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Mobile edge cloud(MEC) plays a vital role in medium to large scale applications for task 

scheduling process. Join task uplink and downlink computations are used to optimize the cost 

and time computation for large scale applications. Most of the traditional mobile edge cloud 

based task scheduling models are independent of uplink and downlink estimations. The primary 

objective is to enhance energy efficiency and improve the user experience by maximizing the 

number of offloaded tasks during uplink communication, while ensuring that the computation 

resources of MEC remain at an acceptable level. In this work, an efficient joint load task 

scheduling approach is designed in order to improve the time, energy and load balancing 

properties in large scale applications. Experimental results show that the proposed approach has 

better efficiency in terms of runtime and energy consumption, leading to the improved energy 

efficiency in mobile edge cloud environments. 
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1. INTRODUCTION 

Cloud computing is a popular system that offers on-demand services to both individuals and businesses. It has shifted 

how businesses view and access computing services.A cloud consists of a network of computers or servers that supply 

resources such as storage, networks, platforms, and software via the internet[1]. These resources are accessible by 

devices like smartphones, tablets, laptops, and desktops.Cloud computing is recognized as a reliable platform and 

business model. It provides IT infrastructure, platforms, and applications as web services with a pay-per-use system. 

Consumers use what they need and pay accordingly, while third-party providers handle resource management. Key 

technologies that support this system include virtualization, grid computing, service-oriented architecture, and 

metering tools. These elements work together to develop responsive and efficient systems.Mobile cloud computing 

integrates cloud services into wireless networks to improve mobile device performance[2]. It enhances mobile 

applications and functionality through service models like IaaS, and SaaS. Mobile cloud computing shifts data storage 

and processing away from mobile devices to external cloud infrastructure. This approach extends mobile computing 

beyond smartphones to a wider set of users with portable devices.A mobile device acts as a compact computing tool, 

capable of executing tasks typically handled by a traditional computer. Wireless communication between the mobile 

and cloud depends on the network layer[3]. Its performance, especially bandwidth availability, shapes the success of 

mobile cloud systems.The cloud solves key limitations of mobile devices by offering remote processing power, 

storage, and built-in security. Cloud data centers manage both the mobile and cloud environments, handling core 

computing needs off-device.Mobile cloud computing helps mitigate typical hardware constraints in mobile devices. 

These include limited storage, battery drain, weak sensing abilities, and slow processing[4]. It provides external 

support while managing energy use, service quality, mobility, and security concerns.To improve performance, MCC 

shifts heavy processing and large data operations to cloud-based nodes. This enables better service continuity and 

efficiency than standard mobile setups.Mobile cloud computing merges mobile and cloud computing to enhance 

device performance through task offloading[5]. It transfers demanding tasks like natural language processing, image 
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editing, and object recognition to the cloud.To maintain task order and reduce load on devices, the system schedules 

tasks across both cloud servers and mobile units, considering which site can handle each task more effectively.Despite 

cloud assistance, mobile cloud systems still face hurdles. Mobile devices have limits in processing and storage, while 

communication networks can slow down task completion[6].  

2. RELATED WORK 

Mobile cloudlets act as functional extensions of cloud systems within mobile environments. They offer benefits like 

improved scalability and localized processing without full cloud infrastructure.A model using Markov decision 

processes enables dynamic offloading, where a mobile user’s device chooses when to shift tasks based on energy and 

time tradeoffs.Different offloading strategies—such as always offloading, never offloading, or conditionally 

offloading—are chosen based on timing and energy constraints. The goal is to balance speed with battery 

savings.Experiments with Android devices have tested back-clone synchronization and nearby offloading. 

Communication across clients, service providers, and between provider networks addresses the unique patterns in 

mobile cloud environments[7-9].Three operational modes help make offloading more practical. These include 

methods to cut down end-to-end delay, with proactive routing protocols forming a part of Adaptive Mobile Cloud 

Computing (AMCC).Mobile cloudlets supported by volunteer computing and location-based services improve 

flexibility. A decentralized network design, using a virtual backbone in ad-hoc networks, expands task support across 

user devices without relying solely on centralized cloud systems.A structured architecture for mobile cloud computing 

includes multiple layers, each requiring specific security practices. This structure strengthens data handling and 

resource sharing in mobile environments.A focused strategy addresses latency-sensitive and resource-heavy tasks by 

optimizing resource allocation within cloudlets. These structures also include methods to secure communication and 

data handling within the cloud.A transaction-based interface (TI) is used to manage resource exchanges between 

handheld devices (buyers) and nearby cloudlets (sellers). An improved version of this interface benefits sellers more, 

especially when offloading occurs locally[10].Using mobile cloud computing, offloading to close-range cloudlets helps 

reduce energy use and decreases task response time. This makes nearby offloading both energy-efficient and faster 

for handheld devices.Battery life for handheld devices can be extended by merging mobile cloud computing with 

mobile power transfer (MPT). Using optimization models, energy usage is balanced while handling data transfers. 

When future channel data is known, adaptive methods adjust offloading to maintain system performance and can be 

expanded to support full-duplex and multi-transfer setups.Cloud-based video crowd sensing is improved by tackling 

three main tasks. First, an optimal video transcoding solution increases playback quality on mobile devices. Second, 

throughput for different file protocols is evaluated, leading to a protocol-aware, real-time transfer method[11]. Third, 

sensor-tagged videos are used to enhance cloud database interaction and video search capabilities. 

Offloading Types in Heterogeneous Mobile Cloud Systems 

Offloading decisions in heterogeneous mobile cloud setups depend on the strength of the remote connection. When 

low bandwidth is detected, systems aim to redistribute workloads to maintain smooth mobile operation.In areas with 

heavy mobile user presence, service providers can deploy local cloudlets to improve access. These nearby cloud nodes 

help users maintain service continuity, especially when cellular network strength drops[12].Users connected via 3G 

or 4G can automatically switch to nearby cloudlets when bandwidth becomes limited. Continued service is supported 

over Wi-Fi, with local processing handling tasks previously managed remotely.Different models for task offloading 

within cloudlets rely on node availability and how connections are established. Key challenges include managing 

setup processes and determining the optimal level for offloading.A mobile edge computing (MEC) setup is outlined 

with smart services and a nearby server managed using FDMA. Though actual servers may have low compute power, 

the model assumes access to high-capacity computing for analysis[13]. 

Edge-Based Execution for Real-Time Mobile Cloud Systems 

In decentralized mobile-peripheral computational infrastructures, orchestrating workload allocation is fundamental 

for overseeing multifunctional operations and evenly distributing computational intensity across all accessible 

processing strata. This process is essential in delivering low-latency outcomes while optimizing energy dynamics 

between edge-linked handheld units and high-capacity cloud cores.Historically rooted in monolithic architectures, 

resource arbitration has evolved to address hybridized systems—where edge layers demand synchronization of 
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physical nodes (CPUs, memory) and logical elements (data links, channel availability)[14]. These components must 

be synchronized under joint bidirectional (uplink-downlink) efficiency criteria.Each unit, mobile or cloud-based, 

relies on its kernel-level resource scheduler to proportionally distribute available compute cycles, tailored to runtime 

priorities and device constraints, especially under limited power budgets.High-density cloud-edge topologies must 

process diverse user requests, often concurrently. By leveraging smart task-routing algorithms, systems determine 

optimal task execution locations, dynamically adapting based on workload intensity and energy-saving 

thresholds.Responsive, algorithm-driven orchestration mechanisms now guarantee that task execution timelines are 

synchronized with energy-awareness goals—adapting to real-time status of bandwidth, compute load, and device 

health—thereby enabling intelligent task offloading decisions at runtime.When a cloudlet is active but under-

resourced, it can distribute its load to nearby cloudlets using inter-cloudlet communication. This cooperation 

improves performance without involving the central cloud.Mobile devices discover cloudlets through a root server 

that keeps a live directory of cloudlets and their resources. With connectivity via Wi-Fi, 3G, or 4G, mobile clients 

locate the nearest available cloudlet, offload tasks, and receive results directly.If one cloudlet can't finish a task, it 

coordinates with others in the same area—like malls, offices, or public spaces—to complete the workload. This 

dynamic sharing model enhances system reliability, reduces response time, and optimizes energy usage in mobile 

edge computing environments[15].In the extended model of decentralized mobile computation, a novel architecture 

integrates API-based invocation with a remote procedure call (RPC) framework, enabling users to programmatically 

access and orchestrate distributed services. This integration, aligned with the Mobile Cloudlet Framework, serves as 

an edge layer between user devices and the cloud core. By embedding computational elasticity, the cloudlet amplifies 

mobility performance while preserving scalability metrics.In the extended model of decentralized mobile 

computation, a novel architecture integrates API-based invocation with a remote procedure call (RPC) framework, 

enabling users to programmatically access and orchestrate distributed services. This integration, aligned with the 

Mobile Cloudlet Framework, serves as an edge layer between user devices and the cloud core. By embedding 

computational elasticity, the cloudlet amplifies mobility performance while preserving scalability metrics[16-19].A 

dynamic task migration algorithm, defined via a Markov Decision Process (MDP), is formulated to optimize execution 

policies in fluctuating mobile environments. Let the state set be Ω = {𝜔1, 𝜔2, . . . , 𝜔𝑛}, where each 𝜔𝑖 represents device-

load conditions. The decision action set 𝐴 = {𝑎𝑙𝑜𝑐𝑎𝑙 , 𝑎𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡} governs local vs. remote execution, with transition 

probabilities 𝑃(𝜔𝑗|𝜔𝑖 , 𝑎). The reward function 𝑅(𝜔𝑖 , 𝑎) is calibrated for minimizing time-energy trade-offs. 

From an optimization standpoint,  define a binary division of execution outcomes: 

• Case 1: Never Offload 

• Case 2: Always Offload 

These are conditional on the critical threshold 𝑇𝑐𝑟𝑖𝑡, where 

Offloaddecision = {
No, if 𝑇𝑙𝑜𝑐𝑎𝑙 < 𝑇𝑐𝑟𝑖𝑡
Yes, if 𝑇𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡 < 𝑇𝑐𝑟𝑖𝑡

 

Feasibility in real-world applications was tested using Android-based mobile prototypes, where clone-

synchronization mechanisms were established. Let 𝐶𝑖 be the clone of a task instance on device 𝐷𝑖. The consistency 

across clones is preserved via: 

𝛿(𝐶𝑖, 𝐶𝑗) → min--(1) 

ensuring synchronized state replication during migration. 

Offloading strategies were refined further by introducing location-based proximity functions. Given a set of cloudlets 

ℒ = {𝐿1, 𝐿2, . . . , 𝐿𝑚}, the optimal offload point 𝐿∗ is: 

𝐿∗ = arg⁡min
𝐿𝑖∈ℒ

 [Latency(𝑈, 𝐿𝑖) + Load(𝐿𝑖)]--(2) 

Lastly, [20] address the multilayered communication model, incorporating intra-cloud and inter-cloud service 

exchanges. Define: 

• 𝜙client-CSP – client to CSP interaction latency 
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• 𝜙intra-CSP – communication within the CSP 

• 𝜙inter-CSP – cross-provider handoff delay 

The cumulative delay function becomes: 

Φ = 𝜙client-CSP + 𝜙intra-CSP + 𝜙inter-CSP--(3) 

where the objective is minimizing Φ across distributed application execution paths. 

In advancing mobile cloud computing paradigms, researchers have identified three unique offloading schemas that 

significantly enhance task feasibility and user responsiveness. These models are tailored to dynamically respond to 

execution contexts while maintaining system efficiency. 

The first model emphasizes latency reduction through proactive networking protocols. Let 𝐷e2e be the end-to-end 

delay, decomposed as: 

𝐷e2e = 𝐷send + 𝐷proc + 𝐷return--(4) 

Here, AMCC (Adaptive Mobile Cloud Communication) techniques aim to minimize 𝐷e2e using preemptive routing 

and lightweight session handshakes. 

The second strategy involves volunteer-based edge computing, where mobile cloudlets operate in a geo-localized 

manner. A virtual ad hoc mesh is formed: 

𝒢(𝑉, 𝐸), 𝑉 = {devices}, 𝐸 = {communication links} 

This mesh acts as a surrogate discovery backbone, allowing tasks 𝑇𝑖  to offload onto optimal nodes 𝑣𝑗 ∈ 𝑉 based on 

minimal processing time and local resource availability. 

The third contribution to offloading feasibility comes from a layered architectural model within MCC. Let the system 

be structured as: 

Layers ℒ = {𝐿1, 𝐿2, 𝐿3},⁡where each 𝐿𝑖  applies security vector 𝜎𝑖 

Each layer enforces context-sensitive security protocols to protect against data breaches and ensure integrity across 

distributed tasks, as surveyed[21]. 

Addressing resource bottlenecks in cloudlet operations, Liu et al. introduced a resource-aware allocation framework. 

Define: 

• ℛ = {𝑟1, 𝑟2, . . . , 𝑟𝑛} = available resources 

• 𝒰 = {𝑢1, 𝑢2, . . . , 𝑢𝑚} = user demands 

• 𝐴 = [𝑎𝑖𝑗], where 𝑎𝑖𝑗 = 1 if resource 𝑟𝑖 is allocated to user 𝑢𝑗 

The optimization goal becomes: 

max∑  𝑖,𝑗 (
𝑄𝑖𝑗

𝐿𝑖𝑗
⋅ 𝑎𝑖𝑗)--(5) 

Where 𝑄𝑖𝑗  is the quality of service and 𝐿𝑖𝑗  is latency for each assignment. Their algorithm adapts well under varying 

user densities, outperforming greedy-based allocations in large-scale networks. 

As user traffic 𝜆(𝑡) increases, their simulations show: 

QoS(𝑡) ∝ 𝜆(𝑡),⁡where 𝜆(𝑡) is user arrival rate 

indicating a scalable solution. 

Given the complexity of managing heterogeneous services, the authors suggest adopting an ad hoc cloud topology: 

𝒜cloud = 𝒜static ∪𝒜mobile--(6) 
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The objective function for such a setup is: 

min𝒞 = Infrastructure Cost, maxℰ =
Utilized Tasks

Resources Allocated
 

This model allows adaptive provisioning of services while maintaining low-cost scalability. 

In evolving Mobile Edge Computing (MEC) systems, [22] developed a simplified architecture that supports diverse 

smart applications by integrating a MES (Mobile Edge Server) infrastructure. This server, while idealized with infinite 

computing power, operates under Frequency-Division Multiple Access (FDMA) communication schemes. 

The key performance metric is average energy consumption across both mobile users and the edge server: 

𝐸‾ =
1

𝑇
∑  𝑇
𝑡=1 (𝐸mobile(𝑡) + 𝐸edge(𝑡))--(7) 

To optimize this system, a joint resource control model is applied: 

• 𝑓mobile, 𝑓edge: CPU cycle frequency allocations 

• 𝑃tx: transmission power 

• 𝐵: communication bandwidth 

The optimization seeks to minimize: 

min
𝑓,𝑃tx,𝐵

 𝐸‾ ⁡subject to latency and task constraints 

[23]  introduced an adaptive resource allocation mechanism, incorporating mobility forecasting and dynamic 

resource requirements 𝑅(𝑡). Given: 

• Predicted trajectory 𝜏(𝑡) 

• Required service time 𝑆𝑡 

The allocation decision 𝐴(𝑡) is made based on: 

𝐴(𝑡) = 𝑓(𝜏(𝑡), 𝑅(𝑡), 𝑆𝑡)--(8) 

To further enhance efficiency[24] explored energy harvesting edge-enabled systems, where tasks are processed either 

locally or offloaded based on energy and delay costs. Each time slot 𝑡 includes: 

• 𝐸𝑏(𝑡): battery energy level 

• 𝐷exec(𝑡): execution delay 

• 𝐶offload(𝑡): cost of offloading 

They demonstrate that optimal CPU frequencies 𝑓𝑡 increase with energy: 

𝑑𝑓𝑡
𝑑𝐸𝑏

≥ 0 

This implies higher available energy accelerates execution and reduces latency. 

In spatially dispersed computational frameworks, compute units Π = {𝜋1, 𝜋2, . . . , 𝜋𝑛} are co-embedded with terminal 

agents Θ and sensory interfaces Ψ, enabling minimal-latency processing through proximity-optimized computation. 

The temporal response function 𝜏𝑟 is minimized as: 

min
𝜋𝑖

 𝜏𝑟 = 𝑓(𝑑(𝜋𝑖 , Θ𝑗), 𝛾proc, 𝜇mem)--(9) 

where 𝑑 denotes spatial distance, 𝛾proc is processing frequency, and 𝜇mem is available memory per peripheral node. 
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In this architectural regime, energy-constrained scheduling of high-complexity tasks Ξ is optimized by executing 

near the origination point: 

Ξ𝑘 = arg⁡min(𝜀𝑘 ⋅ 𝜏𝑘) 

where 𝜀𝑘 is energy cost and 𝜏𝑘 is task latency. 

Security primitives are applied directly at the edge node 𝜋𝑖, using embedded cryptographic gates 𝜅 and access 

verifiers 𝜌: 

𝒮(𝜋𝑖) = 𝜅(𝐷)⊕ 𝜌(UID) 

ensuring integrity 𝜄(𝐷) across the transformation sequence without central exposure: 

∀𝑡, 𝜄(𝐷𝑡) = 𝜄(𝐷0) 

Each node executes lightweight inference models Λ𝑖, where: 

Λ𝑖 : Φ → {0,1}, detecting⁡anomalies 𝛼𝑡 ∈ Φ 

This real-time inference enables early-stage threat mitigation at the edge, precluding compromise before central 

processing.Horizontal expansion is achieved via parallel delegation: 

Ω =⋃  

𝑛

𝑖=1

Ξ𝑖 

where each task set Ξ𝑖  is routed to node 𝜋𝑖, thus reducing global cloud pressure and improving scalability 𝜎, measured 

as: 

𝜎 =
∑  𝑛
𝑖=1  𝑇handled(𝜋𝑖)

𝑇total
--(10) 

In a modular network structure, routing decisions 𝜌𝑡 and compute path 𝜒𝑡  are dynamically recalculated: 

𝜌𝑡 = 𝑓(RT𝑡 , 𝜈𝑡), 𝜒𝑡 = 𝑓(QoS𝑡) 

where 𝜈𝑡 represents current load, and RT𝑡  the routing table at time 𝑡. This adaptiveness supports optimized queueing 

𝑄(𝑡) across uplink/downlink paths: 

𝑄(𝑡) = min (
𝑊𝑖(𝑡)

𝜔𝑖(𝑡)
) , 𝑖 ∈ Π--(11) 

with 𝑊𝑖(𝑡) as queue weight and 𝜔𝑖(𝑡) as service rate. 

3.PROPOSED MODEL 

Mobile units are prepared for sending and processing tasks, checking energy usage. Edge and cloud systems are also 

initialized, registering their speed, storage, and connection limits.This layer handles the main logic for choosing 

where to process tasks and how to divide resources. It looks at size, energy use, and delay to decide if tasks stay local 

or go to cloud or edge servers. It models how long tasks take, how much energy they use, and builds an algorithm to 

balance both. 

Simulates how long and how much energy tasks need if sent to mobile edge computing nodes.Spreads bandwidth and 

computing power across devices. Uses delay formulas to calculate time for each task and tracks how much energy is 

used. 

Estimates how long a task takes with the formula: 

𝑇 =
𝐷

𝑅
 

where 𝐷 is data size and 𝑅 is the resource rate. 
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Estimates energy use by linking task size with device power usage.A scheduling algorithm that adjusts decisions based 

on both time and energy needs, choosing centralized or shared control.Takes over when the cloud handles tasks. It 

returns results and manages delays caused by shared access or waiting time.Predicts slowdowns or bottlenecks in 

cloud systems due to many tasks sharing resources.Records what happens during processing. Tracks how well IPSO 

and CSO algorithms perform and saves metrics for review. The overview of proposed model is shown in figure 1. 

 User Interface Layer 

This layer initializes system components. 

• Mobile Devices Setup 

Configuration of mobile terminals for task generation, offloading readiness, and energy profiling. 

• Edge, Cloud Devices Setup 

Initializes edge servers and cloud datacenters, registering compute capabilities, bandwidth, and latency 

thresholds. 

2. Joint Optimization Layer 

This is the core layer that balances task offloading and resource scheduling. 

• Joint Task Offloading 

Decides which tasks should execute locally or be offloaded to MEC/cloud based on energy, delay, or task 

size. 

▸ Leads to: 

o MEC Execution Modelling: Simulates execution time, delay, and energy if offloaded to MEC. 

• Joint Resource Allocation 

Allocates bandwidth, CPU cycles, and memory across nodes. 

▸ Leads to: 

o Time Consumption Modelling: Computes delay for task execution using:𝑇 =
𝐷

𝑅
 

o Energy Consumption Modelling: Calculates energy consumed based on task size and power 

profile. 

• ▸ Outputs: 

o Proposed CSO Model: Centralized or Cooperative Scheduling Optimization algorithm that 

integrates time-energy trade-offs. 

3. Cloud Services Layer 

Handles execution and load balancing when cloud is involved. 

• Task Execution Result 

Delivers final output from cloud after computation. 

• Queueing Constraints for Load Balancing 

Models waiting time and resource contention in cloud environments. 
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Figure 1: Overview of Proposed Model 

Edge Execution Cost Breakdown 

The total edge execution cost 𝑄𝑛
𝑒  is defined as a combination of time and energy factors: 

𝑄𝑛
𝑒 = 𝛼𝑇𝑛

𝑒 + 𝛽𝐸𝑛
𝑒  

Here, 𝛼 and 𝛽 are weights for time and energy respectively. 

Edge Task Timing Details 

The total time to send a task from the mobile device 𝑀𝐷𝑛 to the edge node is: 

𝑇𝑛
𝑒 = 𝑇𝑛

𝑡𝑟 + 𝑇𝑛
𝑟 + 𝑇𝑛,𝑒

𝑖𝑛,𝑝
+ 𝑇𝑛,𝑒

𝑞
 

Transmission Delay 𝑇𝑛
𝑡𝑟 

This is the time to transmit the task data from 𝑀𝐷𝑛 to the edge node: 

𝑇𝑛
𝑡𝑟 =

𝐷𝑆𝑛,𝑒
𝑖𝑛

𝑏𝑛
 

where 𝐷𝑆𝑛,𝑒
𝑖𝑛  is the task size and 𝑏𝑛 is the bandwidth. 

Response Time 𝑇𝑛
𝑟 

This captures the time to return the results from the edge node to 𝑀𝐷𝑛: 

𝑇𝑛
𝑟 =

𝐷𝑆𝑛,𝑒
𝑜𝑢𝑡

𝑏𝑛
 

where 𝐷𝑆𝑛,𝑒
𝑜𝑢𝑡 is the size of the result. 

Execution Time 𝑇𝑛,𝑒
𝑖𝑛,𝑝

 

This is how long it takes the edge processor to complete the task: 

𝑇𝑛,𝑒
𝑖𝑛,𝑝

=
𝑆𝑛
𝑓𝑒

 

with 𝑆𝑛 as the task's required computation and 𝑓𝑒 the edge node's processing speed. 

Queue Waiting Time 𝑇𝑛,𝑒
𝑞

 

Time the task spends waiting in the edge node's processing queue before execution begins. 

Solution Setup 

In this method, each egg inside a nest stands for a possible answer. 

Each cuckoo creates just one answer. 

Weak answers are replaced by better ones coming from other cuckoos. 
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Nest Placement 

Nest locations are written as 𝑥𝑖
𝑡, where 𝑖 goes from 1 to 𝑍 (number of nests or problem size), and 𝑡 is the iteration 

count. 

Search Pattern with Lévy Flight 

Lévy flight helps guide both wide and narrow searches for better answers. 

New nest locations are calculated using: 

𝑥new
(𝑡)

= round (
1

1 + 𝑒−𝛽𝑥nest
(𝑡) ) 

Generating a New Solution 

A new position for a nest is computed as: 

𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)

+ 𝛼 ⋅ 𝐿(𝑠, 𝜆) 

Where: 

• 𝑥𝑖
(𝑡+1)

 is the updated position of nest 𝑖 at the next step. 

• 𝑥𝑖
(𝑡)

 is the current position. 

• 𝛼 adjusts the step length. 

• 𝑠 is the step size. 

• 𝐿(𝑠, 𝜆) defines the Lévy flight behavior. 

Global Random Walk Update Rule 

𝑥𝑖
𝑡+1 = 𝑥𝑖

′ + 𝛼𝑠 ⊗𝐻(𝑃𝑎 − 𝜀)⊗ (𝑥𝑖
′ − 𝑥𝑘

′ ) 

Where: 

• 𝑥𝑖
𝑡+1 is the updated solution. 

• 𝑠 is the step size. 

• 𝐻 is the Heaviside function. 

• 𝜀 is a random number. 

• 𝑥𝑘
′  is a randomly selected solution. 

• 𝑃𝑎 is a probability that controls switching. 

Edge Queue Modeling 

Queue Setup 

Modeled as M/M/1 queue since only one edge server is used. 

• Arrival rate: 𝜆𝑒  

• Service rate: 𝜇𝑒 

Edge Server Utilization 

𝜌𝑒 =
𝜆𝑒

𝜇𝑒
 

Measures how busy the server is. 

Average Waiting Load 
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𝐿𝑒 =
(𝜌𝑒)2

1 − 𝜌𝑒
 

Gives the expected number of tasks waiting in line. 

Task Waiting Time in Queue 

𝑇𝑛,𝑞
𝑒 =

𝐿𝑒

𝜆𝑒
 

Calculated using both the queue length and task arrival rate. 

Overall Execution Time at Edge 

𝑇𝑛
𝑒 = 𝑇𝑛

𝑡𝑟 + 𝑇𝑛
𝑟 + 𝑇𝑛,𝑒

𝑖𝑛,𝑝
+ 𝑇𝑛,𝑞

𝑒  

Adds up all delays: sending, result return, processing, and queue wait. 

Edge Transmission Resource Calculations 

Define: 

• 𝐷: Volume of data in transmission 

• 𝐵: Channel bandwidth 

• 𝐻: Channel gain (uplink/downlink) 

• 𝑃: Transmission power (uplink/downlink) 

• 𝑁0: Noise power 

Uplink Rate 

𝑅uplink = 𝐵 ⋅
log2⁡(1+

𝐻uplink⋅𝑃uplink

𝑁0
)

log2⁡𝑒
--(13) 

Uplink Time 

𝑇uplink =
𝐷

𝑅uplink
--(14) 

Downlink Rate 

𝑅downlink = 𝐵 ⋅
log2⁡(1+

𝐻downlink⋅𝑃downlink
𝑁0

)

log2⁡𝑒
--(15) 

Downlink Time 

𝑇downlink =
𝐷

𝑅downlink
--(16) 

Each mobile device starts with defined settings: its task load, battery level, and whether it can offload tasks. At the 

same time, all edge and cloud nodes are set up with their compute strength, network capacity, and delay stats—split 

into upload, processing, and download times.This layer decides how to run each task—locally or offloaded—based on 

time and energy needs. Task time comes from dividing task size by processing speed. Energy use depends on CPU 

power per cycle and total cycles. Offloading is marked by a binary value. The system uses Cuckoo Search Optimization 

(CSO) to minimize a weighted mix of delay and energy use, adjusting based on whether users care more about speed 

or saving battery.Tasks that need more processing or can’t handle wait times go to the cloud. The system checks the 

number of pending tasks and their average times to calculate delay. It also makes sure no cloud server gets overloaded 

by comparing all task sizes against its limits. 
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4.EXPERIMENTAL RESULTS 

Experimental results are simulated uisng java based mobile edge cloud simulation tool. This tool is customized usign 

proposed task schedluing and uplink and downlink computations. Figure 2 represents the input application 

configuration file which contains mobile ,edge and cloud configuration settings. 

 

Figure 2: Input application configuration file 

 

Figure  3:  Comparative analysis of proposed model to existing models  for average load resources.

 

Figure  4:  Comparative analysis of proposed model to existing models  for number of offloads per 

tasks.

CRAA CDR-A

Low-
complexity

heuristic
algorithm

Proposed
model

Avg Load  resources 25 26 23 15

25 26
23

15

0

5

10

15

20

25

30

A
vg

 L
o

ad
  r

es
o

u
rc

es

Avg Load  resources

Avg Load  resources

CRAA CDR-A

Low-
complexity

heuristic
algorithm

Proposed
model

Number of offloads 124 128 114 100

0
20
40
60
80

100
120
140

Number of offloads



Journal of Information Systems Engineering and Management 
2025, 10(41s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 1046 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 

Figure  5:  Comparative analysis of proposed model to existing models  for energy computation.

 

Figure  6:  Comparative analysis of proposed model to existing models  for total runtime(m). 

The performance comparisons(Figure 3-6) across the four methods[25]—CRAA, CDR-A, Low-complexity heuristic 

algorithm, and the Proposed model—shows that the proposed approach consistently outperforms others in efficiency 

and resource management. In terms of average load on resources, the proposed model shows the lowest usage at 15, 

compared to 25–26 in CRAA and CDR-A, indicating more efficient task distribution. Regarding the number of 

offloads, although the proposed model performs fewer offloads (100), it likely achieves better optimization by 

offloading only when beneficial, unlike CRAA and CDR-A which offload more frequently (124 and 128, respectively). 

In energy consumption, the proposed model again leads with the lowest value (19J), suggesting it is more power-

efficient than CRAA (30J), CDR-A (25J), and the heuristic algorithm (23J). Lastly, in terms of total runtime, the 

proposed model has the shortest completion time at 2744m, whereas CRAA takes the longest at 3255m. Altogether, 

the proposed model demonstrates a balanced and optimized performance across all metrics. 

V.CONCLUSION 

In this paper, a novel meta-heuristic optimization model with uplink and downlink computations are proposed for 

large scale task scheduling applications. Proposed optimization model with uplink and downlink metrics are 

evaluated on large mobile edge cloud configurations. This model is evaluated with different parameters and 

optimization functions. Experimental results are evaluated with different MEC performance metrics on large scale 

applications. In future, this work is extended to federated based mobile edge computation using parallel computation. 
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