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Smart irrigation scheduling is vital to tackle water scarcity and improve agricultural 

productivity, particularly in Rwanda's East Province, where the climate is predominantly 

sunny. Farmers in the Lake Cyohoha Sud region, frequently encounter irrigation challenges 

caused by the critical need for efficient water management. This study presents a 

microservices-based Internet of Things (IoT) and Machine Learning (ML) system for 

scheduling drip irrigation, a water-efficient technique ideal for the region’s conditions. 

Microservices are utilized instead of the monolithic paradigm due to their scalability, 

modularity, and ability to handle the dynamic and distributed workloads of IoT and ML. Each 

microservice independently manages IoT data acquisition, ML processing, and web application 

integration, ensuring fault tolerance and efficient resource allocation. The system employs IoT 

devices to monitor soil moisture, weather conditions, and crop growth in real-time, while ML 

models process the data to optimize irrigation schedules. Key dataset features include soil 

moisture, temperature, humidity, rainfall, crop type, and growth stage, with an estimated 

dataset size of 50,000 records collected over two growing seasons. Among the analysis ML 

models tested, Random Forest (RF) demonstrated superior performance with an R² of 92%, 

RMSE of 0.15, and accuracy of 93%, surpassing Support Vector Machines (SVM) and 

Convolutional Neural Networks (CNN). Evaluation metrics such as R², RMSE, precision, and 

recall validate the system's performance. At the same time, drip irrigation significantly 

enhances water usage efficiency and crop yields, demonstrating its practical impact on 

sustainable agriculture in Rwanda. 

Keywords: Drip Irrigation, IoT, Machine Learning, Machine Learning, Random Forest 

 

INTRODUCTION 

Human existence heavily relies on agriculture worldwide, playing a crucial role in economic growth and ensuring 

food security [1]. In Rwanda, agriculture has been the backbone of the economy for many years, and it has added 

significantly to the nation's gross domestic product (GDP), providing raw materials for the local industries and, as a 

result, employing the population. Over the past 15 years, Rwanda's agriculture industry has grown at an average of 

5% annually, while the nation's GDP per capita increased from US$ 441 in 2007 to US$ 1,004 in 2022 [2]. 

However, the sector continues to face significant challenges, including water scarcity, unpredictable weather 

patterns, and inefficient resource utilization. The integration of Internet of Things (IoT) technologies and 
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microservices architecture, particularly in smart irrigation systems, has played a crucial role in addressing these 

challenges and enhancing agricultural efficiency [3,4]. 

Irrigation is the agricultural practice of supplying water to crops to support growth. In most parts of Rwanda, 

farmers still rely on traditional irrigation methods, which are labor-intensive and inefficient in optimizing water 

usage [5]. Where there is automation, it is semi-automated methods that lack precision on water scheduling and 

especially real-time adaptability.  The use of IoT on one hand in this research is to leverage sensors and actuators to 

monitor soil conditions such as soil moisture, temperature, and environment humidity to automate water delivery 

based on real-time data. 

Microservice, on the other hand, is used as the backend of an irrigation system that makes a scalable irrigation 

service. This architecture is used for its ability to decentralize functionality into small, independent services, each 

service in this architecture performs a specific task. The services in this research such as sensor data collection, and 

analysis, can be scaled horizontally by adding or removing services without affecting overall functionality. For 

instance, any additional sensor nodes or irrigation zones can be integrated easily, ensuring that the system grows 

according to the needs of the farmer. This service also will communicate with a well-defined interface. The use of 

microservice architecture differs from every used monolithic architecture, which tends to become unmanaged and 

difficult to manage as system scale or complexity increases [6].  

Although IoT systems are widely applied in irrigation, their design still faces various challenges. While previous 

efforts have addressed some of these issues, further solutions are required. These include developing cost-effective 

hardware for irrigation systems [7,8] and ensuring robust communication between sensors and central systems is 

also crucial, especially in areas with limited network connectivity [9]. Additionally, implementing measures to 

uphold data integrity and ensure consistent system functionality remains a priority [10]. 

This study proposes a novel framework that integrates machine learning, real-time data acquisition, and automated 

irrigation scheduling to address key challenges in traditional irrigation systems. Utilizing microservices-based 

architecture offers enhanced scalability, flexibility, and efficiency, making it adaptable to farms of varying sizes and 

resource constraints. The system leverages sensor data to optimize water usage through machine learning analytics 

and cloud-based storage, ensuring robust performance even in areas with limited connectivity. This approach 

improves operational efficiency, and enhances decision-making, providing farmers with a powerful tool for 

sustainable agricultural management. The proposed solution represents a significant advancement in addressing 

irrigation inefficiencies and has the potential to be scaled for diverse agricultural applications, contributing to the 

broader goals of sustainable agriculture and food security. 

The remainder of this paper is organized as follows: Section II presents a comprehensive review of related work, 

identifying existing gaps and research opportunities. Section III introduces the system framework, detailing the 

design and development of the hardware and software components, with a focus on scalability, sustainability, and 

resource optimization. Section IV reports the experimental results and performance evaluations of the proposed 

system. Finally, Section V concludes the paper by summarizing the findings and outlining potential directions for 

future research. 

RELATED WORKS 

IoT-enabled smart irrigation systems emerged as a transformative technology in agriculture, allowing farmers to 

optimize water usage while ensuring crops receive adequate hydration. These systems typically integrate IoT-

enabled controllers and actuators to manage irrigation schedules based on environmental and soil conditions 

[11,12]. The IoT sensors continuously gather real-time data on soil moisture, temperature, humidity, and other 

environmental factors, thus enabling precise, data-driven irrigation decisions [13].   

Different research focuses on the high water-saving potential of IoT-based smart irrigation systems; for instance 

[14], and [15] have extensively documented the water-saving potential of IoT-based smart irrigation systems, 

estimating that these systems can reduce water usage by up to 30% compared to traditional methods, helping 

address scarcity concerns in agricultural regions. Their smart systems reduce labor, conserve resources, and 

improve crop yields by automating irrigation. However, other studies note that the sensor maintenance costs and 
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data integration challenges can be significant barriers, particularly in remote areas where stable power supplies and 

connectivity are limite6 [15, 17, 18]. These limitations drive a growing focus on developing affordable, durable, and 

power-efficient sensor technologies capable of leveraging renewable energy sources.  

Some approaches emphasize integrating renewable energy sources, such as solar power, into IoT-based smart 

agriculture systems [19]. Integrating renewable energy sources, such as solar power, into IoT-based irrigation 

systems reduces reliance on traditional power sources and enhances their sustainability, particularly in remote, off-

grid regions with limited power and connectivity [20]. Research also emphasizes the importance of low-cost, 

energy-efficient sensors to minimize maintenance expenses while ensuring consistent data collection for precision 

irrigation [21].  

While many implementations prioritize real-time monitoring to automate water distribution, thereby reducing 

manual intervention and water wastage [22, 23, 24] the focus often remains on advancing sensor capabilities rather 

than addressing practical challenges in scaling and deploying these systems across diverse agricultural landscapes. 

Some common issues include high deployment costs, which hinder accessibility for smallholder farmers, and 

limited scalability and adaptability to different crop types or soil conditions since most implementations are 

designed for specific agricultural contexts, as highlighted in [23, 25].  

To overcome the challenges, different research adopted the use of ML techniques since it is noted that it can 

enhance IoT-enabled smart irrigation systems by optimizing resource allocation, reducing deployment costs, and 

improving scalability across diverse agricultural contexts [26]. It enables adaptable irrigation models through data-

driven insights and transfer learning, while anomaly detection and energy optimization algorithms minimize sensor 

maintenance and power usage. ML-driven data fusion ensures robust decision-making by integrating diverse 

sensor inputs, and predictive analytics enhances real-time irrigation adjustments [27,28]. Cost-effective sensor 

placement and personalized models tailored to local conditions further reduce barriers for smallholder farmers. 

These advancements make smart irrigation systems more accessible, efficient, and sustainable [29].  

The development of IoT-based and ML-driven smart irrigation systems has progressed significantly in recent years, 

addressing various challenges in agriculture. Early systems like the one introduced by Kumar et al. [30] laid the 

foundation by leveraging regression algorithms to monitor and control irrigation based on environmental 

parameters such as temperature, soil moisture, and rainfall. While effective in basic automation, the system lacked 

advanced predictive capabilities, limiting its scalability across diverse agricultural contexts, and the performance 

details were not mentioned. 

Perea et al. [31] employed decision tree models to emulate farmer decision-making for one-day-ahead irrigation 

predictions, focusing on crops such as tomato, maize, and rice. This approach introduced the concept of predictive 

analytics in irrigation but was constrained by the limited scope of its predictions. Goap et al. [32] further advanced 

IoT-based systems by incorporating ML models like Support Vector Regression (SVR) and k-means clustering to 

compute irrigation schedules. These systems primarily targeted garden crops and achieved moderate accuracy (R-

value = 0.56). 

The integration of deep-learning models marked a significant leap in irrigation management. Kashyap et al. [33] 

demonstrated the utility of Long Short-Term Memory (LSTM) networks to predict soil moisture and optimize 

irrigation scheduling. Their approach achieved substantial water savings of up to 43% compared to traditional 

methods, highlighting the potential of deep learning in addressing climate unpredictability. Similarly, Adeyemi et 

al. [34] applied dynamic neural networks to predict soil moisture for different soil types, achieving water savings of 

20-46% across sites. These efforts emphasized site-specific adaptation and resource efficiency. 

Advanced reinforcement learning (RL) approaches also enhanced decision-making in irrigation systems. Sun et al. 

[35] developed an RL-based system for maize and wheat that utilized neural networks and Q-learning to optimize 

irrigation schedules, achieving net return improvements of up to 59.8%. Similarly, Chen et al. [36] employed Deep 

Q-Networks (DQN) to reduce water usage and drainage in rice fields, demonstrating RL's capability to integrate 

environmental factors like rainfall forecasts into irrigation strategies. Ensemble learning techniques were proposed 

by Chen et al. [37], by combining multiple models (e.g., SVR, RF, and DT) to predict irrigation needs for vegetables, 

providing robust predictions tailored to specific crop requirements. In [38] Jimenez et al., utilized LSTM networks 
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for short-term irrigation predictions with high accuracy (R² = 0.82–0.98), further refining real-time decision-

making capabilities. 

Similarly, Yang et al. [39] and Alibabaei et al. [40] introduced deep reinforcement learning (DRL) systems that 

integrated AquaCrop simulations and site-specific data for multi-crop irrigation optimization. These models not 

only achieved the highest economic returns but also reduced water usage by 20-30%, exemplifying the convergence 

of precision agriculture and advanced AI techniques.  

The integration of IoT and ML in the microservices paradigm presents a transformative approach for smart 

irrigation systems. A microservices-based architecture was employed to collect data from IoT sensors deployed in 

agricultural fields, processing the data to predict irrigation requirements [41]. Each microservice handles specific 

tasks such as data aggregation, weather forecasting, and soil moisture prediction, with ML models running on each 

microservice for efficient irrigation control. This approach resulted in enhanced scalability, enabling the system to 

adapt to large-scale irrigation needs. However, one of the main drawbacks identified was the complexity of 

managing and synchronizing data across multiple microservices. Frequent communication between services can 

lead to increased network latency, affecting the timeliness of irrigation decisions and reducing the overall system 

efficiency, especially during peak irrigation seasons. 

Additionally, the microservices architecture allows for easier model updates and improvements, which is crucial for 

maintaining the accuracy of ML predictions. However, as demonstrated by Pereira et al. in [42], ensuring that ML 

models perform consistently across different microservices remains a challenge. In their proposed system, each 

microservice deployed an individual model for tasks like soil moisture estimation and evapotranspiration 

prediction. While the modularity and flexibility of the microservices improved system resilience and fault tolerance, 

the need for constant retraining of models on the distributed system was a key issue. Furthermore, the performance 

of the models degraded in real-time conditions due to issues with data consistency and the risk of model drift when 

new sensor data was integrated into the system. This caused suboptimal irrigation decisions, particularly when 

faced with highly variable weather conditions. Moreover, the system's high operational costs, due to continuous 

monitoring and retraining of models across distributed nodes, posed another challenge for large-scale adoption in 

agricultural settings. 

This article presents a microservices-based IoT and ML system for optimizing drip irrigation scheduling. The 

system adopts a distributed architecture, with each microservice managing specific tasks such as IoT data 

acquisition, ML processing, and web integration. IoT devices monitor key agricultural parameters like soil 

moisture, weather, and crop growth in real-time, while dedicated ML models adjust irrigation schedules based on 

the collected data. This modular approach enables scalability, fault tolerance, and real-time adaptive scheduling; 

ensuring crops receive optimal moisture levels based on current conditions. The system’s flexibility allows for 

independent scaling and continuous updates to ML models, enhancing responsiveness to environmental changes. 

Our approach also addresses common challenges in smart irrigation, such as data integration from diverse devices 

and resource optimization. The microservices architecture ensures efficient management of IoT data and accurate 

decision-making. By enabling real-time adjustments and the continuous retraining of ML models, the system 

minimizes the risk of over- or under-watering and adapts to changing conditions. This cost-effective and 

sustainable solution improves irrigation efficiency, promoting precise water usage and supporting sustainable 

agricultural practices 

METHODOLOGY 

 3.1 Site of Research Implementation.  

Bugesera, a region in Rwanda, faces significant agricultural challenges due to its semi-arid climate and 

unpredictable rainfall patterns, making it highly susceptible to water scarcity and agricultural inefficiencies [43]. 

Within this context, the Cyohoha Sud wetland plays a critical role as a key water source for local agricultural 

communities. However, its full potential remains untapped due to outdated and inefficient irrigation methods. 

Additionally, with the global temperature rising by approximately 1.2°C since pre-industrial times, the growing 

frequency of droughts and heatwaves has intensified the need for sustainable water management solutions in the 
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region [44]. In this scenario, drip irrigation presents a promising solution. By reducing water loss and delivering 

water precisely to crops, drip irrigation enhances agricultural productivity and optimizes water usage, making it a 

vital tool for improving water conservation and crop growth in Bugesera [45]. 

Figure 2 illustrates the precise location of the site, emphasizing its proximity to Lake Cyohoha Sud. The map 

highlights key geographical features and shows how the site is positioned relative to the wetland, showcasing the 

interconnectedness of the area’s water resources and its potential for agricultural development. 

 

Figure 1: Location of the study's site. 

3.2. Proposed Framework Architecture. 

This research focuses on developing IoT tools for data gathering and scheduling irrigation. After an in-depth review 

of the chosen works, smart irrigation systems can be generally defined as integrating sensors, IoT technologies, and 

advanced algorithms. These systems gather environmental and soil data using sensors, transmit the data via IoT 

networks, and process it through machine learning models, such as SVM, RF, and CNN, to forecast agrotechnical 

indicators. These indicators inform whether irrigation is required and determine the precise water volume 

necessary for optimal crop growth. 

 

Figure 2: Generic Smart Irrigation System Schema 

A smart irrigation system is shown in Figure. 3 (The physical layer captures field data and performs actions while 

processing and storing components supporting the processing and dataset layers. The decision layer functions as 

the execution interface.) consists of multiple interconnected layers, each playing a crucial role in optimizing water 

usage. The physical layer integrates sensors, actuators, and storage units connected through a communication 

network to monitor soil conditions and manage water distribution efficiently. The processing layer applies to 

machine learning algorithms to analyze environmental factors, crop requirements, and past irrigation patterns, 

ensuring data-driven decision-making. Additionally, the datasets and data sources layer incorporate both local and 

remote historical data to refine model accuracy and enhance system performance. 
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At the top, the presentation/decision layer translates analyzed data into actionable insights, guiding users through 

expert-defined rules and predictive models to automate irrigation schedules. This structured framework highlights 

the seamless integration of IoT technologies and advanced machine learning techniques, enabling precise, adaptive, 

and resource-efficient irrigation strategies.  

By leveraging real-time data and predictive analytics, smart irrigation systems contribute to sustainable agricultural 

practices while minimizing water waste. A smart irrigation system mimics a human expert by aiding farmers in 

optimizing irrigation decisions. If the learning process is based on reliable, representative data for the specific field 

and crops, decisions can directly rely on the processing layer's outcomes. Thresholding operations, using stored 

values for parameters like soil moisture, or categorical classifications (e.g., irrigation needed yes/no) are often 

sufficient for decision-making. However, when training data does not perfectly match actual field conditions, an 

additional decision layer is required. This layer combines numerical outputs from the processing layer with models 

of agricultural processes (e.g., evapotranspiration, plant growth) and other relevant information to ensure optimal, 

field-specific irrigation decisions. 

 

Figure 3: Proposed Irrigation Framework 

Figure 4 illustrates the detailed architecture of the proposed framework utilized in this study. In the field, solar-

powered sensor nodes are deployed, incorporating activation mechanisms that dynamically respond to water 

shortages, as detected by the microcontroller. The collected data are transmitted to the cloud in real-time using the 

publish-subscribe paradigm, governed by the MQTT broker, wherein each sensor functions as a data-producing 

topic [46]. A gateway is responsible for aggregating the sensor data before forwarding it to the cloud for further 

processing and analysis.  

The cloud infrastructure is designed following a microservices architecture, ensuring modularity and scalability. 

Business logic components interact with a deployed ML model, which informs decision-making processes for other 

integrated services [47]. To maintain computational efficiency, all processing operations are managed by a 

dedicated load balancer, preventing system bottlenecks and ensuring consistent data handling. The ML model 

continuously references historical data repositories for pre-training and adaptive learning.  

Additionally, raw sensor data are persistently stored in a database to facilitate retrospective analysis. Once a 

decision is generated, it is archived for future accessibility via a web-based dashboard, enhancing real-time 

monitoring and data-driven decision-making. 

3.3. Data Preprocessing. 

The dataset used in this study contains 50,000 records collected over two growing seasons, capturing six key 

features: soil moisture, temperature, humidity, rainfall, crop type, and growth stage. The target variable, 
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irrigation_time, represents the optimal duration required for drip irrigation. To ensure data quality, preprocessing 

steps were meticulously undertaken. Numerical features were standardized using StandardScaler to normalize their 

range and improve the convergence of machine learning models, while categorical features such as crop type and 

growth stage were transformed into machine-readable formats through OneHotEncoder. OneHotEncoder.  

Data curing techniques address missing values by inputting numerical data with column means and categorical 

data with the most frequent category. Outliers were detected and treated using interquartile range (IQR) analysis, 

and duplicate entries were removed to maintain dataset integrity. This comprehensive preprocessing ensured the 

dataset was robust, clean, and suitable for modeling. 

A robust 5-fold cross-validation strategy was employed to evaluate the performance of the machine learning 

models, including Random Forest (RF), Support Vector Machines (SVM), and Convolutional Neural Networks 

(CNN). This approach divided the dataset into five subsets, with each subset serving as a validation set while the 

remaining subsets formed the training set. By rotating the validation set across all subsets, this method minimized 

overfitting and provided an unbiased assessment of model performance. Metrics such as Root Mean Squared Error 

(RMSE) and R-squared (R²) were averaged across the folds to ensure the evaluation reflected varied data 

distributions. This systematic validation methodology was crucial for determining the reliability and 

generalizability of the proposed models for smart irrigation scheduling in Rwanda’s Cyohoha Sud region. 

 

Figure 4: Correlation Analysis of Sensors Data. 

 Figure 5 presents a correlation analysis of the sensor data collected from the IoT-based irrigation scheduling 

system. The analysis reveals significant interdependencies among key environmental parameters, including soil 

moisture, temperature, humidity, and solar radiation. High positive correlations are observed between soil 

moisture and humidity levels, indicating that increased humidity often accompanies higher soil moisture retention. 

Conversely, a strong negative correlation is noted between temperature and soil moisture, highlighting the impact 

of rising temperatures on water evaporation and soil dryness. These insights are critical for optimizing ML models 

that predict irrigation needs by leveraging real-time sensor data. 

Furthermore, the correlation matrix aids in feature selection for ML algorithms, ensuring that redundant or less 

influential variables are minimized to improve model efficiency. For instance, if soil moisture and humidity exhibit 

a near-linear relationship, the ML model may prioritize one variable to reduce computational complexity without 

compromising prediction accuracy. Additionally, the correlation patterns can be used to fine-tune irrigation 

scheduling algorithms, ensuring water is applied precisely when and where it is needed. This data-driven approach, 

powered by IoT and ML integration, enhances water conservation, reduces operational costs, and improves overall 

agricultural productivity. 

3.4. Modelling Design. 

The modeling architecture for this study integrates machine learning algorithms—Random Forest (RF), Support 

Vector Machines (SVM), and Convolutional Neural Networks (CNN)—to predict the optimal irrigation time for drip 

irrigation systems. The dataset, comprising 50,000 records with features like soil moisture, temperature, humidity, 
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rainfall, crop type, and growth stage, underwent rigorous preprocessing to ensure data quality. Numerical features 

were standardized using StandardScaler, while categorical features were encoded with OneHotEncoder, and 

missing values were addressed through mean imputation for numerical data and mode substitution for categorical 

data.  

Outliers were treated via interquartile range (IQR) analysis, and duplicates were removed to enhance dataset 

integrity. The models were trained and evaluated using a robust 5-fold cross-validation strategy, which minimized 

overfitting by rotating validation sets and provided an unbiased performance assessment. Key evaluation metrics, 

including Root Mean Squared Error (RMSE) and R-squared (R²), were averaged across folds to ensure 

generalizability. This architecture combines diverse algorithms and systematic validation to accurately model 

irrigation needs, supporting efficient water management in Rwanda’s Cyohoha Sud region. 

3.5. Deployment Architecture. 

The deployment of an IoT-based irrigation scheduling system necessitates robust and scalable architecture to 

ensure efficient water resource management. Figure 5 illustrates an architectural-based deployment design with a 

microservices perspective, focusing on real-time sensor data acquisition, cloud-based decision-making, and field-

level actuation. The system is implemented in a 40m × 20m agricultural field, subdivided into 20m × 20m plots, 

with each plot containing three sensor nodes. These nodes continuously monitor soil moisture, temperature, and 

climate variability, transmitting data to an embedded controller. The controller, equipped with a solenoid valve, 

autonomously regulates irrigation by responding to predefined soil moisture thresholds. The solenoid valve 

interacts with the main valve, which is connected to a 4,000-liter water reservoir sourced from Lake Cyohoha 

through a supply pipeline. Each field section is irrigated using drip pipes, ensuring precise water delivery based on 

sensor feedback and machine learning (ML)-driven predictions. 

At the cloud level, the system employs microservices-based architecture to handle data ingestion, processing, and 

decision-making. The microcontroller gateway transmits data using the MQTT protocol over a GPRS network, 

ensuring real-time communication with the cloud. Each sensor node operates as a publisher, relaying 

environmental parameters to a topic-specific message queue. The cloud platform processes these messages 

independently via microservices, where each service is responsible for data persistence, predictive analytics, and 

dashboard visualization. A load balancer optimizes resource distribution, enhancing scalability and fault tolerance.  

 

Figure 5: Architectural_Based Deployment Design with microservices perspectives - Field Set-Up 

 

The ML model, deployed in the cloud, integrates real-time sensor data with weather API inputs to refine irrigation 

scheduling decisions. This intelligent automation ensures that irrigation is dynamically adjusted to environmental 
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conditions, thereby optimizing water use, enhancing crop yield, and minimizing human intervention [48, 49, and 

50]. 

RESULT AND DISCUSSION 

This section presents the performance evaluation of machine learning models applied to IoT-driven irrigation 

scheduling, with a focus on learning curves depicted in Figure 6. 

 

(A)                                          (B)                                                       (C) 

Figure 6: Learning Curves 

The dataset, comprising 50,000 records collected over two growing seasons, includes key environmental and 

agronomic parameters such as soil moisture, temperature, humidity, rainfall, crop type, and growth stage. Among 

the tested models, RF demonstrated superior predictive accuracy, outperforming SVM) and CNN. The learning 

curves illustrate how these models adapt to increasing training data, providing insights into their generalization 

ability, convergence behavior, and overall effectiveness in real-time irrigation decision-making. Evaluation metrics, 

including R², RMSE, precision, and recall, further validate the system's performance and its impact on optimizing 

water resource utilization in precision agriculture. 

Figure 6 illustrates the learning curves of the RF and SVM models in predicting optimal irrigation scheduling. RF 

achieved an R² of 92%, RMSE of 0.15, and an accuracy of 93%, indicating robust performance. This success is 

attributed to RF's ensemble learning approach, which aggregates multiple decision trees to reduce variance and 

mitigate overfitting. Conversely, SVM exhibited slower convergence, with higher RMSE and lower R² values, 

reflecting its sensitivity to high-dimensional, nonlinear data distributions. These findings align with recent studies, 

such as the one by Jha et al. [51], which reported that RF outperformed SVM in predicting soil moisture content for 

irrigation purposes. 

 

(A) (B) 

A notable observation in Figure 6 is the stability of RF’s learning curve as the training data increases.  

The model achieves optimal generalization with relatively fewer samples, indicating strong feature representation 

and robustness against noise. In contrast, SVM initially struggles with high variance, requiring extensive training 
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data to reach its peak performance. This behavior is consistent with findings by Zhang et al. [52], who noted that 

SVM models demand careful hyper parameter tuning to balance the trade-off between bias and variance in 

agricultural applications. Despite its theoretical capability to handle nonlinear relationships, SVM's performance 

declines due to the computational complexity of large-scale agricultural datasets, making RF a more scalable 

alternative for real-time irrigation scheduling. 

The evaluation metrics, including RMSE, precision, and recall, further validate the model’s reliability.  

RF's lower RMSE of 0.15 suggests minimal prediction error, directly influencing improved irrigation control 

decisions. Moreover, the integration of RF with IoT-enabled drip irrigation enhances water-use efficiency and crop 

yields, reinforcing its practical relevance in sustainable agriculture. The results demonstrate that RF’s adaptive 

learning mechanism, combined with cloud-based decision-making, offers a robust solution for precision irrigation 

in Rwanda, ensuring optimal resource utilization and improved agronomic outcomes. 

The deployment of the Random Forest (RF) model to the cloud platform enables real-time monitoring and 

decision-making in IoT-driven irrigation scheduling. The web-based dashboard provides an interactive 

visualization of sensor data, facilitating precise irrigation management. 

 

(A) (B) 

Figure 8(a) illustrates the ability to filter and analyze individual sensor readings, capturing essential environmental 

parameters such as soil temperature, soil humidity, air temperature, and air humidity. This granular level of data 

accessibility enhances the interpretability of soil and climate conditions, allowing for targeted irrigation 

adjustments. Furthermore, the dashboard integrates predictive analytics by displaying the estimated water volume 

required for optimal irrigation based on real-time sensor inputs and historical patterns. The integration of RF with 

IoT infrastructure ensures adaptive learning, improving water-use efficiency and crop yield sustainability In 

contrast, Figure 8(b) focuses on temporal trends in sensor readings without predictive modeling, providing a 

fundamental yet critical visualization of environmental fluctuations.  

This visualization aids in understanding long-term variations in soil and atmospheric conditions, which is essential 

for assessing climate impact on irrigation needs. Unlike the predictive model in Figure 8(a), which enhances 

proactive irrigation control, Figure 8(b) primarily supports retrospective analysis and trend identification. The 

ability to visualize raw sensor data in real-time ensures transparency in irrigation decision-making while also 

serving as a basis for continuous model improvement. Recent studies highlight the importance of integrating cloud-

based ML models with real-time visualization tools to enhance decision support in smart agriculture [54]. By 

leveraging these capabilities, the proposed system ensures a scalable and efficient irrigation strategy tailored to 

dynamic environmental conditions. 

DISCUSSION 

This study demonstrates the effectiveness of a microservices-based IoT-ML system in optimizing drip irrigation, 

particularly in Rwanda’s water-scarce regions. The system’s cloud-based deployment, coupled with real-time sensor 
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data acquisition and ML-driven decision-making, significantly enhances water-use efficiency and crop yield. RF 

emerges as the most suitable model, exhibiting high accuracy and stability in predicting optimal irrigation 

schedules. Additionally, the integration of RF with IoT-enabled infrastructure ensures adaptive learning, allowing 

for dynamic responses to environmental changes. The web-based dashboard further enhances usability by 

providing interactive, real-time visualization of sensor data and predictive irrigation recommendations. 

Future research should explore hybrid deep learning models, such as LSTMs, for improved time-series predictions. 

Integrating edge computing with federated learning can enhance real-time decision-making while ensuring data 

privacy. Further large-scale field trials across diverse agro-climatic regions will help validate the system’s scalability 

and long-term impact on sustainable agriculture. 
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