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Optimal resource provisioning remains a core problem in cloud computing, 

particularly in dynamic and heterogeneous environments. Traditional 

provisioning techniques are not very agile in adapting to varied workloads and 

user demands in real-time, resulting in inefficient underutilization or 

overprovisioning of resources. In this paper, a hybrid deep learning-enabled 

method to enhance cloud resource provisioning using predictive modeling and 

discerning decision-making is presented. The architecture blends Convolutional 

Neural Networks (CNNs), Gated Recurrent Unit (GRU), and Long Short-Term 

Memory (LSTM) networks to learn effectively spatial and temporal connections 

in historical workload and resource usage data. High-level spatial features are 

learned from multi-dimensional input matrices using CNNs. In contrast, 

temporal dynamics and long-term dependencies are learned using GRU and 

LSTM units, enabling better prediction of future resource demands. 

Experimental comparisons on standard cloud simulation data sets show that the 

proposed hybrid model significantly outperforms traditional deep learning and 

rule-based policy allocation policies in terms of allocation accuracy, task 

completion time, and system throughout. The findings highlight the potential of 

advanced deep learning models to enhance resource allocation optimization, 

reduce running costs, and ensure enhanced service quality in real-time cloud 

computing. 

Keywords: Cloud computing, Deep learning, Resource allocation, 

virtualization 

Introduction  

Cloud computing has emerged as the dominating model for computing services delivery over the 

internet. It provides end-users with on-demand access to scalable, elastic computing resources, 

enabling companies to execute applications without the need for significant investments in 

hardware. The growing use of cloud services across industries—spanning from healthcare and 

education to finance and e-commerce—has placed overwhelming pressure on cloud service 

providers to utilize resources to the best possible extent while providing high performance, 

reliability, and affordability [1]. 

 

One of the biggest challenges of cloud computing is the allocation of resources, i.e., allocating 

virtualized computing resources (CPU, memory, storage, bandwidth) to contending tasks and 

users in an optimum manner. In real-world setups, cloud setups are dominated by extremely 

dynamic and unpredictable workloads, where demands from users may fluctuate rapidly over 

small intervals of time. In such settings, traditional resource allocation techniques, which are 

usually rule-based or threshold-based policies, are not adequate. These are not adaptive and are 

slow to respond to sudden fluctuations in demand, resulting in resource utilization, 

overprovisioning, latency in services, and increased operational expenses [1,2 and 6]. 
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In recent years, DL approaches have emerged as promising intelligent cloud resource management 

solutions. Though ML models can learn from historical data and make informed decisions, they 

perform poorly with high-dimensional, non-linear, and temporally correlated data. However, DL 

is more favorable for learning complex representations and relationships from large datasets and 

is thus favorable for managing dynamic resources in cloud infrastructure [3, 4, and 7]. 

 

This work proposes a novel hybrid deep learning-based method that enhances cloud resource 

allocation through predicting workload demands and real-time allocation based on historical 

usage patterns. The proposed hybrid model leverages Convolutional Neural Networks (CNNs), 

Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM) networks to benefit from 

their complementary strengths. They form a hybrid neural architecture that can carry out accurate 

time-series predictions and provide real-time decision-making support for resource provisioning. 

The research presents three primary contributions: 

 

❖ Creation of more resilient, adaptive, and cost-effective cloud infrastructures that can 

handle growing and fluctuating workloads of modern applications using deep learning-

based framework  

 

❖ Building a hybrid deep learning model that integrates CNN, GRU, and LSTM models for 

on-the-fly cloud resource allocation. 

 

❖ The proposed model's performance is analyzed on actual benchmark cloud workload 

traces to determine its effectiveness compared to traditional and machine learning-based 

methods. 

 

❖ Measurement of performance parameters such as resource utilization, task response 

time, service level agreement (SLA) compliance, and system throughput to determine the 

method's real-world implications. 

 

The remainder of the paper is structured as follows. Preliminaries are elaborated upon in Section 

2. The Deep Learning Based Hybrid Framework is illustrated in Section 3. The experimental 

results are presented in Section 4. Lastly, Section 5 contains concluding notes. 

 

 Related work 

The problem of efficient resource allocation in cloud computing has attracted considerable 

attention from both the research and industry communities. Various methods have been proposed 

to enhance resource allocation with the aim of minimizing costs, ensuring quality of service 

(quality of service), and optimizing resource utilization. Since Cloud Computing still hosts a variety 

of applications, such as real-time processing of data, artificial intelligence (AI), and the Internet of 

Things (IoT), it has become more difficult to guarantee optimal resource allocation [8-10]. Cloud 

infrastructure boasts virtuous resources like CPU, memory, storage, and network bandwidth, 

which are to be allocated dynamically according to fluctuations in workload [11]. However, the 

realization of efficient utilization of resources by reducing delays, power consumption, and 

running costs poses a significant challenge to cloud service providers (CSP). Classical resource 

allocation procedures, i.e., round-robin planning, first-first-first service (FCFS), and ranked 

planning, have been utilized extensively in the blame context. Classical approaches depend on pre-

planned success in allocating resources between customers and programs. Though such methods 

provide simplicity and equity, they are not suitable for the dynamic and unpredictable nature of 

cloud labor. For example, round-robin planning distributes resources among functions, causing 

disabled and prospective bottlenecks regardless of their actual needs. Similarly, priority-based 
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planning schedules tasks based on pre-defined rules, which are not capable of expressing the need 

for real-time fees. These static methods are struggling to adapt to fluctuations, resulting in over-

control or over-provision of resources, increasing operational costs, and increasing service quality 

levels. To address such issues, several studies [8, 12-15] have identified the application of DL 

methods to make resources intelligent and dynamic. Learning patterns such as unsecured and 

observed learning, past charging habits, and resource usage patterns can facilitate future 

predictive and data-driven decisions. Cloud providers can predict resource demand, dynamically 

allocate resources, and optimize performance based on actual conditions with the help of the ML 

model. Deep learning, among all the leading MLs, has become extremely popular since it facilitates 

the retrieval of complex patterns and conditions from big data. The integration of machine learning 

(ML) and deep learning (DL) into cloud computing has uncovered significant improvements in 

efficiency, scalability, and cost savings, and research on AI-based ski solutions has been further 

advanced. For example, Wang et al. [16] provided a machine learning framework for resource 

allocation and used supervised learning to find commonalities in vast historical scenario data. The 

optimal or near-optimal solution of the most similar historical case is used to distribute radio 

resources for the current scenario based on extracted similarities. A simple beam allocation 

example in multi-user large MIMO systems proved that machine-learning-based resource 

allocation is better than conventional methods. Jayaprakash et al. [17] compared, analyzed, and 

classified cloud resource allocation clustering, optimization, and machine learning approaches for 

energy and performance efficiency. Optimization and clustering algorithms are used extensively 

in energy management since they can reduce energy consumption. They explain how multi-

objective optimization approaches reduce energy consumption, avoid SLA violations, and improve 

service quality. We also cover how the firefly algorithm, whale optimization algorithm (WOA), 

particle swarm optimization (PSO), and genetic algorithm (GA) are used optimally in the field. 

They also indicate how deep neural networks (DNN), random forests, and support vector machines 

(SVM) are used to forecast cloud energy consumption and operate optimally. Anbarkhan [18] 

utilized regression models and neural networks to analyze historical data and quantify real-time 

measurements to deploy and configure cloud resources dynamically in a way that real-time 

demand is met efficiently. The algorithms can successfully forecast demand variations and shift 

resources dynamically. Simulations show the framework consumes 30% less resources than static 

approaches. The assignment method has also been adjusted to lower operational expenses by 25%. 

Sahar Badri et al. [19] utilized CNN to make pan minimization and throughput maximization. The 

data was encrypted using RSA. Ultimately, it is to be simulated and evaluated using a cloudlet 

simulator. The minimum reaction time of the 20s, the execution time of 0.43s, the energy 

consumption of 180 kWh, and the maximum utilization of 98% for job size 100 were attained. Song 

et al. [20] explored a cooperative computing paradigm with MEC servers, a remote MCC server, 

and mobile devices. One CNN-model-based MEC server handles computing tasks for all MDs. 

CNN-DQN optimizes downlink CRAN resource allocation and balances user quality of service and 

energy consumption. Qirui Li et al. [21] developed a multi-objective optimization system for cloud 

task scheduling and resource allocation using a united deep learning method that outperformed 

heterogeneous distributed deep learning, solving the cloud job MOO problem. Harshala Shingne 

et al. [22] introduced Firefly DRL, a heuristic deep learning-based scheduling method based on 

cloud-based Firefly and particle swarm optimization, which outperforms conventional scheduling 

and resource allocation algorithms. Junjie Cen et al. [23] proposed a resource allocation technique 

in a cloud-based collaborative computing environment that uses DRL, a Markov decision process 

(MDP), and hindsight experience repay to improve network interaction and reduce system delay 

in complex environments. 
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To the best of our knowledge, a significant quantity of research has been conducted in the past few 

years to comprehend, manage, and mitigate resource allocation in the cloud. The characterized by 

these difficulties is the subject of limited work. Consequently, the objective of this research is to 

propose a hybrid deep learning framework that incorporates CNNs for spatial feature extraction, 

GRNs for efficient recurrent modeling, and LSTM units for long-term sequence learning. This 

integrated model is designed to provide more accurate, adaptive, and context-aware resource 

allocation in cloud environments. 

Deep Learning (DL) Methods 

The development of deep learning has revolutionized artificial intelligence by allowing robots to learn 

difficult patterns and associations from data. Gated Recurrent Units (GRU), Convolutional Neural 

Networks (CNN), and Long Short-Term Memory (LSTM) are the three types of deep learning 

architecture used most frequently. Computer vision, natural language processing (NLP), and time-

series forecasting are all areas that heavily rely on the application of these models because they can 

process all forms of data and tasks [24]. 

1. Convolutional Neural Networks (CNNs) 

CNNs are specially crafted networks to process spatial and image data. They possess convolutional 

layers, which apply filters to select characteristic features such as shapes, textures, and edges. CNNs 

compare well with ordinary fully connected networks in that they reduce parameters using shared 

weights, which is appropriate for large-sized image recognition problems. CNNs find extensive 

applications in image classification, face detection, object detection, and medical imaging. They also 

enable applications like autonomous vehicles and video processing [25]. 

2. Long Short-Term Memory (LSTM) Networks 

LSTM is a variation of Recurrent Neural Network (RNN) which has specifically been developed for 

application in sequence data such as text, speech, and time-series data. RNNs suffer from the vanishing 

gradient problem which detains RNNs from memorizing long-term relationships. LSTMs have 

universal applications in speech-to-text recognition, machine translation, chatbots, prediction of 

financial output, and sentiment analysis. As they have to maintain the relationships due to the long-

term memory, they are highly capable to handle complex sequence tasks [26]. 

3. Gated Recurrent Unit (GRU) 

GRUs are analogous to LSTMs but with fewer computations and simpler to understand. GRUs can be 

applied in natural language processing (NLP), time series prediction, and speech recognition. GRUs 

give the same kind of output as LSTMs but with fewer training periods and parameters. Thus, they are 

suitable for use in real-time when there is a problem of lightness of computation [26]. 

There are many applications of DL techniques. For image-based solutions, CNNs are suitable, whereas 

LSTMs and GRUs are suitable for sequence data. Whereas LSTMs are better suited for longer 

sequences, GRUs need less work in terms of processing and are faster compared to LSTMs. Deep 

learning, being based largely on such architectures, allows for artificial intelligence application 

spanning a larger timeframe. 

Methodology  

Figure 1 illustrates an effective two-phase training and validation of deep learning models like 

Convolutional Neural Networks (CNNs), Long Short-Term Memory networks (LSTMs), Gated 

Recurrent Units (GRUs), and ensemble methods. The models are applied on a unified dataset merging 

Google Cloud Jobs (GoCJ) data and Monte Carlo simulation outputs. The model addresses the actual 

problem of resource allocation and workload forecasting in virtualized cloud computing. GoCJ dataset 

provides the real-world demonstration of cloud infrastructure usage, where Monte Carlo simulations 
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are employed to simulate uncertain system behavior and stochastic scenarios. Deep learning models 

learn pertinent patterns in the composite dataset during training so that they can accurately predict 

long-term system behavior and resource requirements. In the testing process, the performance of the 

models is rigorously tested to analyze their ability to predict workload patterns and optimally allocate 

resources in the cloud infrastructure. The combined assessment aids in identifying the most predictive 

accurate prediction models, operational performance, and usage of resources. The proposed framework 

is organized in the form of data generation, preprocessing, model training, and performance analysis, 

thus offering an effective solution to intelligent workload forecasting and resource assignment in cloud 

computing. The following is the step-by-step description of the proposed framework: 

Phase 1: Data Generation 

1. Google Cloud Jobs Dataset & Monte Carlo Simulation 

A Monte Carlo simulation is embedded in the dataset, which is sourced from the Google Cloud Jobs 

(GoCJ) dataset, to make it more realistic and applicable for predictive modeling. The simulation is used 

to generate a synthetic but representative sales dataset by preserving the inherent uncertainty and 

variability usually found in actual cloud environments. This work-enhanced dataset is kept available for 

future experimentation and analysis, thus rigorous testing of resource allocation and forecasting models 

can be done. It has numerous individual computational tasks in it. Each of them is individually 

identified by specific job identifiers (83000, 83009, etc.). This facilitates precise tracking, referencing, 

and manipulation of individual tasks throughout the modeling process. The structured nature of the 

dataset facilitates the in-depth evaluation and construction of more accurate and uniform deep learning 

models for cloud workload prediction and optimization. 

 

Figure 1. Proposed Framework by applying hybrid deep learning with cloud 
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2. Virtual Machine (VM) Workload Data Collection 

The computational workloads are distributed systematically over several Virtual Machines (VMs), i.e., 

VM1, VM2, and VM3, each of which plays a pivotal role in executing and processing the corresponding 

workloads. To effectively monitor and evaluate the performance of each VM, a full set of performance 

metrics is continuously monitored while tasks are being executed. These quantities comprise the overall 

VM load, the overall computational capacity in use at any given time; makespan (MS), the aggregate 

time to complete independent or batched jobs; memory loading, which quantifies the memory 

consumed in processing; idle VM time, which captures instances of under-use or idling; and 

throughput, which captures the number of completed tasks within a specified time. The systematic 

collection of these measurements provides a detailed picture of the operational efficiency and resource 

needs associated with each VM. To facilitate intensive analysis, data for every virtual machine are kept 

isolated—VM1 Data, VM2 Data, and VM3 Data—so that individual performance can be analyzed. The 

data for all three VMs are combined into a single and complete Colocation Dataset. The merged dataset 

is a valuable resource for top-level analysis, i.e., task distribution optimization, performance bottleneck 

identification, and strategic resource planning. Such knowledge is critical to enabling overall efficiency 

and cost-effectiveness maximization of virtualized cloud infrastructure, whose performance and 

scalability at peak rely on the resourceful management. 

Phase 2: Data Processing, Model Training and Hybrid models 

1- Data Processing  

Data preparation begins with Outlier identification and removal so that all variations at the end of the 

data are maintained to maintain the data set. This is to avoid training the model on unclean and 

unreliable data, which will not enhance performance and accuracy. Next, data is normalized, and it 

involves scaling the data set values to a standard degree. This is necessary to prevent functions with 

enormous numerical limits, which distort the model's learning process unevenly, from being initiated 

and all functions equal. Then the classified data is converted into numerical form, which can include 

non-conversion features during training.  

2- Model Training 

 Processed datasets are then divided into three acres: a training kit (70%) used for model training, a 

verification kit (15%) for model optimization and hyperparameter setting, and a test set (15%) reserved 

to assess the final performance of the model. This partition ensures that the model is trained and valid 

on separate data, which allows for a fair evaluation of its generalization capacity. After preprocessing, 

many deep learning models are trained, including summoned neural networks (CNN), which are mainly 

used to remove spatial functions from data; Long short -term memory (LSTM) network, a type of 

recurrent nervous network (RNN) designed to handle sequence-based predicted features; And 

GAUDED recurrent devices (Gru), a custom version of LSTM, are specially designed to process lichened 

data by reducing certain limits for LSTM.  

3- Hybrid Deep Learning Models 

 

A- Hybrid LSTM + CNN Model for Sequential Data 

The architecture described here mixes CNN and LSTM layers to take advantage of the power of 

both models in processing sequential data. CNNs are best at local spatial feature extraction, 

whereas LSTMs can model long-term temporal dependencies and thus the mix here is very 

much suitable for applications involving both spatial and sequential data, such as time-series 

prediction and sequence classification. The sequential data is input to the input layer, which is 

then input to the LSTM layer. The LSTM layer is configured with a kernel size of 1x256 and 

recurrent kernel size of 64x256 to learn temporal dependencies in the data. It has the ReLU 
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activation function for the kernel and the sigmoid activation function for the recurrent kernel 

with return_sequences=True so that the LSTM outputs a sequence of values to be processed 

further. Following the LSTM, a dropout layer of 0.3 is employed to reduce overfitting by 

randomly dropping 30% of the neurons while training. Next, the model applies a 1D 

convolutional layer with kernel size 3x64x64 and utilizes 64 filters. Here, ReLU activation is 

employed as well to enable the model to learn sequence pattern features. The following 

MaxPooling1D layer helps down-sample by a factor of 2, lowering dimensions without losing 

the most important features. After the convolutional process, two fully connected (dense) layers 

are employed in the model. The first dense layer has 128 units using the ReLU activation, and 

the second is a dropout layer with a rate of 0.5 to prevent overfitting even more. Finally, the 

dense output layer with 5 units and softmax activation is employed to produce a probability 

distribution over the five target classes as the final prediction. Figure 2 Incorporating both 

CNNs and LSTMs, this hybrid model takes the best of both worlds by effectively modeling both 

spatial and temporal patterns in the data, which makes it suitable for use in speech recognition, 

time-series prediction, and other sequence-based applications. 

 

 

 

 

 

 

Figure 2. Represents a combination of an LSTM with CNN 

B- Hybrid GRU + CNN Model for Sequential Data 

The model presented combines GRU and CNN to process sequential data efficiently. GRU is a 

variant of LSTM and is highly efficient in processing temporal dependencies in sequential data, 

while CNNs are optimized to extract local features. Combining both components, the hybrid 

model becomes highly effective in operations such as time-series prediction, speech-to-text, 

and sequence classification. The architecture begins with an input layer accepting sequential 

data. Then comes the GRU layer where the kernel size is 1x192 and recurrent kernel size is 

64x192, so that the GRU can capture temporal relationships within the sequence. The GRU uses 

ReLU as the activation function on the kernel and recurrent activation as sigmoid. The model 

is initialized with return_sequences=True so the GRU will return the entire sequence of data 

rather than the final state, that way all the information from each time step will pass through 

to the subsequent layers. A Dropout layer with dropout=0.3 is then employed to combat 

overfitting by randomly disabling 30% of the neurons when training. Next, a 1D Convolutional 

layer is introduced with kernel size 3x64x64 and 64 filters. In this case, the ReLU activation is 

employed, and the convolution layer is followed by MaxPooling1D. The max-pooling operation 

reduces the sequence dimensionality by half, with pool size 2and strides 2, so that the most 

important features are retained. The second Dropout layer at a rate of 0.3 is employed to again 

prevent overfitting. The Flatten layer is then applied to flatten the data into a 1D vector. The 

model then flows through two Dense layers. The first dense layer contains 128 units with the 

activation function being ReLU. The second dense layer has 5 units with softmax activation, 

giving a probability distribution over five target classes. Figure 4 present combining the GRU's 

temporal dependency learning ability with the CNN's local feature learning capability, this 
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hybrid model is able to effectively learn both the sequence-level and local feature patterns of 

the data and is thus suited to a large variety of sequence-based prediction problems. 

 

 

Figure 3. Represents combining a GRU with CNN 

C- Hybrid LSTM + GRU + CNN Model for Sequential Data with Complex Dependencies 

The architecture combines LSTM, GRU, and CNN to efficiently capture both temporal and spatial 

dependencies of sequential data. Each branch of the model reads the data in parallel, thus capturing a 

holistic view of the sequence by learning from different perspectives: temporal, recurrent, and spatial. 

The model begins with an input layer that accepts sequential data. That data is then fed through three 

parallel branches: 

1. The LSTM branch learns long-term temporal relations through an LSTM layer with kernel 

size 1x256 and recurrent kernel size 128x256. The layer uses 64 units and a 

return_sequences=True argument to maintain the sequence output at each time step. A 

Dropout with rate 0.3 is applied to prevent overfitting. It is then passed into a Dense layer 

with 128 units and a ReLU activation. 

2. The GRU branch uses a GRU layer with a kernel size of 1x192 and the recurrent kernel size 

is 64x192. With 64 units, the GRU is more effective in learning temporal dependencies with 

fewer parameters than LSTM. A Dropout layer with a rate of 0.3 is then followed by a 

Convolutional layer in order to extract more significant features. 

3. The CNN branch employs a 1D Convolutional layer with kernel size 3x64x64 and 64 filters 

to capture local features of the sequence. A MaxPooling1D layer with pool size 2 and stride 

2 is employed to downsample. A Dropout layer is also employed to avoid overfitting. 

After being processed by the three branches, the outputs are concatenated to allow the model to fuse 

the temporal and spatial features that are learned by the LSTM, GRU, and CNN layers. The 

concatenated output is flattened using a Flatten layer to transform it into a 1D vector, and finally several 

Dense layers for classification. The final Dense layer gives 5 units with softmax activation to provide the 

classification probabilities. Figure 5 present the blend of LSTM + GRU + CNN is successful in tapping 

each component's own strengths, so it becomes adept at processing very demanding tasks dealing with 

both sequence-based and feature-based learning out of multi-dimensional data. 
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Figure 4. Combining three methods  

 

Testing & Performance Evaluation 

To determine whether the models can produce accurate predictions, they go through a rigorous 

performance testing phase after training. To assess the model's accuracy and ascertain how well each 

model can categorize data and forecast outcomes based on the input features provided, classification 

techniques are used during this phase. A thorough analysis of each model's performance can be 

obtained by measuring a variety of performance metrics, including precision, recall, and F1 score. The 

best model with the highest accuracy and dependability, the largest capacity to generalize new, 

unknown data, and the best performance in real-world applications are selected based on the 

experiments.  

1. Experimental Results  

5.1 Datasets  

GoCJ dataset is a treasure trove of cloud workload prediction and resource provisioning research. It has 
different sizes of jobs which may dynamically be generated based on pre-defined equations in an Excel 
sheet, as illustrated in Figure 1. The inclusion of Monte Carlo simulation introduces randomness 
variability, thereby rendering the dataset more realistic and the real-cloud workload scenario. This 
dataset is pivotal in facilitating efficient task allocation between virtual machines (VMs) to optimize 
resource utilization through performance measures such as VM choice, load balancing, makespan, 
throughput, waiting time, and system load. Through the assistance of intelligent task scheduling, the 
GoCJ dataset avoids VMs from becoming overloaded and aids significantly in the optimization of the 
entire cloud system's performance. 
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Figure 5. GoCJ Excel worksheet generator. 

Figure 2 is a large 3D scatter plot of the relationships among three key parameters: Job Size, Arrival 
Time, and Service Time, from a sample of 10,000 individual jobs. The X-axis of Figure 2 shows the job 
size in megabytes (MB), i.e., the volume of data each job is related to. The Y-axis represents the arrival 
time in seconds, or the actual time each job arrives in the system. The Z-axis is the processing time, or 
service time for each task on the cloud platform. The three-dimensional view gives a simple-to-picture 
model of task size, submission time, and processing time interaction within a cloud computing 
environment. The dispersal of data points along the 3D space reveals trends, clusters, and outliers, 
which help identify workload patterns, resource constraint, and inefficiency in scheduling. Moreover, 
the graph is a simple statistical modeling tool used by researchers to perform regression analysis, 
clustering, and correlation studies to improve task scheduling and resource allocation algorithms. By 
demonstrating the complex inter-relationships between such parameters, the 3D scatter plot is an 
essential tool to learning and optimizing cloud workload behavior and hence improving more efficient 
and intelligent ways of resource provisioning. 
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Figure 6. 3D scatter plot size, arrival times, and service times 

 

Figure 3. shows a clear positive slope between memory loading and CPU load, which proves that CPU 
load is increased proportionally as memory usage is increased. The trend shows that there is a linear 
correlation between the level of memory utilized by the system and the load exerted on the CPU, which 
is typically indicative of the processing load of the system as a whole. Additionally, from the graph, one 
can observe that different models are irregularly distributed on the chart with some of them pulling 
more CPU at a specific memory usage while others show greater utilization of resources. This 
asymmetrical distribution of model performance is valuable information to developers since it 
illustrates the disparity in resources consumed by different models. With a correct analysis of such a 
trend, developers can more intuitively understand the trade-off between CPU usage and memory usage 
and make more suitable choices in selecting the most suitable model for the intended application. For 
computational performance or resource saving, this analysis allows developers to choose a model that 
gives the best trade-off between performance and efficiency according to what the system requires and 
can withstand. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Distributed task relationship between over load on V.M and memory loading 
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5.2 Results   

   The cloud resource provisioning based on deep learning was heavily benchmarked with a big and 
strong dataset that was generated from actual Google Cloud Jobs (GoCJ). The dataset was fine-tuned 
with utmost attention using Monte Carlo simulations that included probabilistic wobbles to simulate 
the natural randomness and fluidity of clouds. Before model training, the data was preprocessed heavily 
before it involved outlier handling, numerical attribute scaling, and one-hot encoding for categorical 
features. These operations were employed to ensure data consistency, improve model convergence, and 
provide more stable training. 

Monte Carlo simulations were necessary to augment the dataset with realistic and varied patterns of 
workload. Probabilistic augmentation allowed the deep learning models to capture the uncertainty and 
variability like user requests and available capacity better than in the past by adding uncertainty and 
variability. These models learned on this dataset worked better in workload prediction, dynamic task 
scheduling, and intelligent provisioning of resources. 

The data treated were divided into training, validation, and test sets in a common ratio of 70:15:15 to 
possess a good system of evaluation in order to test the model in order to generalize and predict. A set 
of current state-of-the-art deep architectures was implemented and tested, i.e., CNN for space feature 
extraction, LSTM and GRU for time sequence modeling, and ensemble approaches that correctly 
averaged the advantages of those models. A range of classification metrics has been used in measuring 
model performances: precision, recall, F1-score, and specificity. Measured exactly the proportion of 
well-classified positive instances, whereas recall (sensitivity) measured the model's ability to recover 
true positives from all existing actual positives. The F1-score, as the harmonic means of precision and 
recall, was especially relevant in class imbalance contexts. Specificity also supplemented these measures 
by measuring the precision in identifying negative examples, thus offering a full view of the 
classification capabilities of the model. 

Among the models experimented with, the hybrid model that integrated CNN, LSTM, and GRU 
techniques achieved the highest overall performance. The hybrid model was able to effectively manage 
both spatial and temporal dependencies in the data, enabling it to detect fine workload patterns, capture 
short-term task bursts, and understand long-term demand trends. Such capabilities translated into 
highly accurate predictions and optimized resource allocation, preventing virtual machine overloading, 
reducing execution delays, and improving overall system efficiency (see Figures 8, 9, 10, 11). 

In brief, the results indicate the enormous benefits of combining various deep learning architectures 
and probabilistic modeling approaches. This approach not only enhances the forecasting performance 
of cloud workloads but also greatly contributes to adaptive and intelligent cloud resource management 
systems. 

Table 1. F1-value performance of three algorithms and hybrid methods 

Datasets CNN GRU LSTM CNN+ LSTM GRU+ 
CNN 

Combined  

V_memory0 0.99 0.98 1 1 1 1  
V_memory1 0.99 0.97 1 1 1 1 
V_memory2 0.99 0.97 0.99 0.99 1 0.99 
V_memory3 0.96 0.98 0.99 0.98 0.99 0.96 
V_memory4 0.98 0.98 1 1 1 0.96 
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Figure 8. Three algorithms' F1-value performance as well as hybrid approaches 
 
 

Table 2. Precision performance of three algorithms and hybrid methods 
 

Datasets CNN GRU LSTM CNN+ LSTM GRU+ CNN Combined  

V_memory0 1 0.98 1 1 1 1 
V_memory1 0.99 0.99 1 1 1 1 
V_memory2 1    0.97 0.99 0.99 1 1 
V_memory3 0.96 0.97 0.99 0.98 0.98 0.92 
V_memory4 0.98 0.96 1 1 1 1 

 
 

 
 

Figure 9. Three algorithms' precision performance as well as hybrid approaches 
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Table 3. Recall performance of three algorithms and hybrid methods 
 

Datasets CNN GRU LSTM CNN+ LSTM GRU+ 
CNN 

Combined 

V_memory0 0.99 0.98 1 1 1 1 
V_memory1 1 0.99 1 1 1 1 
V_memory2 0.97 0.97 1 0.99 0.99 0.99 
V_memory3 0.97 0.96 0.99 0.99 1 1 
V_memory4 0.99 0.95 0.99 0.99 1 0.92 

 
 

 
 

 
Figure 10. Three algorithms' recall performance as well as hybrid approaches 

 
Table 4. Specificity performance of three algorithms and hybrid methods  

 
Datasets CNN GRU LSTM CNN+ 

LSTM 
GRU+ CNN Combined 

V_memory0 1 0.98 1 1 1 1 
V_memory1 1 0.99 1 1 1 1 
V_memory2 1 0.97 1 1 1 1 
V_memory3 0.99 0.96 1 1 1 0.98 
V_memory4 0.99 0.96 1 1 1 1 

 

 

Figure 11. Three algorithms' specificity performance as well as hybrid approaches 
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Conclusion and Future works  
 

The study evaluated the performance of the Cloud Resources allocation based on the modern DL 

models, namely CNN, LSTM, GRU, and Hybrid Architecture. Experimental results demonstrated that 

the hybrid model performed much better than individual architecture in predicted accuracy, stability, 

and efficient use of resources. According to deep learning strength, the targeted model effectively fought 

the resources allocated with UPS and rackets and fought for disability in the virtualized cloud system. 

Conclusions support the need for different deep teaching architectures to complement future 

performances, enable the charge balance, and avoid delay in the execution. In addition, the performance 

for calculations as accurate, recalls, F1 scores, and specificity provided significant insight into the skills 

of the hybrid model. Finally, this research emphasizes the transformation ability to further cloud 

resource management, improve planning efficiency, and energy saving, and strengthen the system. 

These results pave the way for further research that can further improve the intensive learning-

controlled cloud distribution mechanisms to achieve greater efficiency, scalability, and cost-

effectiveness in modern cloud computing systems. 
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