
Journal of Information Systems Engineering and Management
2025, 10(41s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1035
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

An Energy Efficient Meta-Heuristic Task Scheduling and Joint

Uplink and Downlink Optimization Framework for Real-Time

Mobile Edge Cloud Data

B.Teja Sree1, G.P.S.Varma2, Indukuri Hemalatha3

1Research Scholar, Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India.
2Professor, Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India.

 3Professor, Department of Information Technology, S.R.K.R Engineering College, Bhimavaram, India.

ARTICLE INFO ABSTRACT

Received: 18 Dec 2024

Revised: 10 Feb 2025

Accepted: 28 Feb 2025

Mobile edge cloud(MEC) plays a vital role in medium to large scale applications for task

scheduling process. Join task uplink and downlink computations are used to optimize the cost

and time computation for large scale applications. Most of the traditional mobile edge cloud

based task scheduling models are independent of uplink and downlink estimations. The primary

objective is to enhance energy efficiency and improve the user experience by maximizing the

number of offloaded tasks during uplink communication, while ensuring that the computation

resources of MEC remain at an acceptable level. In this work, an efficient joint load task

scheduling approach is designed in order to improve the time, energy and load balancing

properties in large scale applications. Experimental results show that the proposed approach has

better efficiency in terms of runtime and energy consumption, leading to the improved energy

efficiency in mobile edge cloud environments.

Keywords: Mobile, Edge , Meta heuristic model, scheduling, energy, time computation.

1. INTRODUCTION

Cloud computing is a popular system that offers on-demand services to both individuals and businesses. It has shifted

how businesses view and access computing services.A cloud consists of a network of computers or servers that supply

resources such as storage, networks, platforms, and software via the internet[1]. These resources are accessible by

devices like smartphones, tablets, laptops, and desktops.Cloud computing is recognized as a reliable platform and

business model. It provides IT infrastructure, platforms, and applications as web services with a pay-per-use system.

Consumers use what they need and pay accordingly, while third-party providers handle resource management. Key

technologies that support this system include virtualization, grid computing, service-oriented architecture, and

metering tools. These elements work together to develop responsive and efficient systems.Mobile cloud computing

integrates cloud services into wireless networks to improve mobile device performance[2]. It enhances mobile

applications and functionality through service models like IaaS, and SaaS. Mobile cloud computing shifts data storage

and processing away from mobile devices to external cloud infrastructure. This approach extends mobile computing

beyond smartphones to a wider set of users with portable devices.A mobile device acts as a compact computing tool,

capable of executing tasks typically handled by a traditional computer. Wireless communication between the mobile

and cloud depends on the network layer[3]. Its performance, especially bandwidth availability, shapes the success of

mobile cloud systems.The cloud solves key limitations of mobile devices by offering remote processing power,

storage, and built-in security. Cloud data centers manage both the mobile and cloud environments, handling core

computing needs off-device.Mobile cloud computing helps mitigate typical hardware constraints in mobile devices.

These include limited storage, battery drain, weak sensing abilities, and slow processing[4]. It provides external

support while managing energy use, service quality, mobility, and security concerns.To improve performance, MCC

shifts heavy processing and large data operations to cloud-based nodes. This enables better service continuity and

efficiency than standard mobile setups.Mobile cloud computing merges mobile and cloud computing to enhance

device performance through task offloading[5]. It transfers demanding tasks like natural language processing, image

Journal of Information Systems Engineering and Management
2025, 10(41s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1036
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

editing, and object recognition to the cloud.To maintain task order and reduce load on devices, the system schedules

tasks across both cloud servers and mobile units, considering which site can handle each task more effectively.Despite

cloud assistance, mobile cloud systems still face hurdles. Mobile devices have limits in processing and storage, while

communication networks can slow down task completion[6].

2. RELATED WORK

Mobile cloudlets act as functional extensions of cloud systems within mobile environments. They offer benefits like

improved scalability and localized processing without full cloud infrastructure.A model using Markov decision

processes enables dynamic offloading, where a mobile user’s device chooses when to shift tasks based on energy and

time tradeoffs.Different offloading strategies—such as always offloading, never offloading, or conditionally

offloading—are chosen based on timing and energy constraints. The goal is to balance speed with battery

savings.Experiments with Android devices have tested back-clone synchronization and nearby offloading.

Communication across clients, service providers, and between provider networks addresses the unique patterns in

mobile cloud environments[7-9].Three operational modes help make offloading more practical. These include

methods to cut down end-to-end delay, with proactive routing protocols forming a part of Adaptive Mobile Cloud

Computing (AMCC).Mobile cloudlets supported by volunteer computing and location-based services improve

flexibility. A decentralized network design, using a virtual backbone in ad-hoc networks, expands task support across

user devices without relying solely on centralized cloud systems.A structured architecture for mobile cloud computing

includes multiple layers, each requiring specific security practices. This structure strengthens data handling and

resource sharing in mobile environments.A focused strategy addresses latency-sensitive and resource-heavy tasks by

optimizing resource allocation within cloudlets. These structures also include methods to secure communication and

data handling within the cloud.A transaction-based interface (TI) is used to manage resource exchanges between

handheld devices (buyers) and nearby cloudlets (sellers). An improved version of this interface benefits sellers more,

especially when offloading occurs locally[10].Using mobile cloud computing, offloading to close-range cloudlets helps

reduce energy use and decreases task response time. This makes nearby offloading both energy-efficient and faster

for handheld devices.Battery life for handheld devices can be extended by merging mobile cloud computing with

mobile power transfer (MPT). Using optimization models, energy usage is balanced while handling data transfers.

When future channel data is known, adaptive methods adjust offloading to maintain system performance and can be

expanded to support full-duplex and multi-transfer setups.Cloud-based video crowd sensing is improved by tackling

three main tasks. First, an optimal video transcoding solution increases playback quality on mobile devices. Second,

throughput for different file protocols is evaluated, leading to a protocol-aware, real-time transfer method[11]. Third,

sensor-tagged videos are used to enhance cloud database interaction and video search capabilities.

Offloading Types in Heterogeneous Mobile Cloud Systems

Offloading decisions in heterogeneous mobile cloud setups depend on the strength of the remote connection. When

low bandwidth is detected, systems aim to redistribute workloads to maintain smooth mobile operation.In areas with

heavy mobile user presence, service providers can deploy local cloudlets to improve access. These nearby cloud nodes

help users maintain service continuity, especially when cellular network strength drops[12].Users connected via 3G

or 4G can automatically switch to nearby cloudlets when bandwidth becomes limited. Continued service is supported

over Wi-Fi, with local processing handling tasks previously managed remotely.Different models for task offloading

within cloudlets rely on node availability and how connections are established. Key challenges include managing

setup processes and determining the optimal level for offloading.A mobile edge computing (MEC) setup is outlined

with smart services and a nearby server managed using FDMA. Though actual servers may have low compute power,

the model assumes access to high-capacity computing for analysis[13].

Edge-Based Execution for Real-Time Mobile Cloud Systems

In decentralized mobile-peripheral computational infrastructures, orchestrating workload allocation is fundamental

for overseeing multifunctional operations and evenly distributing computational intensity across all accessible

processing strata. This process is essential in delivering low-latency outcomes while optimizing energy dynamics

between edge-linked handheld units and high-capacity cloud cores.Historically rooted in monolithic architectures,

resource arbitration has evolved to address hybridized systems—where edge layers demand synchronization of

Journal of Information Systems Engineering and Management
2025, 10(41s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1037
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

physical nodes (CPUs, memory) and logical elements (data links, channel availability)[14]. These components must

be synchronized under joint bidirectional (uplink-downlink) efficiency criteria.Each unit, mobile or cloud-based,

relies on its kernel-level resource scheduler to proportionally distribute available compute cycles, tailored to runtime

priorities and device constraints, especially under limited power budgets.High-density cloud-edge topologies must

process diverse user requests, often concurrently. By leveraging smart task-routing algorithms, systems determine

optimal task execution locations, dynamically adapting based on workload intensity and energy-saving

thresholds.Responsive, algorithm-driven orchestration mechanisms now guarantee that task execution timelines are

synchronized with energy-awareness goals—adapting to real-time status of bandwidth, compute load, and device

health—thereby enabling intelligent task offloading decisions at runtime.When a cloudlet is active but under-

resourced, it can distribute its load to nearby cloudlets using inter-cloudlet communication. This cooperation

improves performance without involving the central cloud.Mobile devices discover cloudlets through a root server

that keeps a live directory of cloudlets and their resources. With connectivity via Wi-Fi, 3G, or 4G, mobile clients

locate the nearest available cloudlet, offload tasks, and receive results directly.If one cloudlet can't finish a task, it

coordinates with others in the same area—like malls, offices, or public spaces—to complete the workload. This

dynamic sharing model enhances system reliability, reduces response time, and optimizes energy usage in mobile

edge computing environments[15].In the extended model of decentralized mobile computation, a novel architecture

integrates API-based invocation with a remote procedure call (RPC) framework, enabling users to programmatically

access and orchestrate distributed services. This integration, aligned with the Mobile Cloudlet Framework, serves as

an edge layer between user devices and the cloud core. By embedding computational elasticity, the cloudlet amplifies

mobility performance while preserving scalability metrics.In the extended model of decentralized mobile

computation, a novel architecture integrates API-based invocation with a remote procedure call (RPC) framework,

enabling users to programmatically access and orchestrate distributed services. This integration, aligned with the

Mobile Cloudlet Framework, serves as an edge layer between user devices and the cloud core. By embedding

computational elasticity, the cloudlet amplifies mobility performance while preserving scalability metrics[16-19].A

dynamic task migration algorithm, defined via a Markov Decision Process (MDP), is formulated to optimize execution

policies in fluctuating mobile environments. Let the state set be Ω = {𝜔1, 𝜔2, . . . , 𝜔𝑛}, where each 𝜔𝑖 represents device-

load conditions. The decision action set 𝐴 = {𝑎𝑙𝑜𝑐𝑎𝑙 , 𝑎𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡} governs local vs. remote execution, with transition

probabilities 𝑃(𝜔𝑗|𝜔𝑖 , 𝑎). The reward function 𝑅(𝜔𝑖 , 𝑎) is calibrated for minimizing time-energy trade-offs.

From an optimization standpoint, define a binary division of execution outcomes:

• Case 1: Never Offload

• Case 2: Always Offload

These are conditional on the critical threshold 𝑇𝑐𝑟𝑖𝑡, where

Offloaddecision = {
No, if 𝑇𝑙𝑜𝑐𝑎𝑙 < 𝑇𝑐𝑟𝑖𝑡
Yes, if 𝑇𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡 < 𝑇𝑐𝑟𝑖𝑡

Feasibility in real-world applications was tested using Android-based mobile prototypes, where clone-

synchronization mechanisms were established. Let 𝐶𝑖 be the clone of a task instance on device 𝐷𝑖. The consistency

across clones is preserved via:

𝛿(𝐶𝑖, 𝐶𝑗) → min--(1)

ensuring synchronized state replication during migration.

Offloading strategies were refined further by introducing location-based proximity functions. Given a set of cloudlets

ℒ = {𝐿1, 𝐿2, . . . , 𝐿𝑚}, the optimal offload point 𝐿∗ is:

𝐿∗ = arg⁡min
𝐿𝑖∈ℒ

 [Latency(𝑈, 𝐿𝑖) + Load(𝐿𝑖)]--(2)

Lastly, [20] address the multilayered communication model, incorporating intra-cloud and inter-cloud service

exchanges. Define:

• 𝜙client-CSP – client to CSP interaction latency

Journal of Information Systems Engineering and Management
2025, 10(41s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1038
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

• 𝜙intra-CSP – communication within the CSP

• 𝜙inter-CSP – cross-provider handoff delay

The cumulative delay function becomes:

Φ = 𝜙client-CSP + 𝜙intra-CSP + 𝜙inter-CSP--(3)

where the objective is minimizing Φ across distributed application execution paths.

In advancing mobile cloud computing paradigms, researchers have identified three unique offloading schemas that

significantly enhance task feasibility and user responsiveness. These models are tailored to dynamically respond to

execution contexts while maintaining system efficiency.

The first model emphasizes latency reduction through proactive networking protocols. Let 𝐷e2e be the end-to-end

delay, decomposed as:

𝐷e2e = 𝐷send + 𝐷proc + 𝐷return--(4)

Here, AMCC (Adaptive Mobile Cloud Communication) techniques aim to minimize 𝐷e2e using preemptive routing

and lightweight session handshakes.

The second strategy involves volunteer-based edge computing, where mobile cloudlets operate in a geo-localized

manner. A virtual ad hoc mesh is formed:

𝒢(𝑉, 𝐸), 𝑉 = {devices}, 𝐸 = {communication links}

This mesh acts as a surrogate discovery backbone, allowing tasks 𝑇𝑖 to offload onto optimal nodes 𝑣𝑗 ∈ 𝑉 based on

minimal processing time and local resource availability.

The third contribution to offloading feasibility comes from a layered architectural model within MCC. Let the system

be structured as:

Layers ℒ = {𝐿1, 𝐿2, 𝐿3},⁡where each 𝐿𝑖 applies security vector 𝜎𝑖

Each layer enforces context-sensitive security protocols to protect against data breaches and ensure integrity across

distributed tasks, as surveyed[21].

Addressing resource bottlenecks in cloudlet operations, Liu et al. introduced a resource-aware allocation framework.

Define:

• ℛ = {𝑟1, 𝑟2, . . . , 𝑟𝑛} = available resources

• 𝒰 = {𝑢1, 𝑢2, . . . , 𝑢𝑚} = user demands

• 𝐴 = [𝑎𝑖𝑗], where 𝑎𝑖𝑗 = 1 if resource 𝑟𝑖 is allocated to user 𝑢𝑗

The optimization goal becomes:

max∑  𝑖,𝑗 (
𝑄𝑖𝑗

𝐿𝑖𝑗
⋅ 𝑎𝑖𝑗)--(5)

Where 𝑄𝑖𝑗 is the quality of service and 𝐿𝑖𝑗 is latency for each assignment. Their algorithm adapts well under varying

user densities, outperforming greedy-based allocations in large-scale networks.

As user traffic 𝜆(𝑡) increases, their simulations show:

QoS(𝑡) ∝ 𝜆(𝑡),⁡where 𝜆(𝑡) is user arrival rate

indicating a scalable solution.

Given the complexity of managing heterogeneous services, the authors suggest adopting an ad hoc cloud topology:

𝒜cloud = 𝒜static ∪𝒜mobile--(6)

Journal of Information Systems Engineering and Management
2025, 10(41s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1039
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The objective function for such a setup is:

min𝒞 = Infrastructure Cost, maxℰ =
Utilized Tasks

Resources Allocated

This model allows adaptive provisioning of services while maintaining low-cost scalability.

In evolving Mobile Edge Computing (MEC) systems, [22] developed a simplified architecture that supports diverse

smart applications by integrating a MES (Mobile Edge Server) infrastructure. This server, while idealized with infinite

computing power, operates under Frequency-Division Multiple Access (FDMA) communication schemes.

The key performance metric is average energy consumption across both mobile users and the edge server:

𝐸‾ =
1

𝑇
∑  𝑇
𝑡=1 (𝐸mobile(𝑡) + 𝐸edge(𝑡))--(7)

To optimize this system, a joint resource control model is applied:

• 𝑓mobile, 𝑓edge: CPU cycle frequency allocations

• 𝑃tx: transmission power

• 𝐵: communication bandwidth

The optimization seeks to minimize:

min
𝑓,𝑃tx,𝐵

 𝐸‾ ⁡subject to latency and task constraints

[23] introduced an adaptive resource allocation mechanism, incorporating mobility forecasting and dynamic

resource requirements 𝑅(𝑡). Given:

• Predicted trajectory 𝜏(𝑡)

• Required service time 𝑆𝑡

The allocation decision 𝐴(𝑡) is made based on:

𝐴(𝑡) = 𝑓(𝜏(𝑡), 𝑅(𝑡), 𝑆𝑡)--(8)

To further enhance efficiency[24] explored energy harvesting edge-enabled systems, where tasks are processed either

locally or offloaded based on energy and delay costs. Each time slot 𝑡 includes:

• 𝐸𝑏(𝑡): battery energy level

• 𝐷exec(𝑡): execution delay

• 𝐶offload(𝑡): cost of offloading

They demonstrate that optimal CPU frequencies 𝑓𝑡 increase with energy:

𝑑𝑓𝑡
𝑑𝐸𝑏

≥ 0

This implies higher available energy accelerates execution and reduces latency.

In spatially dispersed computational frameworks, compute units Π = {𝜋1, 𝜋2, . . . , 𝜋𝑛} are co-embedded with terminal

agents Θ and sensory interfaces Ψ, enabling minimal-latency processing through proximity-optimized computation.

The temporal response function 𝜏𝑟 is minimized as:

min
𝜋𝑖

 𝜏𝑟 = 𝑓(𝑑(𝜋𝑖 , Θ𝑗), 𝛾proc, 𝜇mem)--(9)

where 𝑑 denotes spatial distance, 𝛾proc is processing frequency, and 𝜇mem is available memory per peripheral node.

Journal of Information Systems Engineering and Management
2025, 10(41s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1040
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this architectural regime, energy-constrained scheduling of high-complexity tasks Ξ is optimized by executing

near the origination point:

Ξ𝑘 = arg⁡min(𝜀𝑘 ⋅ 𝜏𝑘)

where 𝜀𝑘 is energy cost and 𝜏𝑘 is task latency.

Security primitives are applied directly at the edge node 𝜋𝑖, using embedded cryptographic gates 𝜅 and access

verifiers 𝜌:

𝒮(𝜋𝑖) = 𝜅(𝐷)⊕ 𝜌(UID)

ensuring integrity 𝜄(𝐷) across the transformation sequence without central exposure:

∀𝑡, 𝜄(𝐷𝑡) = 𝜄(𝐷0)

Each node executes lightweight inference models Λ𝑖, where:

Λ𝑖 : Φ → {0,1}, detecting⁡anomalies 𝛼𝑡 ∈ Φ

This real-time inference enables early-stage threat mitigation at the edge, precluding compromise before central

processing.Horizontal expansion is achieved via parallel delegation:

Ω =⋃  

𝑛

𝑖=1

Ξ𝑖

where each task set Ξ𝑖 is routed to node 𝜋𝑖, thus reducing global cloud pressure and improving scalability 𝜎, measured

as:

𝜎 =
∑  𝑛
𝑖=1  𝑇handled(𝜋𝑖)

𝑇total
--(10)

In a modular network structure, routing decisions 𝜌𝑡 and compute path 𝜒𝑡 are dynamically recalculated:

𝜌𝑡 = 𝑓(RT𝑡 , 𝜈𝑡), 𝜒𝑡 = 𝑓(QoS𝑡)

where 𝜈𝑡 represents current load, and RT𝑡 the routing table at time 𝑡. This adaptiveness supports optimized queueing

𝑄(𝑡) across uplink/downlink paths:

𝑄(𝑡) = min (
𝑊𝑖(𝑡)

𝜔𝑖(𝑡)
) , 𝑖 ∈ Π--(11)

with 𝑊𝑖(𝑡) as queue weight and 𝜔𝑖(𝑡) as service rate.

3.PROPOSED MODEL

Mobile units are prepared for sending and processing tasks, checking energy usage. Edge and cloud systems are also

initialized, registering their speed, storage, and connection limits.This layer handles the main logic for choosing

where to process tasks and how to divide resources. It looks at size, energy use, and delay to decide if tasks stay local

or go to cloud or edge servers. It models how long tasks take, how much energy they use, and builds an algorithm to

balance both.

Simulates how long and how much energy tasks need if sent to mobile edge computing nodes.Spreads bandwidth and

computing power across devices. Uses delay formulas to calculate time for each task and tracks how much energy is

used.

Estimates how long a task takes with the formula:

𝑇 =
𝐷

𝑅

where 𝐷 is data size and 𝑅 is the resource rate.

Journal of Information Systems Engineering and Management
2025, 10(41s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1041
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Estimates energy use by linking task size with device power usage.A scheduling algorithm that adjusts decisions based

on both time and energy needs, choosing centralized or shared control.Takes over when the cloud handles tasks. It

returns results and manages delays caused by shared access or waiting time.Predicts slowdowns or bottlenecks in

cloud systems due to many tasks sharing resources.Records what happens during processing. Tracks how well IPSO

and CSO algorithms perform and saves metrics for review. The overview of proposed model is shown in figure 1.

 User Interface Layer

This layer initializes system components.

• Mobile Devices Setup

Configuration of mobile terminals for task generation, offloading readiness, and energy profiling.

• Edge, Cloud Devices Setup

Initializes edge servers and cloud datacenters, registering compute capabilities, bandwidth, and latency

thresholds.

2. Joint Optimization Layer

This is the core layer that balances task offloading and resource scheduling.

• Joint Task Offloading

Decides which tasks should execute locally or be offloaded to MEC/cloud based on energy, delay, or task

size.

▸ Leads to:

o MEC Execution Modelling: Simulates execution time, delay, and energy if offloaded to MEC.

• Joint Resource Allocation

Allocates bandwidth, CPU cycles, and memory across nodes.

▸ Leads to:

o Time Consumption Modelling: Computes delay for task execution using:𝑇 =
𝐷

𝑅

o Energy Consumption Modelling: Calculates energy consumed based on task size and power

profile.

• ▸ Outputs:

o Proposed CSO Model: Centralized or Cooperative Scheduling Optimization algorithm that

integrates time-energy trade-offs.

3. Cloud Services Layer

Handles execution and load balancing when cloud is involved.

• Task Execution Result

Delivers final output from cloud after computation.

• Queueing Constraints for Load Balancing

Models waiting time and resource contention in cloud environments.

Journal of Information Systems Engineering and Management
2025, 10(41s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1042
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Figure 1: Overview of Proposed Model

Edge Execution Cost Breakdown

The total edge execution cost 𝑄𝑛
𝑒 is defined as a combination of time and energy factors:

𝑄𝑛
𝑒 = 𝛼𝑇𝑛

𝑒 + 𝛽𝐸𝑛
𝑒

Here, 𝛼 and 𝛽 are weights for time and energy respectively.

Edge Task Timing Details

The total time to send a task from the mobile device 𝑀𝐷𝑛 to the edge node is:

𝑇𝑛
𝑒 = 𝑇𝑛

𝑡𝑟 + 𝑇𝑛
𝑟 + 𝑇𝑛,𝑒

𝑖𝑛,𝑝
+ 𝑇𝑛,𝑒

𝑞

Transmission Delay 𝑇𝑛
𝑡𝑟

This is the time to transmit the task data from 𝑀𝐷𝑛 to the edge node:

𝑇𝑛
𝑡𝑟 =

𝐷𝑆𝑛,𝑒
𝑖𝑛

𝑏𝑛

where 𝐷𝑆𝑛,𝑒
𝑖𝑛 is the task size and 𝑏𝑛 is the bandwidth.

Response Time 𝑇𝑛
𝑟

This captures the time to return the results from the edge node to 𝑀𝐷𝑛:

𝑇𝑛
𝑟 =

𝐷𝑆𝑛,𝑒
𝑜𝑢𝑡

𝑏𝑛

where 𝐷𝑆𝑛,𝑒
𝑜𝑢𝑡 is the size of the result.

Execution Time 𝑇𝑛,𝑒
𝑖𝑛,𝑝

This is how long it takes the edge processor to complete the task:

𝑇𝑛,𝑒
𝑖𝑛,𝑝

=
𝑆𝑛
𝑓𝑒

with 𝑆𝑛 as the task's required computation and 𝑓𝑒 the edge node's processing speed.

Queue Waiting Time 𝑇𝑛,𝑒
𝑞

Time the task spends waiting in the edge node's processing queue before execution begins.

Solution Setup

In this method, each egg inside a nest stands for a possible answer.

Each cuckoo creates just one answer.

Weak answers are replaced by better ones coming from other cuckoos.

Journal of Information Systems Engineering and Management
2025, 10(41s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1043
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Nest Placement

Nest locations are written as 𝑥𝑖
𝑡, where 𝑖 goes from 1 to 𝑍 (number of nests or problem size), and 𝑡 is the iteration

count.

Search Pattern with Lévy Flight

Lévy flight helps guide both wide and narrow searches for better answers.

New nest locations are calculated using:

𝑥new
(𝑡)

= round (
1

1 + 𝑒−𝛽𝑥nest
(𝑡))

Generating a New Solution

A new position for a nest is computed as:

𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)

+ 𝛼 ⋅ 𝐿(𝑠, 𝜆)

Where:

• 𝑥𝑖
(𝑡+1)

 is the updated position of nest 𝑖 at the next step.

• 𝑥𝑖
(𝑡)

 is the current position.

• 𝛼 adjusts the step length.

• 𝑠 is the step size.

• 𝐿(𝑠, 𝜆) defines the Lévy flight behavior.

Global Random Walk Update Rule

𝑥𝑖
𝑡+1 = 𝑥𝑖

′ + 𝛼𝑠 ⊗𝐻(𝑃𝑎 − 𝜀)⊗ (𝑥𝑖
′ − 𝑥𝑘

′)

Where:

• 𝑥𝑖
𝑡+1 is the updated solution.

• 𝑠 is the step size.

• 𝐻 is the Heaviside function.

• 𝜀 is a random number.

• 𝑥𝑘
′ is a randomly selected solution.

• 𝑃𝑎 is a probability that controls switching.

Edge Queue Modeling

Queue Setup

Modeled as M/M/1 queue since only one edge server is used.

• Arrival rate: 𝜆𝑒

• Service rate: 𝜇𝑒

Edge Server Utilization

𝜌𝑒 =
𝜆𝑒

𝜇𝑒

Measures how busy the server is.

Average Waiting Load

Journal of Information Systems Engineering and Management
2025, 10(41s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1044
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

𝐿𝑒 =
(𝜌𝑒)2

1 − 𝜌𝑒

Gives the expected number of tasks waiting in line.

Task Waiting Time in Queue

𝑇𝑛,𝑞
𝑒 =

𝐿𝑒

𝜆𝑒

Calculated using both the queue length and task arrival rate.

Overall Execution Time at Edge

𝑇𝑛
𝑒 = 𝑇𝑛

𝑡𝑟 + 𝑇𝑛
𝑟 + 𝑇𝑛,𝑒

𝑖𝑛,𝑝
+ 𝑇𝑛,𝑞

𝑒

Adds up all delays: sending, result return, processing, and queue wait.

Edge Transmission Resource Calculations

Define:

• 𝐷: Volume of data in transmission

• 𝐵: Channel bandwidth

• 𝐻: Channel gain (uplink/downlink)

• 𝑃: Transmission power (uplink/downlink)

• 𝑁0: Noise power

Uplink Rate

𝑅uplink = 𝐵 ⋅
log2⁡(1+

𝐻uplink⋅𝑃uplink

𝑁0
)

log2⁡𝑒
--(13)

Uplink Time

𝑇uplink =
𝐷

𝑅uplink
--(14)

Downlink Rate

𝑅downlink = 𝐵 ⋅
log2⁡(1+

𝐻downlink⋅𝑃downlink
𝑁0

)

log2⁡𝑒
--(15)

Downlink Time

𝑇downlink =
𝐷

𝑅downlink
--(16)

Each mobile device starts with defined settings: its task load, battery level, and whether it can offload tasks. At the

same time, all edge and cloud nodes are set up with their compute strength, network capacity, and delay stats—split

into upload, processing, and download times.This layer decides how to run each task—locally or offloaded—based on

time and energy needs. Task time comes from dividing task size by processing speed. Energy use depends on CPU

power per cycle and total cycles. Offloading is marked by a binary value. The system uses Cuckoo Search Optimization

(CSO) to minimize a weighted mix of delay and energy use, adjusting based on whether users care more about speed

or saving battery.Tasks that need more processing or can’t handle wait times go to the cloud. The system checks the

number of pending tasks and their average times to calculate delay. It also makes sure no cloud server gets overloaded

by comparing all task sizes against its limits.

Journal of Information Systems Engineering and Management
2025, 10(41s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1045
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

4.EXPERIMENTAL RESULTS

Experimental results are simulated uisng java based mobile edge cloud simulation tool. This tool is customized usign

proposed task schedluing and uplink and downlink computations. Figure 2 represents the input application

configuration file which contains mobile ,edge and cloud configuration settings.

Figure 2: Input application configuration file

Figure 3: Comparative analysis of proposed model to existing models for average load resources.

Figure 4: Comparative analysis of proposed model to existing models for number of offloads per

tasks.

CRAA CDR-A

Low-
complexity

heuristic
algorithm

Proposed
model

Avg Load resources 25 26 23 15

25 26
23

15

0

5

10

15

20

25

30

A
vg

 L
o

ad
 r

es
o

u
rc

es

Avg Load resources

Avg Load resources

CRAA CDR-A

Low-
complexity

heuristic
algorithm

Proposed
model

Number of offloads 124 128 114 100

0
20
40
60
80

100
120
140

Number of offloads

Journal of Information Systems Engineering and Management
2025, 10(41s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1046
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Figure 5: Comparative analysis of proposed model to existing models for energy computation.

Figure 6: Comparative analysis of proposed model to existing models for total runtime(m).

The performance comparisons(Figure 3-6) across the four methods[25]—CRAA, CDR-A, Low-complexity heuristic

algorithm, and the Proposed model—shows that the proposed approach consistently outperforms others in efficiency

and resource management. In terms of average load on resources, the proposed model shows the lowest usage at 15,

compared to 25–26 in CRAA and CDR-A, indicating more efficient task distribution. Regarding the number of

offloads, although the proposed model performs fewer offloads (100), it likely achieves better optimization by

offloading only when beneficial, unlike CRAA and CDR-A which offload more frequently (124 and 128, respectively).

In energy consumption, the proposed model again leads with the lowest value (19J), suggesting it is more power-

efficient than CRAA (30J), CDR-A (25J), and the heuristic algorithm (23J). Lastly, in terms of total runtime, the

proposed model has the shortest completion time at 2744m, whereas CRAA takes the longest at 3255m. Altogether,

the proposed model demonstrates a balanced and optimized performance across all metrics.

V.CONCLUSION

In this paper, a novel meta-heuristic optimization model with uplink and downlink computations are proposed for

large scale task scheduling applications. Proposed optimization model with uplink and downlink metrics are

evaluated on large mobile edge cloud configurations. This model is evaluated with different parameters and

optimization functions. Experimental results are evaluated with different MEC performance metrics on large scale

applications. In future, this work is extended to federated based mobile edge computation using parallel computation.

VI.REFERENCES

[1] C. Yi, J. Cai, and Z. Su, “A Multi-User Mobile Computation Offloading and Transmission Scheduling Mechanism

for Delay-Sensitive Applications,” IEEE Transactions on Mobile Computing, vol. 19, no. 1, pp. 29–43, Jan. 2020,

doi: 10.1109/TMC.2019.2891736.

CRAA CDR-A

Low-
complexity

heuristic
algorithm

Proposed
model

Energy 30 25 23 19

0
5

10
15
20
25
30
35

En
er

gy

Energy[J]

CRAA CDR-A

Low-
complexity

heuristic
algorithm

Proposed
model

Total Runtime(m) 3255 3155 3055 2744

2400
2500
2600
2700
2800
2900
3000
3100
3200
3300

To
ta

l R
u

n
ti

m
e(

m
)

Total Runtime(m)

Journal of Information Systems Engineering and Management
2025, 10(41s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1047
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[2] H. Lim et al., “An Empirical Study of 5G: Effect of Edge on Transport Protocol and Application Performance,”

IEEE Transactions on Mobile Computing, vol. 23, no. 4, pp. 3172–3186, Apr. 2024, doi:

10.1109/TMC.2023.3274708.

[3] S.-H. Park, S. Jeong, J. Na, O. Simeone, and S. Shamai, “Collaborative Cloud and Edge Mobile Computing in C-

RAN Systems With Minimal End-to-End Latency,” IEEE Transactions on Signal and Information Processing

over Networks, vol. 7, pp. 259–274, 2021, doi: 10.1109/TSIPN.2021.3070712.

[4] T. T. Nguyen, L. B. Le, and Q. Le-Trung, “Computation Offloading in MIMO Based Mobile Edge Computing

Systems Under Perfect and Imperfect CSI Estimation,” IEEE Transactions on Services Computing, vol. 14, no.

6, pp. 2011–2025, Nov. 2021, doi: 10.1109/TSC.2019.2892428.

[5] H. Yuan et al., “Cost-Efficient Task Offloading in Mobile Edge Computing With Layered Unmanned Aerial

Vehicles,” IEEE Internet of Things Journal, vol. 11, no. 19, pp. 30496–30509, Oct. 2024, doi:

10.1109/JIOT.2024.3408216.

[6] V. Kumar, M. Mukherjee, J. Lloret, Q. Zhang, and M. Kumari, “Delay-Optimal and Incentive-Aware Computation

Offloading for Reconfigurable Intelligent Surface-Assisted Mobile Edge Computing,” IEEE Networking Letters,

vol. 4, no. 3, pp. 127–131, Sep. 2022, doi: 10.1109/LNET.2022.3187720.

[7] C. Zhang and H. Du, “DMORA: Decentralized Multi-SP Online Resource Allocation Scheme for Mobile Edge

Computing,” IEEE Transactions on Cloud Computing, vol. 10, no. 4, pp. 2497–2507, Oct. 2022, doi:

10.1109/TCC.2020.3044852.

[8] Q. Zhang, L. Gui, F. Hou, J. Chen, S. Zhu, and F. Tian, “Dynamic Task Offloading and Resource Allocation for

Mobile-Edge Computing in Dense Cloud RAN,” IEEE Internet of Things Journal, vol. 7, no. 4, pp. 3282–3299,

Apr. 2020, doi: 10.1109/JIOT.2020.2967502.

[9] S. Mukherjee and J. Lee, “Edge Computing-Enabled Cell-Free Massive MIMO Systems,” IEEE Transactions on

Wireless Communications, vol. 19, no. 4, pp. 2884–2899, Apr. 2020, doi: 10.1109/TWC.2020.2968897.

[10] Z. Xu, J. Liu, J. Zou, and Z. Wen, “Energy-Efficient Design for IRS-Assisted NOMA-Based Mobile Edge

Computing,” IEEE Communications Letters, vol. 26, no. 7, pp. 1618–1622, Jul. 2022, doi:

10.1109/LCOMM.2022.3172309.

[11] Y. K. Tun, Y. M. Park, N. H. Tran, W. Saad, S. R. Pandey, and C. S. Hong, “Energy-Efficient Resource Management

in UAV-Assisted Mobile Edge Computing,” IEEE Communications Letters, vol. 25, no. 1, pp. 249–253, Jan.

2021, doi: 10.1109/LCOMM.2020.3026033.

[12] Y. Ye, R. Q. Hu, G. Lu, and L. Shi, “Enhance Latency-Constrained Computation in MEC Networks Using Uplink

NOMA,” IEEE Transactions on Communications, vol. 68, no. 4, pp. 2409–2425, Apr. 2020, doi:

10.1109/TCOMM.2020.2969666.

[13] X. Huang, S. Zeng, D. Li, P. Zhang, S. Yan, and X. Wang, “Fair Computation Efficiency Scheduling in NOMA-

Aided Mobile Edge Computing,” IEEE Wireless Communications Letters, vol. 9, no. 11, pp. 1812–1816, Nov.

2020, doi: 10.1109/LWC.2020.3001994.

[14] K. Guo, M. Yang, Y. Zhang, and J. Cao, “Joint Computation Offloading and Bandwidth Assignment in Cloud-

Assisted Edge Computing,” IEEE Transactions on Cloud Computing, vol. 10, no. 1, pp. 451–460, Jan. 2022, doi:

10.1109/TCC.2019.2950395.

[15] R. Xiong, C. Zhang, X. Yi, L. Li, and H. Zeng, “Joint Connection Modes, Uplink Paths and Computational Tasks

Assignment for Unmanned Mining Vehicles’ Energy Saving in Mobile Edge Computing Networks,” IEEE Access,

vol. 8, pp. 142076–142085, 2020, doi: 10.1109/ACCESS.2020.3013714.

[16] G. Interdonato and S. Buzzi, “Joint Optimization of Uplink Power and Computational Resources in Mobile Edge

Computing-Enabled Cell-Free Massive MIMO,” IEEE Transactions on Communications, vol. 72, no. 3, pp.

1804–1820, Mar. 2024, doi: 10.1109/TCOMM.2023.3336355.

[17] A. Al-Shuwaili and A. Lawey, “Latency Reduction for Mobile Edge Computing in HetNets by Uplink and

Downlink Decoupled Access,” IEEE Wireless Communications Letters, vol. 10, no. 10, pp. 2205–2209, Oct.

2021, doi: 10.1109/LWC.2021.3096897.

[18] L. Zhang and N. Ansari, “Latency-Aware IoT Service Provisioning in UAV-Aided Mobile-Edge Computing

Networks,” IEEE Internet of Things Journal, vol. 7, no. 10, pp. 10573–10580, Oct. 2020, doi:

10.1109/JIOT.2020.3005117.

Journal of Information Systems Engineering and Management
2025, 10(41s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1048
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[19] M. Ke, Z. Gao, Y. Wu, X. Gao, and K.-K. Wong, “Massive Access in Cell-Free Massive MIMO-Based Internet of

Things: Cloud Computing and Edge Computing Paradigms,” IEEE Journal on Selected Areas in

Communications, vol. 39, no. 3, pp. 756–772, Mar. 2021, doi: 10.1109/JSAC.2020.3018807.

[20] L. Huang, L. Zhang, S. Yang, L. P. Qian, and Y. Wu, “Meta-Learning Based Dynamic Computation Task

Offloading for Mobile Edge Computing Networks,” IEEE Communications Letters, vol. 25, no. 5, pp. 1568–1572,

May 2021, doi: 10.1109/LCOMM.2020.3048075.

[21] T. Zhou, Y. Yue, D. Qin, X. Nie, X. Li, and C. Li, “Mobile Device Association and Resource Allocation in HCNs

With Mobile Edge Computing and Caching,” IEEE Systems Journal, vol. 17, no. 1, pp. 976–987, Mar. 2023, doi:

10.1109/JSYST.2022.3157590.

[22] C. Park and J. Lee, “Mobile Edge Computing-Enabled Heterogeneous Networks,” IEEE Transactions on Wireless

Communications, vol. 20, no. 2, pp. 1038–1051, Feb. 2021, doi: 10.1109/TWC.2020.3030178.

[23] M. A. Hossain and N. Ansari, “Network Slicing for NOMA-Enabled Edge Computing,” IEEE Transactions on

Cloud Computing, vol. 11, no. 1, pp. 811–821, Jan. 2023, doi: 10.1109/TCC.2021.3117754.

[24] S. Huang, B. Lv, R. Wang, and K. Huang, “Scheduling for Mobile Edge Computing With Random User Arrivals—

An Approximate MDP and Reinforcement Learning Approach,” IEEE Transactions on Vehicular Technology,

vol. 69, no. 7, pp. 7735–7750, Jul. 2020, doi: 10.1109/TVT.2020.2990482.

[25] B. Jedari, G. Premsankar, G. Illahi, M. D. Francesco, A. Mehrabi, and A. Ylä-Jääski, “Video Caching, Analytics,

and Delivery at the Wireless Edge: A Survey and Future Directions,” IEEE Communications Surveys & Tutorials,

vol. 23, no. 1, pp. 431–471, 2021, doi: 10.1109/COMST.2020.3035427.

