]. These strategies maximize water flow and maintain good form of the soil, 

therefore supporting both productivity and natural balance. Particularly in undeveloped areas, farmers may lack 

access to tailored counsel and scientific knowledge. Driven by artificial intelligence, decision support systems close 

this gap by transforming complex forecasts into unambiguous, useful guidance delivered via mobile and web 

platforms. Two of them 11 and 15 are with various displays and offline assistance, these technologies ensure that 

everyone even in remote locations may utilize them effortlessly. Recent research indicates that to ensure that 

solutions are not only technologically sound but also fit the circumstance and last, we must mix artificial intelligence 

with socioeconomic and environmental data.   (8 points) 14 and 18 times each.    By means of participatory approaches 

and farmer feedback systems, AI-driven recommendations are also assured to be in accordance with actual demands 

and limitations. This work presents an all-AI strategy for climate-resilient farming comprising data collecting, 
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predictive modeling, intelligent plan creation, and user-oriented delivery.    Providing farmers with precise, 

reasonably priced, flexible equipment would assist to make farming more viable in an era of uncertain surroundings.     

LITERATURE SURVEY 

Above all, younger technologies like artificial intelligence (AI) are drastically changing the agriculture industry in 

aiding climate resistance, yield enhancement, and resource sustainable usage.  Researchers are looking at how 

current agriculture methods could be facilitated using artificial intelligence, machine learning (ML), Internet of 

Things (IoT), and remote sensing. Krishna et al. (2024) presented one artificial intelligence platform for merging 

crop suggestion and disease diagnostics in order to serve the purpose of raising climate-resilient and sustainable crop 

management in agriculture.  Agricultural output and the efficacy of decision-making were much improved with the 

two-in-one tool.  Aashu et al. (2024) conducted a broad agricultural experiment on the use of remote sensing and 

data-driven machine learning approaches. The project revealed how much data-driven suggestions improve a farm's 

resistance to natural disasters such floods and droughs. Chowdhury et al. (2023) discussed the possibilities of 

artificial intelligence in vertical farming's use in real-time monitoring of plant health. Their work highlights how 

image-based analysis and neural networks may provide early enough identification of irregularities in growth 

patterns. Likewise, Adkisson et al. (2021) used autoencoders to discover abnormalities in agricultural smart settings 

and thus helped the farmers to diagnose crop stress before its appearance—early detection being the most critical 

component. Deep neural networks established by Albanese et al. (2021) for edge-based pest identification in pest 

management so allowed faster and focused treatment against infestations.  It was especially useful in the low-density 

areas with inadequate internet access. Li and Liu (2020) have investigated remote sensing-based early pest 

identification assisted by artificial intelligence, discursing on the utilization of satellite and drone information in 

anticipatory agriculture. The ML system optimized yield prediction, fertilizer application, and irrigation.  Kumar and 

Singh (2022) mentioned Their efforts suggested lower fertilizer loss and improved water usage efficiency.    Patel and 

Mehta (2022) focused mostly on AI-based irrigation scheduling, therefore enabling significant water conservation by 

matching irrigation times with real-time environmental and soil factors.  Chen and Zhao (2023) proposed strong ML 

models for soil moisture estimate, a hidden variable in climate-resilient agriculture, thereby supplementing this.    

Coupling IoT with artificial intelligence, Sharma and Kumar in 2024 proposed a smart agricultural system that 

detects environmental data and reacts in real-time via adaptive judgments. Since this design constantly adjusts 

behavior based on data patterns, it facilitates precision agriculture.   In this sense, Gonzalez and Torres (2021) looked 

at AI-based Decision Support Systems (DSS), which translate model data output into practical recommendations to 

farmers, therefore significantly enhancing field-level decision-making. Ahmed and Khan (2022) demonstrated the 

means to apply intelligent planning to increase production along with environmental harmony by merging GIS with 

artificial intelligence technologies to build sustainable and efficient farm planning. Examining the application of deep 

learning for accurate yield prediction, Smith and Lee (2021) came to the conclusion that CNN and LSTM models 

outperform traditional models in controlling climate change and soil variability.  Zhang and Wang (2020) showed 

the use of IoT and artificial intelligence to improve crop monitoring by referencing scalability for precision agriculture 

at scale. Media have also revealed how increasingly artificial intelligence is influencing agriculture. Among other 

things, artificial intelligence technology protecting tomato plants vulnerable to climate change dominated Time 

(2023). Axios (2024) discussed how artificial intelligence is tracking plant activity to maximize farming 

circumstances, while Reuters (2024, 2025) detailed AI technology in a way farmers all over may apply regenerative 

farming methods. Designed with the idea of molecularly recreating agriculture using artificial intelligence, the 

Australian (2024) included modern lab-based agricultural farms. 

PROPOSED METHODOLOGY 

Existing Methods 

Over the past few years, several innovative methods have been employed to tackle climate-related challenges in 

agriculture. Traditional rule-based decision support systems have gradually been replaced by data-driven approaches 

leveraging machine learning and deep learning techniques. Existing methods commonly utilize Random Forest, 

Support Vector Machines, and Gradient Boosting for crop yield prediction and soil classification, while CNNs and 

transfer learning have been extensively applied to image-based disease detection. Time-series models such as ARIMA 
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and LSTM are used for weather and irrigation forecasting. Furthermore, Geographic Information Systems (GIS) 

integrated with AI enable spatial analysis for land suitability and farm layout design. Remote sensing technologies 

are increasingly combined with AI to assess vegetation indices and detect early pest infestations. However, many of 

these methods work in isolation, focusing on single tasks like crop recommendation or disease detection. This 

compartmentalization limits holistic decision-making, especially under dynamic climate scenarios. Hence, there's a 

growing shift toward multi-layered and integrated AI systems that combine diverse datasets and models to support 

comprehensive and adaptive agricultural management. 

Dataset Detail 

The dataset used in this study integrates multiple sources to provide a comprehensive view of the agricultural 

environment, climate variability, and crop performance. Primarily, satellite imagery was acquired from the Sentinel-

2 and Landsat-8 missions, offering high-resolution spectral data useful for vegetation index calculation (e.g., NDVI, 

EVI) and land classification. Meteorological data, including rainfall, temperature, humidity, and wind speed, was 

collected from publicly available sources such as NASA POWER and India Meteorological Department (IMD) 

through APIs. Soil health records were sourced from the FAO's Global Soil Database and regional agricultural 

agencies, providing pH, nutrient levels, moisture content, and salinity data. Crop yield histories were extracted from 

the ICRISAT and Krishi Vigyan Kendra (KVK) databases for multiple regions and crop types over the past 10 years. 

In addition, IoT sensor data from open-source datasets like OpenAg and simulated real-time feeds were used to 

mimic on-field conditions such as soil moisture, temperature, and leaf wetness. All data sources were preprocessed 

and standardized to a uniform schema with spatial and temporal tagging, enabling effective training and evaluation 

of AI models. 

Methodology 

To address the pressing challenges posed by climate change in agriculture, the proposed methodology integrates 

artificial intelligence, remote sensing, and real-time data processing into a unified, multi-layered framework. This 

approach aims to deliver climate-resilient, adaptive, and precision-based farming solutions. By systematically 

structuring the system into distinct yet interconnected layers—ranging from data acquisition to intelligent decision 

support and user delivery—the methodology ensures a seamless flow from raw data collection to actionable insights. 

Each layer is designed to handle specific tasks, such as collecting heterogeneous data from satellites and IoT devices, 

applying advanced machine learning algorithms for crop and disease prediction, and delivering real-time 

recommendations through accessible user interfaces. This layered design not only ensures scalability and flexibility 

but also enhances the system’s ability to respond dynamically to environmental changes, ultimately empowering 

farmers to make informed, sustainable decisions. 

Data Acquisition Layer 

This layer forms the foundation of the system, responsible for collecting diverse data inputs from various reliable and 

real-time sources. It integrates satellite imagery and drone-based visual data to monitor large-scale farmlands and 

detect changes in vegetation patterns and land usage. Real-time weather data is collected using APIs from 

meteorological services, providing inputs such as rainfall levels, temperature, humidity, and wind speed. Historical 

soil health records and crop yield data are sourced from agricultural departments and local databases, helping to 

analyze long-term trends in land productivity and environmental conditions. Additionally, IoT-enabled sensors 

placed in the field stream data continuously regarding soil moisture, pH levels, temperature, and nutrient content. 

This multilayered data input ensures a rich, accurate, and up-to-date representation of agricultural conditions across 

spatial and temporal scales. 

Data Processing and Feature Engineering Layer 

Once raw data is acquired, it must be prepared for analysis. This layer is dedicated to cleaning, organizing, and 

enriching the data to make it suitable for machine learning models. Data cleaning involves removing noise, correcting 

inconsistencies, and handling missing values using interpolation or imputation techniques. Normalization ensures 

that all variables are on a comparable scale, especially important when combining image and tabular data. For image 
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data such as satellite and drone footage, computer vision techniques like histogram equalization, edge detection, and 

region-based segmentation are used to identify field boundaries, crop zones, and anomalies such as pest infestations. 

Meanwhile, tabular data such as soil reports and weather logs are processed to extract meaningful features. For 

instance, vegetation indices like NDVI and EVI are calculated from image data, while soil moisture trends, 

temperature variance, and precipitation cycles are derived from time-series records. This feature-rich dataset is then 

aligned temporally and geospatially, ensuring compatibility for multi-modal analysis. 

Model Training and Prediction Layer 

This is the analytical core of the system where machine learning and deep learning models are developed and trained 

on the processed data. Several algorithms are utilized for different predictive tasks. Random Forest and XGBoost 

models are employed for crop recommendation, where the system learns to suggest crops based on soil type, 

historical yield, climate conditions, and water availability. For plant disease detection, Convolutional Neural 

Networks (CNNs) are trained using thousands of labeled plant leaf images to recognize patterns associated with 

common fungal, bacterial, or viral infections. Long Short-Term Memory (LSTM) networks are applied to forecast 

weather patterns and climate risks based on historical meteorological data, providing early warnings for floods, 

droughts, or temperature spikes. Furthermore, reinforcement learning techniques, in combination with GIS data, are 

used to simulate adaptive farm layouts. These simulations help determine the most efficient spatial arrangement of 

crops and irrigation systems in varying geographical and climatic scenarios, promoting sustainable land use and 

maximizing yield. 

Decision Support System (DSS) Layer 

Once predictions are generated, the Decision Support System converts these insights into actionable guidance for the 

end users. This system interprets machine learning outputs and provides specific, context-aware recommendations 

regarding crop selection, irrigation scheduling, fertilization, pest control, and harvesting timeframes. The DSS also 

includes simulation tools that allow users to perform scenario planning. For example, farmers can simulate how 

choosing a different crop or planting at an alternative time might affect yield under expected weather conditions. 

Alerts and notifications are embedded into the system to inform users of emerging risks such as pest outbreaks, soil 

nutrient deficiency, or forecasted droughts. The DSS ensures that farmers not only receive data but also understand 

the implications and actions required, making it a critical layer for decision-making under uncertainty. 

User Interface and Delivery Layer 

The final layer is designed to communicate insights to the users in a simple, accessible, and user-friendly manner. A 

web and mobile application serves as the primary platform through which farmers and agricultural planners interact 

with the system. The interface is designed to be intuitive and supports multiple languages, ensuring usability across 

different regions and literacy levels. Dashboards display visualizations such as heatmaps, trend graphs, weather 

charts, and disease probability maps. Notifications are delivered in real-time to prompt immediate action when 

necessary. Importantly, the application is optimized for offline use or low-bandwidth conditions, which is essential 

for rural and remote farming communities. The delivery system ensures that all complex backend processing and 

intelligence are translated into easy-to-understand and practical advice that users can rely on daily. 

SYSTEM ARCHITECTURE 

The proposed system architecture for AI-Driven Climate-Resilient Agriculture is designed as a modular, layered 

framework. Each layer plays a critical role in transforming raw, multi-source agricultural data into actionable insights 

tailored for farmers, agronomists, and policymakers. The architecture ensures seamless data flow from input to end-

user delivery, promoting scalability, interoperability, and real-time adaptability. 

Data Acquisition Layer 

This foundational layer is responsible for gathering a wide spectrum of data essential for developing climate-resilient 

agricultural strategies. It includes both static and real-time data inputs. Satellite imagery, collected from platforms 

such as Sentinel and Landsat, provides high-resolution, geospatial views of vegetation patterns, land cover, and crop 
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health. Weather data—such as temperature, precipitation, humidity, and wind speed—is ingested in real time from 

meteorological APIs including NOAA and OpenWeatherMap. Soil health records and crop yield histories are obtained 

from government repositories, agricultural research databases, and user-uploaded datasets, offering valuable 

longitudinal context. 

Additionally, this layer integrates data from IoT sensors deployed across fields. These sensors continuously transmit 

localized information on soil pH, moisture, temperature, and nutrient content. To ensure accurate temporal and 

spatial tagging, GPS data and GIS platforms are used to geolocate all data points. All sources are harmonized using 

time-series indexing and geospatial mapping techniques, ensuring that heterogeneous data streams can be used in 

synchronized machine learning workflows downstream. 

Data Processing and Feature Engineering Layer 

Once the raw data is collected, it is passed to this layer for pre-processing and transformation. Data cleaning 

techniques are employed to remove anomalies such as missing or inconsistent entries, using statistical imputation, 

smoothing filters, or data interpolation. Normalization and standardization ensure that data from different units or 

scales (e.g., temperature vs. rainfall vs. NDVI index) can be fed uniformly into machine learning models. 

Image data, especially from satellites and drones, undergoes pre-processing using computer vision pipelines. 

Techniques such as NDVI (Normalized Difference Vegetation Index) computation, histogram equalization, edge 

detection, and image segmentation help extract vegetation health, crop coverage, and pest hotspots. For tabular and 

time-series data like weather logs or soil reports, domain-specific feature engineering is performed. This includes 

generating rolling averages, identifying seasonal trends, detecting abrupt climate shifts, and calculating moisture 

deficit indices. These engineered features not only increase the predictive power of models but also provide richer 

context for decision-making. 

 

Figure 1: System Architecture 

Model Training and Prediction Layer 

This is the core intelligence engine of the system, where machine learning and deep learning models are developed, 

trained, and validated. It supports a variety of algorithms tailored for specific tasks: 
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• Crop Recommendation: Models like Random Forest and XGBoost analyze historical yield data, soil 

properties, and climate conditions to recommend crops that are best suited for the current and forecasted agro-

climatic profile. 

• Disease Detection: Convolutional Neural Networks (CNNs) trained on annotated leaf images detect 

symptoms of bacterial, viral, or fungal infections with high accuracy. Transfer learning is used to adapt these models 

to region-specific crop types. 

• Weather and Risk Forecasting: LSTM (Long Short-Term Memory) networks process long-term weather 

sequences to forecast climate anomalies such as droughts, heavy rainfall, or frost events. 

• Farm Layout Optimization: Reinforcement learning agents, integrated with GIS data, simulate and 

recommend optimal layouts for irrigation systems, crop zoning, and pest barriers to enhance sustainability and 

reduce resource waste. 

Model outputs are continuously evaluated using accuracy, F1 score, precision-recall curves, and are retrained 

periodically using new data collected from the field. 

Decision Support System (DSS) Layer 

The DSS layer bridges the gap between AI-generated predictions and practical decision-making. It interprets complex 

model outputs and translates them into simple, tailored recommendations for users. The system provides guidance 

on: 

• Crop Selection: Based on current soil conditions, weather forecasts, and economic trends. 

• Irrigation Scheduling: Recommending optimal watering times and quantities using soil moisture data and 

evapotranspiration models. 

• Fertilizer and Pesticide Application: Timing and dosage based on soil nutrient content and disease likelihood 

predictions. 

• Scenario Simulation: Allowing users to perform “what-if” analyses—for example, testing the yield impact of 

switching crop varieties or adopting a different sowing schedule. 

The DSS can deliver both prescriptive (what to do) and predictive (what is likely to happen) analytics, empowering 

stakeholders to act proactively. 

User Interface and Delivery Layer 

This layer ensures that all insights, alerts, and visualizations are delivered to end users in an intuitive and accessible 

manner. The front-end includes both web and mobile applications, designed with responsive UI frameworks. 

Dashboards visualize key indicators such as vegetation health maps, disease probability zones, irrigation plans, and 

yield projections using heatmaps, time-series charts, and interactive GIS overlays. 

The application supports multi-language functionality to accommodate diverse user bases across regions. Offline 

access and low-bandwidth optimization are integrated to ensure functionality even in remote, connectivity-

constrained environments. Users can receive real-time alerts for extreme weather events or disease outbreaks via 

push notifications, SMS, or voice interfaces (for non-literate users). The platform also supports feedback mechanisms 

where farmers can report observations, helping improve model learning and responsiveness over time. 

RESULT AND DISCUSSION 

The proposed AI-driven agricultural system was evaluated through simulations and real-field data collected from 

three regions with distinct climatic conditions: semi-arid (Rajasthan, India), tropical wet (Kerala, India), and 

savannah (Ghana, Africa). The evaluation focused on five core modules: Crop Recommendation, Soil Moisture 
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Forecasting, Farm Layout Optimization, Pest/Disease Detection, and User Feedback & Usability. Below, we present 

the quantitative outcomes using industry-standard evaluation metrics, backed by visual indicators and performance 

comparisons with traditional methods. 

1. Crop Recommendation Performance 

The crop recommendation module was evaluated for four major crops (rice, maize, tomato, and millet) using 5-fold 

cross-validation across XGBoost, Random Forest, and SVM models. Accuracy, F1-score, and Mean Absolute Error 

(MAE) were the primary performance metrics. Comparison showed in table I and fig 2. 

TABLE I CROP RECOMMENDATION 

PERFORMANCE  

Crop Model 
Accuracy 

(%) 

F1-

Score 
MAE 

Rice XGBoost 93.1 0.92 0.07 

Maize 
Random 

Forest 
91.2 0.90 0.09 

Tomato SVM 87.4 0.85 0.12 
 

Fig 2: Crop recommendation accuracy model  

Observation: XGBoost showed consistently higher accuracy across most crop types due to its ability 

to handle non-linear interactions and noisy features. 

2. Soil Moisture and Irrigation Prediction 

LSTM models were trained on temporal soil sensor and weather data to predict moisture content for the next 7 days. 

The predicted values were compared with ground truth data and baseline models in table II and showed in fig 3 

(linear regression and ARIMA). 

TABLE II SOIL MOISTURE AND IRRIGATION 

PREDICTION 

Model RMSE MAE 

Water 

Saved 

(%) 

Prediction 

Horizon 

Linear 

Regression 
0.072 0.061 12.4% 3 days 

ARIMA 0.069 0.054 15.7% 5 days 

LSTM 0.043 0.031 27.3% 7 days 

 

 

Fig 3: Soil moisture prediction

Observation: LSTM outperformed traditional time-series models with a 27.3% improvement in water efficiency due 

to better understanding of seasonal patterns. 

3. Farm Layout Optimization 

This module used reinforcement learning with spatial data to suggest optimal positioning of crops, irrigation lines, 

and fencing for maximizing usable area and minimizing waterlogging. 
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TABLE III FARM LAYOUT OPTIMIZATION 

Layout 

Type 

Land 

Utilizatio

n (%) 

Irrigatio

n 

Coverag

e (%) 

Floo

d 

Risk 

(%) 

Time 

Saved in 

Set 

up 

Traditional 

Layout 
69.3 63.5 38.1 Baseline 

Manual 

GIS 

Design 

74.5 71.2 25.7 -10% 

AI-

Optimized 

Layout 

89.1 85.6 11.9 +32% 

 

Fig 4: Farm Layout Optimization mbar chart 

Observation: The AI-based layout system significantly increased efficiency in terms of spatial use 

and irrigation effectiveness, with over 30% faster design time. 

4. Pest and Disease Prediction 

Crop image datasets were used to detect early signs of fungal, bacterial, and pest-related threats. CNN and CNN-

LSTM hybrid models were benchmarked against traditional image classification models. TABLE IV and fog 5 

represents as table and bar chart.  

TABLE IV PEST AND DISEASE PREDICTION 

Model 
Accuracy 

(%) 
Precision Recall 

False 

Alarm 

Rate 

VGG16 

(Baseline) 
86.2 0.83 0.81 12.7% 

CNN 91.6 0.90 0.89 8.1% 

CNN-

LSTM 

Hybrid 

94.8 0.94 0.92 5.2% 

 

 

Fig 5: Pest and Disease Prediction 

Observation: The CNN-LSTM model provided superior accuracy, especially in sequential imagery analysis, helping 

in early-stage disease intervention. 
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5. User Usability and Farmer Adoption 

A field test was conducted with 60 farmers using the AI system via mobile applications for one crop cycle. Feedback 

was collected using a Likert scale survey. 

TABLE V USER USABILITY AND FARMER 

ADOPTION 

Parameter Positive Feedback (%) 

System Ease of Use 91% 

Trust in 

Recommendations 
89% 

Reduction in Input 

Costs 
76% 

Improvement in Yield 81% 

Willingness to Use in 

Future 
93% 

 

 

Fig 6: User Usability and Farmer Adoption Bar chart  

Observation: Strong user adoption rates suggest that the system is practical, impactful, and can be 

scaled to diverse rural settings with appropriate training and support. 

6. Comparative Analysis: AI vs Traditional Methods 

TABLE VI Comparative Analysis: AI vs Traditional 

Methods 

Metric 
Traditional 

Farming 

AI-Based 

System 

Average Yield 

Increase 
- +13.8% 

Water Use 

Reduction 
- -27.3% 

Fertilizer Use 

Optimization 
- -18.2% 

Pest 

Infestation 

Accuracy 

~50-60% 

(manual) 
94.8% 

 

 

Fig 7: Comparative Analysis: AI vs Traditional bar 

chart 

 

Summary of Results 

The AI models demonstrated impressive performance, achieving up to 94.8% accuracy in pest detection and over 

91% accuracy in crop recommendation. These advancements contributed to a notable 27% improvement in water 

efficiency and an 18% increase in resource efficiency, promoting more sustainable farming practices. Additionally, 

real-time forecasting and layout planning significantly minimized flood risks and reduced setup times. Field trials 

further confirmed the system's strong acceptance and trust among farmers, highlighting its practical benefits and 

effectiveness in real-world applications. 

Sample Code: 

def plot_categorical_distribution(column_name, data=df): 
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    fig, axes = plt.subplots(1, 2, figsize=(10, 4)) 

    # Bar Plot 

    sns.countplot(y=column_name, data=data, palette='muted', ax=axes[0]) 

    axes[0].set_title(f'Distribution of {column_name}') 

    for p in axes[0].patches: 

        axes[0].annotate(f'{int(p.get_width())}', 

                         (p.get_width(), p.get_y() + p.get_height() / 2), 

                         ha='center', va='center', xytext=(10, 0), textcoords='offset points') 

    sns.despine(left=True, bottom=True) 

    # Pie Chart 

    data[column_name].value_counts().plot.pie(autopct='%1.1f%%', 

                                              colors=sns.color_palette('muted'), 

                                              startangle=90, 

                                              explode=[0.05]*data[column_name].nunique(), 

                                              ax=axes[1]) 

    axes[1].set_title(f'Percentage Distribution of {column_name}') 

    axes[1].set_ylabel('') 

    plt.tight_layout() 

    st.pyplot(fig)  # Use Streamlit to display the plots 

# Call the function for each categorical column 

plot_categorical_distribution('Crop_Type') 

plot_categorical_distribution('Irrigation_Type') 

plot_categorical_distribution('Soil_Type') 

plot_categorical_distribution('Season') 

 

"""Insights based on the categorical distributions: 

1. **Crop Type**: 

   - **Distribution**: The dataset includes a variety of crops, with certain crops like Cotton, Carrot, and Tomato 

appearing more frequently. Other crops such as Potato and Barley are less common. 

   - **Percentage**: The distribution of crop types is fairly diverse, indicating a range of crops cultivated across 

different farms. This variety could impact resource needs and yields. 

2. **Irrigation Type**: 
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   - **Distribution**: Irrigation methods vary, with Sprinkler and Manual methods being more prevalent. Drip and 

Rain-fed methods are less common. 

   - **Percentage**: The distribution suggests that traditional methods like Manual and Sprinkler irrigation are 

dominant, potentially influencing water and fertilizer usage. 

3. **Soil Type**: 

   - **Distribution**: There is a relatively balanced representation of soil types, with Loamy and Silty soils being the 

most common, followed by Peaty, Clay, and Sandy. 

   - **Percentage**: This balance across soil types indicates a range of soil conditions that might affect crop selection 

and yield potential. 

4. **Season**: 

   - **Distribution**: The Kharif season appears to be the most common, followed by Zaid and Rabi seasons. 

   - **Percentage**: This suggests that a significant portion of farming activities takes place during the Kharif season, 

potentially due to seasonal crop cycles and climate conditions. 

""" 

# Creating bar plots for each column by 'Crop_Type' 

import streamlit as st 

import matplotlib.pyplot as plt 

import seaborn as sns 

# Define the columns to plot 

columns_to_plot = ['Farm_Area(acres)', 'Fertilizer_Used(tons)', 'Pesticide_Used(kg)', 'Water_Usage(cubic 

meters)', 'Yield(tons)'] 

# Create a single Streamlit container for all plots 

st.subheader("Bar Plots of Features by Crop Type") 

fig, axes = plt.subplots(3, 2, figsize=(16, 20)) 

for i, column in enumerate(columns_to_plot): 

    ax = axes[i // 2, i % 2]  # Determine subplot position 

    sns.barplot(data=df, x='Crop_Type', y=column, ci=None, palette='muted', ax=ax) 

    ax.set_title(f'Bar Plot of {column.replace("_", " ")} by Crop Type') 

    ax.set_xlabel('Crop Type') 

    ax.set_ylabel(column.replace('_', ' ')) 

    ax.set_xticklabels(ax.get_xticklabels(), rotation=45) 

plt.tight_layout() 

st.pyplot(fig)  # Display plots in Streamlit 

# Identifying crop types with highest and lowest values for different metrics 
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metrics_summary = { 

    "Metric": [ 

        "Highest Yield", "Lowest Yield", 

        "Highest Fertilizer Used", "Lowest Fertilizer Used", 

        "Highest Pesticide Used", "Lowest Pesticide Used", 

        "Highest Water Usage", "Lowest Water Usage", 

        "Highest Farm Area", "Lowest Farm Area" 

    ], 

    "Crop Type": [ 

        df.loc[df['Yield(tons)'].idxmax()]['Crop_Type'], df.loc[df['Yield(tons)'].idxmin()]['Crop_Type'], 

        df.loc[df['Fertilizer_Used(tons)'].idxmax()]['Crop_Type'], 

df.loc[df['Fertilizer_Used(tons)'].idxmin()]['Crop_Type'], 

        df.loc[df['Pesticide_Used(kg)'].idxmax()]['Crop_Type'], 

df.loc[df['Pesticide_Used(kg)'].idxmin()]['Crop_Type'], 

        df.loc[df['Water_Usage(cubic meters)'].idxmax()]['Crop_Type'], df.loc[df['Water_Usage(cubic 

meters)'].idxmin()]['Crop_Type'], 

        df.loc[df['Farm_Area(acres)'].idxmax()]['Crop_Type'], df.loc[df['Farm_Area(acres)'].idxmin()]['Crop_Type'] 

    ], 

    "Value": [ 

        df.loc[df['Yield(tons)'].idxmax()]['Yield(tons)'], df.loc[df['Yield(tons)'].idxmin()]['Yield(tons)'], 

        df.loc[df['Fertilizer_Used(tons)'].idxmax()]['Fertilizer_Used(tons)'], 

df.loc[df['Fertilizer_Used(tons)'].idxmin()]['Fertilizer_Used(tons)'], 

        df.loc[df['Pesticide_Used(kg)'].idxmax()]['Pesticide_Used(kg)'], 

df.loc[df['Pesticide_Used(kg)'].idxmin()]['Pesticide_Used(kg)'], 

        df.loc[df['Water_Usage(cubic meters)'].idxmax()]['Water_Usage(cubic meters)'], df.loc[df['Water_Usage(cubic 

meters)'].idxmin()]['Water_Usage(cubic meters)'], 

        df.loc[df['Farm_Area(acres)'].idxmax()]['Farm_Area(acres)'], 

df.loc[df['Farm_Area(acres)'].idxmin()]['Farm_Area(acres)'] 

    ] 

} 

# Convert dictionary to DataFrame 

metrics_df = pd.DataFrame(metrics_summary) 

# Display the summary table in Streamlit 

st.subheader("Crop Performance Metrics Summary") 
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st.dataframe(metrics_df)  # Displays the table in Streamlit 

st.markdown("""Insights based on the summary of crop metrics: 

1. **Yield Insights**: 

   - **Highest Yield**: Tomato has the highest yield at 48.02 tons, indicating its potential as a highly productive crop 

under favorable conditions. 

   - **Lowest Yield**: Maize has the lowest yield at 3.86 tons, which could suggest challenges in cultivation, lower 

productivity, or constraints due to environmental or management factors. 

2. **Fertilizer Usage**: 

   - **Highest Fertilizer Usage**: Cotton stands out with the highest fertilizer usage at 9.96 tons, suggesting a high 

nutrient demand for maximizing productivity. 

   - **Lowest Fertilizer Usage**: Interestingly, Cotton also has the lowest fertilizer usage at 0.50 tons for certain 

instances, which could reflect variability in management practices or differing needs across different fields. 

3. **Pesticide Usage**: 

   - **Highest Pesticide Usage**: Rice uses the highest amount of pesticides at 4.99 kg, which may indicate higher 

susceptibility to pests and the need for more intensive pest management. 

   - **Lowest Pesticide Usage**: Barley, on the other hand, has the lowest pesticide usage at 0.14 kg, suggesting it may 

be less prone to pest attacks or is managed with minimal chemical intervention. 

4. **Water Usage**: 

   - **Highest Water Usage**: Cotton has the highest water usage, consuming 94,754.73 cubic meters. This highlights 

the water-intensive nature of Cotton cultivation, which may have implications for irrigation and sustainability. 

   - **Lowest Water Usage**: Rice, despite being a typically water-demanding crop, shows the lowest water usage at 

5,869.75 cubic meters, potentially due to different cultivation methods, such as more water-efficient practices. 

5. **Farm Area**: 

   - **Highest Farm Area**: Rice is cultivated on the largest farm area, with 483.88 acres, indicating its importance 

or high demand in the region. 

   - **Lowest Farm Area**: Sugarcane has the smallest farm area at 12.50 acres, which could reflect niche cultivation 

or limited demand. 

The insights illustrate significant variability in resource usage, productivity, and farm area across different crop types. 

Cotton and Rice, for example, demonstrate contrasting needs and environmental demands, impacting their 

cultivation practices. Tomato's high yield makes it particularly productive, while Maize’s low yield points to potential 

areas for improvement or challenges to address. Such data is valuable for optimizing agricultural practices and 

improving crop productivity and sustainability. 

""") 

# Grouping Crop Types and their corresponding Farm IDs 

crop_farm_table = df.groupby('Crop_Type')['Farm_ID'].apply(list).reset_index() 

# Display the Crop-Type-to-Farm-ID mapping 

st.subheader("Crop Types and Corresponding Farm IDs") 



Journal of Information Systems Engineering and Management 
2025, 10(41s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 678 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

st.dataframe(crop_farm_table) 

# Checking if any farms have multiple crop types 

multiple_crops_per_farm = df.groupby('Farm_ID')['Crop_Type'].nunique().reset_index() 

multiple_crops_per_farm = multiple_crops_per_farm[multiple_crops_per_farm['Crop_Type'] > 1] 

# Display results or message if no farm has multiple crops 

st.subheader("Farms with Multiple Crop Types") 

if not multiple_crops_per_farm.empty: 

    st.dataframe(multiple_crops_per_farm) 

else: 

    st.write("No farms have multiple crop types.") 

# Plotting the pie chart for farm distribution by crop type 

st.subheader("Farm Distribution by Crop Type") 

plt.figure(figsize=(8, 8)) 

crop_type_counts = df['Crop_Type'].value_counts() 

plt.pie(crop_type_counts, labels=crop_type_counts.index, autopct='%1.1f%%', startangle=90, 

        colors=sns.color_palette('muted'), wedgeprops={'edgecolor': 'black'}) 

plt.title('Farm Distribution by Crop Type') 

# Display the pie chart in Streamlit 

st.pyplot(plt) 

"""Insights based on the analysis and visualizations: 

1. **Crop Type and Farm Association**: 

   - Each crop type is associated with a distinct set of farms, and no single farm grows multiple crop types. This setup 

may imply a **specialization in crop cultivation**, where each farm is focused on a single crop, possibly to optimize 

resources and expertise for specific crop needs. 

   - **Most Common Crops**: Certain crops like Barley, Cotton, and Tomato are associated with multiple farms, while 

others like Maize have fewer farms. This distribution could reflect the popularity or economic value of these crops in 

the dataset's region. 

2. **Farm Distribution by Crop Type (Pie Chart)**: 

   - The pie chart provides a visual distribution of farms across crop types. We can see that the **largest segments** 

represent crops with a broader farm base, such as Cotton and Barley. In contrast, **smaller segments** correspond 

to crops like Maize and Potato, indicating fewer farms cultivate these crops. 

   - This distribution can help identify **crop popularity and farming focus** within the dataset, potentially indicating 

the region’s agricultural strengths or specific crop demands. 

3. **Specialization of Farms**: 
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   - Since no farm grows multiple crop types, each farm’s focus on a single crop type could reflect specialized farming 

practices or crop rotations that don’t overlap within the same season. This setup might also be due to factors like soil 

suitability, water availability, or climate requirements specific to each crop. 

""" 

# Calculate total farm area per crop type 

total_area_per_crop = df.groupby('Crop_Type')['Farm_Area(acres)'].sum().reset_index() 

# Display the total area per crop type 

st.subheader("Total Farm Area by Crop Type") 

st.dataframe(total_area_per_crop) 

# Plotting the pie chart 

st.subheader("Farm Area Distribution by Crop Type") 

plt.figure(figsize=(8, 8)) 

total_area_values = total_area_per_crop.set_index('Crop_Type')['Farm_Area(acres)'] 

plt.pie(total_area_values, labels=total_area_values.index, autopct='%1.1f%%', startangle=90, 

        colors=sns.color_palette('muted'), wedgeprops={'edgecolor': 'black'}) 

plt.title('Farm Area Distribution by Crop Type') 

# Display the pie chart in Streamlit 

st.pyplot(plt) 

1. **Largest Farm Areas**: 

   - **Cotton** (1,993.80 acres), **Rice** (1,845.24 acres), and **Barley** (1,671.22 acres) occupy the largest total 

farm areas. This suggests that these crops may be highly prioritized or economically significant within the dataset’s 

region. 

2. **Moderate Farm Areas**: 

   - **Tomato** (1,655.02 acres), **Sugarcane** (1,187.99 acres), and **Soybean** (1,050.68 acres) have substantial 

but moderate land allocation. These crops still represent a significant part of the agricultural landscape, albeit not as 

prominent as Cotton and Rice. 

3. **Smaller Farm Areas**: 

   - **Carrot** (765.90 acres), **Wheat** (872.57 acres), **Maize** (978.53 acres), and **Potato** (727.24 acres) 

have the smallest total areas. These crops may either be less in demand or require less land due to specific cultivation 

practices. 

### Overall Observations: 

- The distribution of farm area across crop types highlights the emphasis on certain staple crops like Cotton, Rice, 

and Barley, which are given more land, possibly for economic or agricultural reasons. 

- The pie chart visually convey the land allocation, with larger crops clearly standing out, offering a quick visual 

reference for priority crops in terms of land use. 

""" 
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# Identifying the crop types and their corresponding soil types 

crop_soil_table = df.groupby('Crop_Type')['Soil_Type'].unique().reset_index() 

# Display the crop-soil mapping as a dataframe 

st.subheader("Crop Types and Their Soil Preferences") 

st.dataframe(crop_soil_table) 

# Plot pie charts for each crop type to show soil distribution 

st.subheader("Soil Type Distribution for Each Crop Type") 

unique_crops = df['Crop_Type'].unique() 

for crop in unique_crops: 

    soil_distribution = df[df['Crop_Type'] == crop]['Soil_Type'].value_counts() 

    # Create a figure for each crop 

    fig, ax = plt.subplots(figsize=(6, 6)) 

    ax.pie(soil_distribution, labels=soil_distribution.index, autopct='%1.1f%%', startangle=90, 

           colors=sns.color_palette('pastel'), wedgeprops={'edgecolor': 'black'}) 

    ax.set_title(f'{crop} - Soil Type Distribution') 

    # Display each pie chart in Streamlit 

    st.pyplot(fig) 

Discussion 

The results of this study demonstrate the significant potential of integrating AI technologies into climate-resilient 

agriculture. The high accuracy of crop recommendations and pest predictions indicates that machine learning 

models, particularly XGBoost and LSTM-CNN hybrids, can effectively interpret complex agro-environmental data to 

support informed decision-making. The reduction in water usage and flood risk, along with improvements in spatial 

layout efficiency, highlights the strength of AI in optimizing resource management and farm design. Furthermore, 

positive farmer feedback confirms the system’s usability and real-world applicability. These outcomes underscore 

how data-driven agriculture not only enhances yield and sustainability but also equips farmers with adaptive tools to 

tackle unpredictable climate challenges. 

CONCLUSION 

This study presents a comprehensive AI-driven framework for enhancing climate resilience in agriculture through 

intelligent crop selection, adaptive farm layouts, and real-time decision support. The system’s strong performance 

across multiple metrics demonstrates its effectiveness in addressing key challenges such as water scarcity, pest 

outbreaks, and land optimization. By leveraging machine learning and geospatial technologies, the proposed solution 

empowers farmers to make data-informed decisions that enhance productivity and sustainability. In the future, the 

system can be expanded to incorporate blockchain for secure data sharing, drone integration for high-resolution 

monitoring, and federated learning for decentralized model training across diverse agro-climatic regions, further 

boosting precision agriculture and resilience on a global scale. 
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